=M

TECHNICAL UNIVERSITY
OF CLUJ-NAPOCA

A UTOMATION

C ompuTERS

A ppiiD

IVl ATHEMATICS -

3 h}

SCIENTIFIC JOURNAL

Vol. 2. No. 2 - 1993
ISSN - 1221-437X

i
&



NPL: Design, Semantics and
Programming examples

L
Eneia Todoran
Department of Automation and Computer Engineering,

Technical University of Cluj-Napoca, Romania

Abstract

The aim of this paper is 10 present the principics of the NPL programming language. NPL is structured
on two distinct semantic layers: the data layer (clementary actions are specified by Lisp expressions) and
Lhe process layer which is an extension of the process algebra. NPL processes may have paramelers and
local data. The strength of NPL is supplied at the process level by non-determinism and concurrency.
Besides some other examples the use of the process trees for data structure traversals is considered. The
concept of process normalization is discussed in connection with logic and functional programming.
Key words: semantics, normalized processes, concurrency, process trecs.

1.Introduction

The first version of NPL was introduced in [11]. NPL is the acronym for "Nermalized
Processes parameterized with Lisp expressions". In [11] an operational semantics for process
algebra based on rewriting techniques was presented. To this end the concept of process
normalization was introduced over the theory of process algebra. For normalized processes
continuations are always directly available. The execution may follow a simple scheme:
(1) execution of the current action, (2) rewriting of the process as its continuation, and (3)
execution of the continuation process.

In[11] NPL was introduced as a machine for the study of the concurrency. That version
was theory oriented (a predicative specification of process algebra). For the " operator of
process algebra its definition from the process algebra theory was considered (i.e. the process
scheduler was considered to introduce a non-deterministic behavior). Later, we extended
process definitions with parameters and local data and for the processes scheduling we chose
a round-robin policy. In this way NPL becomes a (concurrent) programming language.

The strength of NPL (at the process level) is due to the combination of non-
determinism and concurrency. Non-determinism is implemented by backtracking. In NPL
there is a mechanism that closely resembles the "negation as failure” from Prolog (however,
the NPL processes are much more general than the Prolog processes; we will make a parallel
between the two languages in section 6.). Every (Lisp) expression that evaluates to NIL forces
backrracking 1o the nearest "choice point”, In this extended version the non-determinism is
expressed only explicitly by the "+ "operator uf the process algebra. The "negation as failure"
may be used in NPL 1o destroy processes.

In this paper we present some NPL programming examples in which the emphasize is

94




on the process orientation of the algorithms. For the traversal of data structures NPL may be
considered as a "declarative” programming language. The programmer has only to "declare”
a process tree that "covers” the data structure (a graph, a tree or a list). It is not more difficult
to declare a process tree in NPL than it is to declare a data structre in Pascal for instance.

The concept of process normalization over the theory of process algebra is discussed
in connection with other programming paradigms (i.e. logic and functional) which allow for
an operational semantics based on rewriting techniques.

In the end we will present some possible extensions of NPL,

2. Some basic design considerations

NPL is a language designed at two distinct semantic layers. For the data representation
and manipulation NPL uses Lisp expressions. For processes, NPL uses the mathematical
theory of process algebra. However, in NPL there may be processes defined with or without
parameters and local data. For instance, to compute the length of a list we may use "iteration™

length_rep[(LIST)(N)] = (SETF N 0)swhile
while =(EQUAL L NIL) +
(NOT (EQUAL L NIL))e(SETF L(CDRL) N (+ N 1))ewhile

or "recursion”:

length_rec[(LIST)(N)] = (EQUAL L NIL)s(SETF N 0) +
(NOT (EQUAL L NIL))elength_rec[((CDR L))(N1)](SETF N (+ N1 1))

For the process algebra operators the following precedence is assumed: "e" binds
stronger than "[" which in turn binds stronger than "+". Curly braces may be used to force
precedence over process algebra expressions in NPL.

A parameterless process works on the data of the process who calls it. A process with
parameters creates its own data. The values of the parameters at the moment of the process
call represent its start state. If the process ends it returns to the calling process its final state.
At this level the design of NPL was inspired by the metaphor of the "state space” [6]. For a
program that operates on N variables, the corresponding "state space” is visualized as an N-
dimensional space with the N variables of the program as N Cartesian coordinates. This
metaphor describes the sequence of states corresponding to a computation as a "path” through
the state space, which is traversed by that computation. The metaphor allows us to view certain
program transformations (as a procedure call for instance) in which program variables are
replaced by others as coordinate transformations.

The parameters of a process in NPL are divided in two groups. The parameters in the
first group represent the initial state of the process and are transmitted by value (we must
point out here that the parameter passing is treated in NPL as a process that never fails, that
is, the evaluation of a parameter to NIL will not force backtracking). If the process ends, the
parameters in the second group (they must be Lisp symbols, i.e. variable names) represent its
final state and are rerurned to the calling process. The process may also create other local data

95




using Lisp primitives like SET or SETF.

NPL also uses a memory area for process communication. This memory area is
accessible as a global area. A variable is first searched in the local area of the current process.
Ifit is not found then the variable is searched in this global area. A process may create or alter
data in this area using the commands: ASET and ASETF. The data in this area are not
destroyed when a process fails (are "persistent” to failure) as it happens with the data in the
local process area. Such data however may be destroyed explicitly using the command
"(RESET <variable-name >)",

Let us now return to :4e problem of the computing of the length of a list. For a
deterministic and sequential behavior a functional specification is often preferred:

rootf()()] = (DEFUN LENGTH (L) (COND ((NULL L) 0)
(T (+ 1 (LENGTH (CDR L))))))e
(READ LIST)*(TERPRI)e(PRINT (LENGTH LIST))

The lambda expressions (created with DEFUN) are always memorized in the global
(and persistent) memory area, no matter which is the process which creates them.

In NPL there is a process called "root” which is the (direct or indirect) ancestor of zny
process. Other processes may be created either by call ar by the use of the process algel. .
operator "j".

An important facility offered by NPL is the process synchronization. This mechanism
is mainly used for communication. This technique is inspired by the Hoare’s rendez-vous. For
communications there are neither queues for messages nor is the task of the programumer o
keep track of process id’s or addresses. In fact, in NPL processes may be created dynamically
and such a book-keeping is nat possible in general. Synchronization may be specified by a pair
of synchronization commands. The mechanism of communication by process synchronization
in NPL is presented in [11]. Using a (raw) version of NPL, in [11] we have also presented an
example of two communicating processes that reverse a list at superficial level. We present the
same cxample using facilities introduced in the actual version of NPL:

rootf()()] =init ® {send[(L)()] { receive[()(RL)]} o(PRINT RL)
init=(READ L)e(LISTP L)
send[(SL)()] =sendloop o ((SYNC 7)(LIST (ASETF EL NIL)))
sendloop=(EQUAL SL NIL)+(NOT(EQUAL SL NIL))e

((SYNC 7)(ASETF EL (CAR SL)))e(LIST (SETF SL (CDR SL)))esendloop
receive[()(REVL)] = (LIST(SETF REVL NIL))ereceiveloop
receiveloop = ((SYNC-7) T)e {(EQUAL EL NIL) +

(NOT (EQUAL EL NIL))e(SETF REVL (CONS ELREVL))ereceiveloop}

3. Semantic considerations and interpretation

In this section we present a way to interpret the meaning of the NPL programs. This
will be done at two distinct semantic levels: the data level and the process level.




In its first version (see [11]) NPL was using Lisp only as a "data algebra”. However,
except for the addition of an environment with Lamhda expressions the extension of
elementary actions with the entire power of Lisp (as a functional programming language)
raises no conceptual difficulties. In the actual version, every atomic action in NPL is eithera
Lisp primitive or a (Lisp) user defined function.

At the level of processes NPL may be seen as a logic programming language. There is
a natural connection between logic and control. The truth values in NPL are inherited from
Lisp (NIL for FALSE and everything else for TRUE). After the elimination of the non-
determinism introduced by the process scheduler the operators of process algebra allows for
the following logical
interpretation:

"+* _OR
"B” - AND
"I* - (a“faster”) AND

That is, the process p; +p,ends either by the execution of p; OR by the execution of
p-, while p;op, and p; | p, ends by the execution of both p; AND p,. So, in NPL, logic is a
nsequence of an interpretation of process behavior. The NPL processes allow for a (first
ler) predicative interpretation.
The mathematical meaning of synchronization is given by an operator of "restriction”
(see [3]). We must point out here that synchronization does not alter the above presented
logical interpretation of the NPL-onerator "[".
The following example is the widely known program for "comparing tree profiles”. A
tree profile is the Hst of its nodes in the order in which they are met by a traversal (for instance
by an infix traversal).

root[()()] = (SETFTREE!1 *(2 (1 NIL) 3 NIL) TREE2 *(1 NIL 2 NIL 3 NIL))e
{ { infix{(TREE1 "NAME1 'NAME2 7)()] |
infix[(TREEZ "NAME2 'NAME]1 -7)()] }o!e(PRINT "YES) +
(PRINT °'NO) }
infix[(TREE EL1 EL2 SYNCNR)()] =(NULL TREE) +(NOT (NULL TREE))e
infix[((CAR (CDR TREE)) EL1 EL2 SYNCNR)()]
((SYNC SYNCNR)(ASET EL1 (CAR TREE)))e
(EQUAL (EVAL EL1)(EVAL EL2))e
infix[((CDR (CDR TREE)) EL1 EL2 SYNCNR)()]

The assumed (Lisp) representation for the binary tree is depicted in the bottom left
corner of the figure 5.2. -

Here, the use of the "negation as failure" is the key idea. Two (infix) wee traversals
work synchronously. The tree traversal algorithm is recursive. This is a typical parallel
algarithm because a sequential algorithm should compute both profiles, and just after that it
could compare them. In the parallel algorithm there are two processes that synchronize for
each pair of nodes in the trees. As soon as a pair of distinct nodes is me: the processes are
automatically destroyed by the evaluation to NIL of the expression "(EQUAL (EVAL
EL1)(EVAL EL2))". The process infix[...] is deterministic (the guards "(NULL TREE)" and

97




“(NOT (NULL TREE))" are disjoint). Thus, in the case of failure, the only choice point is in
the process root]...] which will be able to reach a final state only by the execution of the
command "(PRINT "NO)".

In a logical imerpretation the parallel execution of the two infix[...] processes is an
“interleaved” conjunction. The elements of the conjunction are tests of identity for each pair
of nodes in the trees. If the tree profiles are not identical, one of the elements of the
conjunction is "FALSE" (NIL in NPL's logic) and thus the entire pracess fails. :

The above presented NPL program uses another Prolog like facility, namely a speciaj
pracess denoted by "I" that "cuts the backtracking". We must point out here that we have beep
experimenting most of the facilities introduced by the actual version of NPL on a prototype
implemented in the language Turbo Prolog under MS-DOS. The intented meaning of the
Process that cuts the backtracking is inspired from Prolog (it allows to abandon the alternate
variant specified by the nearest apparition of the process algebra operator "+ "; the problem
is that the NPL processes are more general than the Prolog ones). However, it is the only
facility not experimented in the implemented version of NPL. In the above presented program
if the parallel execution of the processes that perform the tree traversals Enishes, then the
(Lisp) form "(PRINT "YES)" is evaluated. However, the use of the NPL special process *I"
makes the rootj()()] process deterministic, that is, the form "(PRINT 'NO)" will no longer be
evaluated. We must point out here that in NPL, the order of inspection of the non-
deterministic alternatives of a process coincides with the order of their apparition in the
textual specification of the process. That is, the process P=q-+ris first interpreted as g, and
than it is interpreted as r.

4. Non-determinism and concurrency

"One incoavenient thing about a purely imperative language is that you have to specify far too
much sequencing. For example, if you write an ordinary program to do marrix multiplication,
you have to specify the exact sequence in which all of the n multiplications are to be done,
Actually, it doesn’t matter in what order you do the multiplications so long as you add them
together in the right groups. Thus the ordinary sort of imperative language imposes much too
much sequencing, which makes it very difficult to rearrange if you want to make things more

C. Stratchey (1966)

NPL allows for a "procedural design” of the algorithms. It provides recursion, and the
control flow structures of an imperative programming language can be specified as process
algebra expressions. Thus, the "if...else” and "while" constructions (that are known to "cover"
the semantics of the sequential control structures) are semantically equivalent to the processes:

if = conditione statement 1+(NOT condition) e statement,

while = (NOT condition) + conditionestatement ewhile

98




Aun immediate optimization can be done by means of the special process "I":
if =conditione ! esatement, +statement,
while = conditione | estatement ewhile + (NOT condition)

The Prolog programmer is familiar with those techniques. However, (in contrast with Prolog)
NPL does not create new data for a parameterless recursive process call.

In this section, the emphasis is on the power of non-determinism and concurrency in
NPL. A graph search is presented both as a non-deterministic and as a concurrent process. A
graph path between a start node and a goal node is being searched. The idea is to define one
or more processes that “run” towards the goal on the graph paths.

The non-deterministic solution makes use of the mechanism of backtraclding in NPL.

root[()()] = (SETF GRAPH '((A B C D)(B A CD)(C ABD)(D A BC)))e

(DEFUN MEMBER (E L) (COND ((NULL L) MIL)

((EQUALE (CAR L)) T)
(T (MEMBER (E (CDR L))))))®

(SETF NODE 'A GOAL 'D PATH '(A))e{search_path +{PRINT “THE-END)}
search_path=(EQUALNODE GOAL)e(TERPRI)(PRINT PATH) e NIL +

(NOT (EQUAL NODE GOAL))e

(SETF NEIGHBS (CDR (ASSOC NODE GRAPH)))e

select_neighbe (NOT (MEMBER NEIGHB PATH)) e

(SETF NODE NEIGHB PATH (CONS NEIGHB PATH))esearch_path
select_neighb=(NOT(NULL NEIGHBS))e {(SETF NEIGHB (CAR NEIGHBS)) +

(SETF NEIGHBS (CDR NEIGHBS))eselect_neighb}

Let us remark that all the computations are made on the data of the process root.
Initially the path contains only the start node. For the current node in the path is (non-
deterministically) chusen a neighbor. To avoid the cycles the process fails if the neighbor was
already inspected (i.e. is present in the partial path) and the process select_neighb is forced
to provide another neighbor. This is a Prolog-like strategy. However, the algorithm uses only
parameterless processes, i.e. everything is a matter of "control".

A concurrent solution may be given to the same problem in the following manner:

root{()()] = (ASETFONE-PATH NIL
GRAPH ’((AB C)(B A CD)(C A BE)(D B)(E C)))e
{ search_path[(A 'D "(A)) ()] +
{ONE-PATH e (PRINT ONE-PATH)s! +(PRINT’NO-PATH)} }

path[(NODE GOAL PATH)()]=(EQUAL NODE GOAL)e

(ASETF ONE-PATH PATH)eNIL +

(NOT (EQUAL NODE GOAL))e

one_way[((CDR (ASSOC NODE GRAPH)) GOAL PATH)()]

one_way[(NEIGHBS GOAL PATH)()] = (NOT NEIGHBS) + NEIGHBS»

{path[((CAR NEIGHBS) GOAL (CONS (CAR NEIGHBS) PATH))()] I

one_way[((CDR NEIGHBS) GOAL PATH)()]}




The process search_path]...] is deterministic because its guards are always disjoint,
‘Thus, the first process that reaches the goal seis the global (and persistent to failure) variable
ONE-PATH and destroys all the (concurrent) processes which currently search a path towards
the goal. Practically, the process call search_path]...] in the process root[...] will fail as soon as
a graph path is found.

This example is inspired from [5]. The intention of the author was to present the Parlog
(concurrent and logic) programming language as a non-deterministic searching machine,
However we must point out here that, with respect to the theory in [3] that inspired NPL the
above presented program is not correct. Practically, concurrent processes run on all the
possible graph paths. Some of ther will cycle. In the first version of NPL we used a "depth
first" strategy for the scheduling of processes. The choosing of a process was specified by the
{non-deterministic) Prolog predicate:

choose_process([Process|_],Process).
choose_process([_| Processes],Process):-choose _process(Processes,Process).

and every newly created prucess was to be added at the beginning of the list of processes. Thus,
if in the above presented program the first (searching) process cycles on a graph path the
process path[...] will never end. In the present version of NPL the process scheduler is speciiied
by the following predicate (which deterministicaly chooses the last process in the i ¢
processes);

last([_| Processes],Process):-last(Processes, Process).
last([Processl,Process),

After performing one action on the chosen process it is added at the beginning of the list of
processes. This strategy (a round-robin one) ensures that it is not possible to give the control
to one process for an arbitrary length of time (which is iheoretically possible). In this case the
above presented program behaves correctly.

5. Traversals of data structures

A wide class of applications make use of traversals and processing of data structures,
There is an important property of NPL that makes it very useful for such applications, A
process algebra expression may be seen as a declaration of a process tree. However, as the
definition of the process algebra operator "|" is "relaxed" in the actual version of NPL (this
version does not implement the theoretical non-determinism introduced by the
process scheduler) the specification of the process trees may use only the operators of Basic
Process Algebra (see [1]), that s, the sequential composition and the non-deterministic choice.

In semantics, a process is usually understood as a behavior of a system. Labelled
transition systems have proved to be suitable for describing the behavior (or operational
semantics) of a system. A labelled transition system can be viewed as a rootad directed graph
of which the edges are labelled by actions, or as a tree of which the edges are labelled by

100




actions, which is obtained by unfolding the graph.

The traversal (with processing if needed) of a data structure may be conceived as a
transformation of the structure in a process tree that "covers” it. The role of the stack that
implemenis the recursion in the known programming languzges is played here by the paths in
a process tree. Let now think about a program that pcrfonns a tree traversal in Pascal. The
- solution is usually based on a recursive algorithm. The basic idea is that the paths of the tree
may be found on the stack that implements
the recursion in the language. The stack grows and shrinks as the branches of the tree are more
or less "deep”. The role of the stack is played in NPL by the paths in the process tree. The
advantage is that such a process tree may be simply "declared” in process algebra. Depending
on the needs of the application and on the representation of the dara structures different
traversal strategies may be conceived.

For instance, we may double the values in a list in the global and persistent data area
with the process in the following declaration:

root[()()]=(ASETF LIST ’(1273..) L LiST)elisi_traversal +(PRINTLIST)
list_traversal = (ASETF (CAR L) (* 2 (CAR L)) L. (CDR L))elist_traversal

Such algorithms make use of the mechanism of "negation as failure” in NPL. Every
{ailure of a process may be interpreted as a (return) back in time (at a previous moment and
a previous state of the machine). Thus, if we want to perform some processing of the data
contained in the data structure we must work in the global (and pessistent 1o process failure)
memory area in NPL.

A binary tree (infix) traversal is specified in NPL by the following process:

infix=(SETF TREE (CAR (CDR TREE)))sinfix+
(PRINT (CAR TREE))sNIL +
(SETF TREE (CDR (CDR TREE)))einfix

In order to conceive this traversal it is enough to find a transformation of a binary tree
ina correspnndmg process tree. The transformation for the above presented specification is
suggested in the ﬁgure 5.1. The figure 5.2. contains the process tree for a sample bmary tree
traversal. The arrows in the process tree signify atomic actions which determine transitions
between states. Atomic actions in NPL are specified by Lisp expressions. The atomic actions

_ specified by Lisp expressions that evaluate to NIL force backtracking in NPL and are marked
by slashed arrows ( 4~) in the figures. The atomic actions g; ,b; and ¢; correspond 1o the
execution of the atomic actions specified by the Lisp expressions "(SETF TREE (CAR (CDR
TREE)))","(PRINT (CARTREE))‘ and"(SETF TREE (CDR (CDR TREE)))" respectively,
in the state S;. The states in figure 5.2. are met in the order Sy, S,,... .Sg- The assumed (Lisp)
represemanon for the binary tree is deplcted in the bottom left corner of the figure 5.2.

The non-deterministic graph search in section 4. may be conceived in the same way.
Thus, the problem of finding all the paths between two nodes in a graph is equivalent with the
probiem of finding a tree that covers the graph and whose leafs contain either detectivns « {
the goal node or detections of cycles.

101




TREE

Left Right

» . transf{TREE )

Fig. 5.1.

TREE

Node
;

IL_et;t Right
k1

i

SIS PROCESS TREE

102

Fig. 5.2.




6. Comparing NPL and Prolog

NPL and Prolegimplement the non-deierminism in the same way (i.e. by backtracking).

This operational similitude is reflected at the level of the declarative semantics. Thus, at the

level of processes, the NPL programs allows fora logic interpretation as presented in section

. With respect to this connection berween the operational semantics of the two languages, the
Prolog pracesses are of the following form:

P=P11°P12®.-+
p219p220_+
pﬂlopnze"'

The process that cuts the backtracking seems necessary only when we adopt such a logic
programming strategy in the design of the algorithms, This strategy seems attractive for a wide
class of applications that are suitable to be specified in the theoretical frame of the first order
predicate calculus.

However, the NPL processes are more general than the Prolog processes. Even in the
absence of the concurrency the NPL programs allow for arbitrary combinations of the process
algebra operators "e" (sequential composition) and " +" (non-deterministic choice). Curly
braces may be used in NPL to force precedence over process algebra expressions. For instance,
the NPL process:

(1)  p=ae{b+cled

where a,b,c and d are elementary actions or process calls may be expressed in Prolog only by
means of a new process definition:

(2) p=aeqged
g=b+c

If we apply the normalization procedure on the process defined in (1) we obtain a process p’
with the same meaning:

(3) p'=ae{bed+ced}

Thus, we may remark that the Prolog like processes are a special case of normalized processes.
The normalization procedure is based on the following two axioms of process algebra (see

[11):

Ad, (xey)ez=xo(yoz)
AS. (x+ypz=x0z+yez .

In [1] is discussed another possible axiom of process algebra, namely:

() xe(y+z)=xoy+ixez

103



If this axiom is sound, then every basic proce.s algebra expression is equivalent with a Prolog
like process (2 non-deterministic choice of a set of sequences of elementary actions or process
calls). Thus, p’ in (3) would be equivalent with p™:

{4) p"=asbod+asced

However, in [1] this axiom is not considered sound because the moment of the non-
deterministic choice in the two sides of (?) is different.

Frocess normalization is the Lasis for an operational semantics for process algebra
based on rewriting techniques. In this respect, NPL is a generalization of the languages whose
operational semantics is based on rewriling techniques. The use of normalized processes is
natural both in logic and in functional programming. Such (logic or functional) specifications
are expressed as a choice between a set of recursive functional or predicative expressions.

In Prolog there is no assignment statement. Every state has a name. If we need a new
value we must provide a new variable. In NPL there is an explicit assignment statement
(inspired by the Lisp form SET). Moreover, a parameterless process works on the data of the
calling process (no new data is created).

There is a fundamental difference between NPL and Prolog at the level of the data
representation and manipulation. At this level NPL provides the strength of the funciio
programming, however, it lacks unification. Practically, for every possible interpretation of 2
Prolog predicate (that is, for every i/o patiern for the arguments of a predicate) a distinct
process must be specified in NPL.

7. Possible extensions

It would be useful to add a special process call]...] that transforms a Lisp list in a NPL
process and than it calls it. For instance, we could use the definition:

root{()()] =call[(*(type’HELLO-))()]*(PRINT '"WORLD)
typel(MESSAGE)()] = (PRINT MESSAGE)

to print the message "HELLO-WORLD",

This would state a connection between data and processes. In the actual
implementation, both the Lisp conses and the process algebra expressions in NPL are
internally represented as binary trees, We could unify the internal representation for data and
processes. This could be the basis for a higher order process calculus.

NPL may inherit all the facilities supplied by Lisp, including the Common Lisp object
system. Thus, NPL could be easily extended with object oriented facilities at the level of the
data algebra. However, in this case the methods of the objects could be only Lisp functions.
The unification of data and processes could be the basis for an integrated object oriented
system, whose methods would be arbitrary NPL processes.

104




8. Conclusions

We have been presenting the basic principles and mechanisms of NPL. NPL seems to
be a very strong (concurrent) programming language, It allows for a functional interpretation
at the level of data, and for a logical interpretation at the level of processes. Its strength at the
level of processes is supplied by non-determinism and concurrency. NFL may be seenas a
declarative programming language for the problem of the data structures traversal.

References

{11  J.C.M. Bagten & F.W.Vaandrager. An Algebra for Process creation. Acta Informatica,
29 (1992), pp. 303-334.

[21 1.W. de Balker & J.N. Kok. Comparative Metric Semantics for Concurrent Frolog.
Theoret. Comp. Sci.. 75 (1990),pp. 15-43.

J.W. de Bakker & J.I Zucker. Processes and the Denosational Semantics of Concurrency.
Inform. and Control, 54 (1982), pp. 70-120.

F. van Breugel. Three metric domains of processes for bisimulation. Technical report,
CWI, Amsterdam, The Netherlands (1993).

[5]  T.Conlon. Programming in arlog. Addison Wesley Publishing Company, (1989), 250

pages.

[6] EJ.Dijkstra and C.S. Scholten. Predicate Calculus and Program Semantics. Springer-
Verlag, (1990), 220 pages.

{71 G.Gretzer. Universal Algebra. D. Van Nostrand Corapany, Inc. (1968), 330 pages.

[8]  JJ.M.M. Rutien. Semantic correctness for a Parallel Object-Oriented Language. SIAM
J. Comput., 19 (1990), pp. 341-383.

[91  R.Sethi. Cont-ol Flow Aspects in Semantics-Directed Compiling. ACM 5, 4 (1983), 554-
596

[10] G.L. Steele Ir. et. al. Common Lisp. Digital Press, (1990), 970 pages.

[11] E. Todoran. An Operasional Semanties for Process Algebra. Automation Computers
Applied Mathematics, vol. 2 no. 1, (1993), 77-90.

[12] Y. Toyama. Term Rewriting Systems and the Church-Roser Property. Ph. D. Thesis
(1990), Tohoku University, Japan.

[13] ). Zuidweg. Concurent System Verification with Process Algebra. Ph. D. Thesis (1990)
Rijksuniversiteit Leiden, the Netherlands.

105




