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Pulse Amplitude Modulation 
- Symbol frequency – in the digital transmission the symbol frequency (or the signaling frequency) 
equals the number of variations per time unit (second) of the modulated parameter (parameters), produced 

by the modulation process.  
- A symbol from the signaling alphabet could „carry” n bits 

- The symbol period may be defined as the minimum time interval during which the value of the 

modulated parameter remains constant. This assertion holds for the amplitude shift keying (ASK) and 

frequency shift keying (FSK). For the phase shift keying (PSK), the modulated parameter has a linear 

variation during a symbol period. 

- Considering the bit frequency at the modulator’s inputs is fbit, the symbol period Ts is expressed by (1), 

while the symbol frequency fs is expressed by (2). 
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- If n bits are mapped (loaded) on a symbol, the modulated parameter can have one of the M=2n possible 

distinct values, which compose the modulation (channel) alphabet `.  

- The mapping operation performs the correspondence between the M combinations of n bits and the M 

values of the modulated parameter, i.e. the modulation alphabet `, according to a mapping rule    

- The receiver performs the demapping function, according to the demapping rule, providing the binary n 

bit-long sequences corresponding to the received modulating symbol.  
 

Pulse Amplitude Modulation (PAM) 
- The digital PAM transmits during the k-th symbol period a constant amplitude mk., which could be one 

of the M=2
n
 values belonging to the modulation alphabet M .  

- Imposing that the average value of the modulated signal equals zero, condition that leads to symmetrical 

levels, and that the difference between two neighbouring levels to be constant, the possible levels are 

defined by:   
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where A0 is a scaling constant and 2A0 is the minimum distance between any elements of M    

- The maximum value of the modulated level is:  

 max 0 0( 1) (2 1)= − ⋅ = − ⋅n
A M A A  (4) 

- Figure 1 presents an example of PAM signal and the mapping function (table) employed for n = 3 and 

A0=1V. The tri-bit to level mapping is mapping according to the Gray rule, so that the tribits 

corresponding to adjacent levels differ by only one bit.  

 
Figure 1. Example of PAM and mapping table 

- If we assume that the levels of the modulated signal (3) are equiprobable, the average power of the PAM 

signal (base band) is expressed by (5). This relation is obtained using the sum of the first M natural 

numbers and the sum of their squares: 
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- The expression of the PAM signal is: 
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where uT(t) is a unity-step impulse which has duration of one symbol period TS, expressed by (7).  
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- Considering that the modulated signal may take M(=2
n
) amplitude levels and the modulating sequences 

are random, the amplitude of the PAM signal is a random variable of mean equaling mm and variance σm. 

Due to the finite duration of each level, see (7), the power spectral density of the PAM signal is: 
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- Due to the zero-mean condition imposed, i.e., mm = 0, which makes the modulated levels to be 

symetrical w.r.t. 0V, the spectral power density of the PAM signals is expressed only by the first term of 
(8); actually, σm

2 is proportional to the average power given by (5) 

- The amplitude spectrum of the PAM signal is represented in Figure 2 
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Figure 2 Spectral amplitude density of the PAM signal 

Optimal Demodulation of the PAM signals on AWGN channels 

- The signal received during a symbol period on a AWGN channel can be expressed as: 
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- Since the modulating signal mk is constant over a symbol period, the received signal should be averaged 

over a that symbol period, as shown in Figure 3. 
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Figure 3. Correlator-based PAM demodulator 

 

- The correlation between the received signal and the step-impulse, which acts like a „time-window” that 

marks-off the integration intervals of each symbol by reseting the integrator at the beginning of each 
symbol period, is expressed by:    
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- By sampling the integrator’s output at the end of the symbol period we get:  

 ( )S k ky kT m n= +   (11) 

- the „noise” term nk has a Gaussian distribution: 
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- Assuming that the noise power spectral density equals N0, the variance of the noise samples nk would be 
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(13); this shows that the noise at the demodulator’s output still has a constant power spectral distribution 
and its amplitude’s distribution is Gaussian 
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Symbol error probability of PAM 
- Assuming that the received PAM signal is affected by a Gaussian Additive White Noise (AWGN) of 

zero-mean and varianceσ , its expression becomes: 

 ( ) ( ) ( )PAM PAMr t s t n t= +  (14) 

- The conditional probability that the received would equal r in the sampling moment, if the transmitted 

level is mi, is: 
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- The distributions of the probability densities of the M transmitted levels that are affected by the AWGN 

channel, and the values of the M-1 decision thresholds are presented in Figure 4. 
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Figure 4 Distributions of probability densities of the PAM signal received in an AWGN channel; 

decision thresholds and intervals  

- Since the decided symbols are obtained by selecting the permitted symbol that has the minimum 

(Euclidean) distance to the received level, the symbol error probability pe equals the occurrence 
probability of a noise level that would make the level of the received signal, i.e. transmitted signal +noise 

signal, to get closer to another permitted level than to the transmitted one.  
- If during k-th symbol period the transmitted level is mk and its occurrence probability is Pmk, then the 

symbol-error probability is: 
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where 
0,k AN denotes the number of permitted levels placed at dE = 2A0 from level mk, i.e. Nk,A0 = 1 or 2.  

- Note that if the modulating data are randomized, then the transmitted levels have equal occurrence 

probabilities, i.e. 
1

mkP
M

=  

- Assuming now that the transmitted levels are according to equation (3), then (16) may be rewritten as: 
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- Inserting now (15) in (17), the average symbol error probability becomes: 
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where: 
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- The symbol-error probability can also be expressed in terms of the Signal-to-Noise Ratio (SNR) in its 

linear representation, ρ, by using (5): 
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- The Q(t) function could be approximated, by using its Taylor series expansion, as:  
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- For medium and great values of the argument, the Q function can be approximated by the first term of 

its Taylor-series expansion (20) and so the symbol error probability could be approximated by:  
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- The bit-error probablity pb or BER also depends on the multibit-level mapping rule. 
- Expression (18) shows that the probability of a given level mk to be mistaken for one of its neighbouring 

levels is greater than than its probability to be mistaken for one of the levels placed at greater distances 

than 2A0.  

- Then, if the multibit-level mapping is made according to Gray rule, the bit-error probability may be 

rather accurately approximated by (22)  at high and medium values of ρ; in (22) n denotes the number of 

bit/symbol, i.e. n = ld M or log2M. This approximation assumes that a certain level is mistaken only for 

its neighbouring levels and hence the wrong decision of that level leads to only one bit in error  
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- The Gray mapping ensures a bit error probability smaller the mapping made according to a natural-
binary code. 

- This statement is justified by considering the 4-PAM, i.e. the levels {+/-3A0, +/-1A0}. 
- Assuming that level +1 is transmitted, its wrong decison to levels +3 or -1 occurs with the same 

probability pe1, and its wrong decision to level -3 occurs with probability pe2. Using (18) we get that:  
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- With a Gray mapping the dibit-level correspondence is ((-3 ↔ 00; -1 ↔ 01; +1 ↔ 11; +3 ↔ 10) and for 

mapping acc. to the natural-binary code the correspondence is (-3 ↔ 00; -1 ↔ 01; +1 ↔ 10; +3 ↔ 11) 

- Then using the Gray mapping, the average bit-error probability is: 
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- while for the natural-binary mapping the average bit-error probability is: 
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- The level-error probabilities p1 and p2 have the same values for both mapping rules  

- Comparing the bit-error probabilities of the two mapping rules we get: 
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- The transmission of PAM signals in band-limited channels (e.g. radio channels) requires their filtering 

in order to limit their bandwith. Since the filtering is performed with a particular filtering characteristic 

called Raised Cosine, which is presented in the Filtering the Data Signals lecture, considerations 

regarding the transmission of PAM signals in such channels will be presented at the end of that lecture. 


