Automatlon

)

' Computers
Applied

Mathematics

H_S"L.'ientiﬁ‘c J ot 1
ol. 4, No. 2
SSN 1221 — 43 X




A Non-Procedural Language

I Encia Todoran
Department of Computer Scicnce, Technical University of Cluj-Napoca
26 Baritiu Street, 3400 Cluj-Napoca, Romania
e-mail: enciz@uiclyj.ro

Abstracet In this paper we generalize the euf primitive in PROLOG for the concurrent frumework (with sequential
and parallel don't know non-determinism) in NPL. For the resulted languege we present some sample programs
and a (bricfly commented) PROLOG prototype.

Kevwords: control flow, non-determinism, concurrency.

1. Introduction

In the last three years (since 1993) we have collecied theoretical and experimental
results concerning the semantics and the pragmatics of toncurrency under the generic name
NPL. The language NPL is intuitively obtained by parameterizing a process algebra (the
pracess layer) with LISP expressions (the data layer). NPL provides operators on processes far
sequential and paralle! don’t know non-determinism and a special process |, named select that -
when used (its use is not mandatory) - uniquely selects the current non-deterministic
alternative in a set by destroying all the others. In the sequel we shall name this primitive
relative select. The main difference between the relative select and the cur primitive in
PROLOG is that (unlike cur) the relative select does not remove the backtracking points
generated by the previously execuied processes of the current non-deterministic alternative.

In this paper we introduce a new version of the select primitive, denoted by 1!, and
named absolute select. The absolute select is a generalization of the PROLOG’s cur primitive
for the concurrent framework in NPL with sequential and parallel don't know non-
determinism.

2. An informal introduction to the language

We briefly recall the syntax of NPL. The statements of the language are built by LISP
expressions, process names and the two primitives menticned in the introduction: ! (refative
select) and 1! (ubsolute select), combined by means of operators on processes. Process names
are distinguished from LISP symbols by beginning with an uppercase letter (LISP symbols
musi begin with a lower case letter; in this paper we only deal with parameterless processes
in NPL). There is a special process named ‘Root’ which ha: the task to create all the other
processes for a certain program. NPL provides (binary) operators for sequential composition
(), for parallel composition (||) (with a lower precedence than *+"; curly braces may be used
to force the precedence in expressions), and two (n-ary) operators for non-deterministic choice
(inthe general sum notation): [s, + ... +s, |(abbreviated in the sequel by [+ ]) and <s, +... +5,>
(abbreviated in the sequel by < -+ > )Thus, if we denote by ’e” an (arbitrary) LISP expression,

W
W=




and by "X an (arbitrary) procedure variable the syntax of NPL can be summarized as follows:
st=e | X[ T[] spes, | syls; | [5y+.. 5] <sj+..+5,>

In NPL the non-determinisul is a union of behaviors. The operator [5, + ... +5,Jintroduces an
ordering relation (specified by the textual order) between the non-deterministic alternatives
(s))- Operationally, this comes to @ mechanism of backiracking, The operator <s;+...+s,>
specifies a parallel evaluation of the non-deterministic alternatives. In both cases the non-
deterministic alternatives operate on different data. There is a mechanism of "negation by
failure” in NPL. The evaluation of any LISP expression to nil produces the abandon of the
continuation of the current non-deterministic alternative of the process. Thus, in NPL, logic
is a consequence of an interpretation of process behavior. The values of truth are inherited
from LISP (nif for false and everything else for true). The operators on processes allow for the
following logic interpretation: [+ ] = (sequeniial) OR, < -+ >= (parallel) OR, - =
(sequential) AND, | = (parallel) AND. Also, in [7] it has been shown how to extend the LISP
in NPL with a logic of work with free and bound variables as a basis for a dataflow mechanism.
The basic idea of the datafiow behavior is suggested by the following example. Assume that
the variables x, y and z are (initially) unbounded (undefined). The following NPL program has
the predictzble behavior of assigning them the values x=1,y=3and 2=2:

(setf x 1) [(setf y (+x 2)) I(setf 2 2)

A while loop can be implemented in NPL as suggested in the following example that computes
(and prinis) the length of a list.

Root=(setf ! '(1 2 3)) - (setf n 0) - While- (print n)
While= [(aull 1)+ L(list (setf 1 (edr 1))) - (seti n (+ 1 n)) - While]

The program is deterministic. The guards 'I" and '(null 1)’ can be inspected in any order, so we
could have used the operator < + >instead of [+].

‘The muin contribution of the present paper is the preseniation of two conirol
primitives: ! named relative select, and 1l named absolute select. The primitive ! uniguely selects
the current non-dererministic alternative (hereafier we abbreviaie this expression by cne) of an
operator [ +]or < -+ >by removing all the others. The primitive !! performs the 1ask of T and,
additionally, it removes the non-deterministic choice points collected as a result of the
previously executed processes (operators [+]and < + > bf the cna.

In the following example (in which e, e, .. denote LISP expressions):
<eyfes+ {ege,} 1 e PR X 1> Lwith X =[e; +e,]°1* and !1* are refated to < + >'and
1'is related to | + . The execution of I* determines the abandon of the evaluation of X - !1* but
it does not inhibit the backtracking points generated by the evaluation of [e, + {ede,} - ' + &
On the other hand, the execution of {1 produces the abandon of the evzluation of the other
non-deterministicalternative (e, [e, + {ede,} - I' +e.]*+ Pland it also inhibits the backtracking
poiats gencrated by the evaluation of X (=[e;+e,]’).

In the picture below we suggest the (parallel) evaluation of the non-deterministic
alternatives (of the operator < + >) by arrows. By double arrows we suggest the collection
of choice poinis in each non-deterministic alternative.




ol (_('J'ZL_’ }
-
Abspluie seicct
<=
vl (ena)

Remark that both the ehsolue select and the reladve selfect produce the abandon of the
evaluztion of all but the cra. Additionally, the absoluie select removes the choice points
collected by the previously eaecuted prucesses of the cna. in piecwre, after the execution of !,
the exccurion of the ena is suggested by a single arrow. Similar considerations take place in
conneetion with the evaiuadon of the operutar [ +].The main difference is that, in this cuase,
the non-deterministic alternatives are execuisq in sequence. Again, the Il primiive is a
strengthened version of the ! primitive, that not only (uniquely) selects the cna of an operator
[+ 1butitalso remaoves all the non-deterministic choice poinis (backuacking points) collected
from the beginning of the evaluation of the cna. :

For the moment we do not know whethier both primitives T and 1! are indeed necessary
w applications. Usuially, une waitts {0 rerove all the backtracking points coliécted fur o given
process. Thus, it seems that the absolite selecr is enough for practical purposes. All our
experiments sustain this affirmation. Throughout 1his paper, we use the both primitives. even
though, in all the cases, the relutive select can be replaced by the ubsolure seleci without
changing the meaning of the programs. We continue with some NPL sample programs.

The processes 'SeqOnTree’ and "ParOnTree’ below perform a sequential, respectively
a parallel search of an element in a ree. The primitive velative sefect can be used in both cases
in order to stop the search process as soon as the element was found.

SeqOnTree=treel - {(equal e (car treel)) =+
(setf treel (cdr (edr treel))) - SeqOnTree-!+
(setl weel (car (cdrtreel))) - SeqOnTree]
ParOnTree=iree?- < (equal e {car tree2)).!+
(setf tree2 (cor (cdr tree2))) - ParOnTree! +
(setf treeZ {cdr (cdr tree2))) - ParOnTree!>

Further, we can define a process 'OnBoth’, that tesis whether ihe clement is simultaneously
present in both trees.

OnBoth =SegOnTrec| ParOnTree

An executable process is obtained as follows.




Root=init- [OnBoth-1- (print ves) + (print’ne)]
Init=(setf treel (1 (2 (2 nil} 15 nil) 2 (7 nil) 12 nil)}{
(setf treeZ (10 (70 nil 2 pil) 20070 uil) 120 nil)) [(setf e 2}

Now, we want to define a process that determines if an element that is simultaneously present
in two lists. For each element of cne of the two lisis we must test whether it is present in the
other lis.. We can do this as follows.

Root=[{(zetf 11 (1573 810 2))i(setl 12°(3 18810 7 4455 12))}-
Common_Term-«1{«{prin! lerml}--(print 'no_common_term}]
Ope_Termi=I1+ <(seif term! (car 1)) + (setf 11 (cdr i1)) - One_Terml>
Oue Term2 =12 < (seti term2 (car 12)) 4 (setl 12 (edr 12)) «One_Term2 >
Commor_Term= < {One_Term!] One_Terml} - {(equal terml term2) >

However, the above program will print in a random order all the common elements of the two
lists, because both 'One Terml’ and "One_Term?2 are {dent know) non-deterministic
processes, Thus the program collecws all the possible solutions of the problem. Now, we wani

"o abanden the search as soon as the first commen term was found. We trv the following
variani of the process "Commen_Ternr',

Common_Term= < {One_Terml One_Term2} - (equal term1 term2) - 1>

This process will not provide us with the desired behavior. In fact, the refative select, as used
above, has no effect, because it only removes the non-deterministic altzrnaiives in a sum
context, and the process above has only one non-determinisiic aliernative. In such situations
we need the absolute selecr. The desired behavior is obmified by the process below.

Common_Term= < {One_Term1j One_Term2} - {(equal term] term2) - 11>

We must point out here that, the definition of the language ensures that the effect of ihe
orimitives refative select and absolure select restricts to the symactic scope of the operator [+
or < + >in which they texmually appears. Thus, if we run the process *Common_Tern’ in
parallel (Common_TermAll) with the foliowing process that retrieves all the elements in a
list in a (don’t know) non-deterministic manner:

All=1-[(setl e (car 1)) + (setf | (edr 1)} - Adl]

the absoiute select in the definition of 'Common_Term’ will not remove the backiracking points
sencrated by the process "All’,

in the sequel we will present strategies of search based on various combinations of the
operators [+ Jand < + >We consider the search of a all the paths between a start node and
a goal node in a graph. The graph is represented as an association list indexed with the nodes
of the graph. To each node it is attached the list of ils neighbors.

(1=
=1




Root={(setf graph '((a b ed e}(b 2 c h nil)(c 2 b nil nil)
(daehnil)(eadgnil)(hbdgnil)(gh e ril nil)))
(setf nade ’a}|(seti goal ’g) |(setf path *(2))}.Run

Run = Search - (print path)

Search = < (equal node goal) + (not (equal node goai)) -
(setf neighbors (edr (assoc node graph))) - Sel -
(setf p path)-MNotMember - (setf node neighbor) «
(setfl path (cons neighbor path)) - Search >

NotMember= < (null p)+ !+ p+!- (not (egual (car p) neighbor)) .
(list (setf p (cdr p))) » NotMember >

The effective strategy of search is determined by the process *Sel’ that non-deterministically
selects a neighbor for the current node. A PROLOG-like depth first search is obtained if we
use the operator [ +]in the definition of the process-’Sel’.

Sel=neighbors+ [(set! neighber (car neighbors)) -+ (setf neighbors (cdr neighbors)) - Sei]
A parallel search is obiained if we use the operator < + >,

Sel =neighbors- < (setf neighbor (car neighbors)) +
(setf neighbors (cdr neighbors)) - Sel >

This time the solutions are returned in an unpredictable order.

The problem of search is in general NP-complete. The time complexity t(n) of a depth-
first search - where n is the "depth" of the search tree - is exponential in n, ie. i(n)=0(f")
where [ is the "fan-out” of the search tree. A parzllel search can be very fast (t(n) =0O(n))but
it assumes the availability of a number of processors that is exponential in n, p(n) =O(f").For
n=10and =4 (we assume that the search tree is uniform, i.e. each node has 4 sons), either
t(n) or p(n) would be of the order of 10°% = 4'°).The combination of the two operators for non-
deterministic choice (in the process that selects a neighbor) can distribute the computing task
among the two coordinates of the algorithm (time and number of processors). For n= 10and
f=4(i.e. we assume that each node has maximum 4 neighbors) we obtain an algorithm with
both t(n) and p(n) of the order of 10%(=2") by using the following process for neighbor
selection.

Sel= < [(setf neighbor (car neighbors)) +
(setf neighbor (car (edr (edr (cdr neighbors)))))] +
[(setf neighbor (car (edr neighbors))) +
(setf neighbor (car (cdr (cdr neighbors))))] >

In all the cases above, the search process can be interrupt immediately after the first path was
found. This can be done by appropriately using the primitive !! in the definition of the process
‘Run’,

Run= < Search+!!+ (print path) >




3. A PROLOG prototype for NPL

In order io gain more intuition on the meaning of the NPL programs we present the
following construction. Cousider the class Id of identifiers with typical elements a8, defined
by: ar:=a:i]i, ieN (i is a natural number). Remark that, on the class of identifiers Id, we cag
define a partial ordering < as follows: asp if and only If 8= (...{aciy):...)s, for some e €N,
We make a correspondence between each apparition of a primitive ! or 1! and (he
carrespoading operator [ + Jor < + >inwhich it textually appears. We do this by labeling each
instance of an operator | +]or < + >with a (unique) identifier o (we obtain [+ or < + >
and we label ail the apparitions of a primitive | or !l in the textual context of [+]for < +>7
with (the same identifier) a. The labeling of the operators [+iand < + >will be based on a
tree-like discipline (following the syntactic siructure of the expressions) as suggested in the
following picture:

o
a;l ak -
al:l o awlim ak:l .. akn

"Thus, given a NPL program <XuD>with X, the 'Roat’ process and D a list of process
definitions D=< X, =g>._. (where X, are recursien varizbles and g are guarded NPL
statements; see [8]) we generate an infinite specification; D”E<Xi"=rcn(u,cr,gi)>i._,1 ‘‘‘‘‘ N
where the function "ren’ is defined as follows:

ren(a,f,!) =%

ren{e,B,!) =117

ren(a,B.e)=e

ren(a.8,X) =X

ren(a,5,s, *s,) =ren(a,B:1,s,) - ren(a,B:2,5,)

ren(a,B,5,1s,) =ren(a,B:15,) | ren(a,B:2,5,)

ren(aB[s, +... +5,]) =[ren(B,B:1,5,) +... + ren(8,A:n.s,) 1
ren(a,B,<s;+..45 >)=< ren(B,B:1,5,) +... + ren(B,B:n,s,) >

Thus, for D= <X =[e, - '+Y-Ule; X, Y=<ey U+ X-15> we generate

D= < X&= [e1 " !n:l + Ya:!:2:1 & “n':llu:ﬂe: _Xa:l?.‘

Yu= <53' !!I!'+ Xu:!zl 3 !“>B'>ueld
Now remark that, by expanding each apparition of a recursion variable X® or Y® according
to its definition in D up 10 an arbitrary (finite) level, we generate an expression in which each
instance of an operator < + >or [ +]is labeled with a unique identifier. Moreover, each
apparition of a primitive I or 1% appears in the textual context of an operator < + >%r [+
(labeled with the same identifier a). Now, by definition, the execution of 1° removes all the
nondeterministic alternatives except for the current one only for the operator < 4+ >%r [+
with the same identifier o 1% js 2 strengthened version of !°. Thus, 11° remaves all the non-
deterministic alternatives except for the current one for all the operators < + >find [+
with B2a. Remark that, due to the way we defined the function 'rer’, only the processes in the




rewtaal ememext off fhe odmresponding operator [+]Fer < + >Will be labeled with identifiers
Fro, Tinss, i e example above, 1= will not cut the backiracking (don't know non-
jeremminisi chusice points) penerated by the evaluation of e, - X2 II"! will only cut the
ki pemernted by the evaluation of the expression {e; - ey <1l

= thesmemel we present a TURBO PROLOG protorype for the executive of NPL. We
e aeieninpe of the foct that this variant of PROLOG s a typed lunguage and it provides us
witth symess v the definition of the semantic demains. We do not present here inar detail
it LIST evalizaser for MPL (it has been presenied in [9]). We only assume given a predicate
cual{{F VIS KIS ibat evalvates a LISP expression E in a given siate S and it returns the value
W o i expression and a new state NS (the evaluation may have side effects). The domain of
the LIRT wiiines, can be described as follows:

s =oums(lisp.isp hs{string)in(integer nilit

* sdl e predicms eval bas crguments of the following types: eval(lisplisp,lisp,lisp). An
idlenrifier will be represented as a list of integers. Thus, the PROLOG representation for aci
wilt be {1]Alfa] (where the PFROLOG variable corresponds 10 the integer vaiue i and the
PROLOG list Alfa corcesponds o the ideantifier ). We have:

id=imege

The follgwing predicate defines a partial order on the set of identifiers (in the sequel we will
alwazys specify the tvpes for the arguments of the predicates in 2 TURBO PROLOG - like
SICAEIOD )

/* leg(idid) ¥/
legf11,12):-app(_11,12).

7 app(ididid) */

app([].LI):-L

app([H |11),L[H|2]}:-app(11LI2).

The understanding of the domain of NPL statements should raise no probiem to the reader
(these are syniactic structures). ’

lstmi =stmt* /° List of statements */

stmit = seq(stmi,simt); I spmsa ¥/
par(stmi,stmt); [ sybs, */
seq_ned(istmt); A |- S -
par_ned(Istmt); s FE 20
atom(lisp); e*
def(string); /= X #
asel; JECHL )
rsel; il |
null




We do not present here the parser for NPL. We assume given a NPL progr=m by the clauses
of the predicate:

process_definition(string stmt) )
For the sake of completeness we present below the assumed iniernal representation of the first
program presented in section 2 (the program that computes the length of a list):

process_definition("Root”,

seqiatomfcons(s{"setf"),cons(s(""),cons(cons(s("quoie"),
" enns(cons(n{1),cons(n(2),cons(n(3),nit))),nil)},nil)) ),

seq{atom{cons{s("setf"),cons(s("n"),cons(n(0),nil})}),
seq(def("While™),
atom{cons(s{"print”),cons(s("n"),nil)}) 1))

process_definitiou("While”,
seq_ned([atom( cons(s("oull"),cons(s("1"),nil)}),
seq(aiom(s("1")},seq(atom{cons(s("list"),
cons(cons(s('set"),cons(s("l"),cons(cons(s("cds"),
cons(s("1"),nil)),nil})),nil))),
seq{atom{cons(s("setl"),cons(s("n"),cons(cons(s("plus"),
cons(n(1),cons(s{"n"),nil))),nil)))),def("While"))))]))

The configurations of the executive of NPL are based on the following domain definitions:

leonf=conf® ;
conf=seq_ned(id,integer,lconf);par_ned(id,integer, lconf);
ned(lisp,Iprocy;empty;work

seq_ned(id,integer,lconf) and par_ned(id,integer,lconf) are the semantic counterparts for the
syntactic constructions seq_ned(istmt) ([ +])and par_ned(lstmt) ( < + >)The identifiers are
used for the labeling of the operators [+]and < + >as explained at the beginning of this
section. The integer argument is the actual arity (number of elements in the list lconf) of each
operator [+]or < + >The evaluation of the non-deterministic alternatives of an operator
< 4 >must be performed in purailel. In the PROLOG prototype we simulate the parallelism
by an arbitrary interleaving. The following two predicates are used io perform a randorn choice
of a nen-determinisiic alternative in a list:

/* choose(integer,lconf,conf,lconf) ¥/
choose (i,LN,N,RLN):-random(K,K0),subs(K0,LN,N,RLN).
Th subs(integer,lconf,conf,lconf) £/

subs(0,[N | RLN]N.[work | RLN]):-L
subs(K,[N | RLN],N1,[N|NRLN]):-K1 = K-1subs(K1,RLN,N1,NRLN).

'random(N,K)’ is a predefined TURBO PROLOG predicate; when it is provided with an
integer value N, it generates a new random integer I{ such that 0<K <N.Remark that the
chasen non-deterministic aliernative is (temporary) replaced by the constant 'work’. Afier one

(1]
—




step of evaluation, ihe non-deterministic alternative is put back, in the same place in the
original list of non-deterministic alternatives. This task is performed by the predicate "ins’.

i ins{conf,iconf, lconf) */
ins(NM,[work | RN],[NN|RN]):-L
ins(NN,[N | RN],|N | NRN]):-ins(NN,RIN,NRN).

However, if the evaluation of the non-deterministic alternative finishes or if it faiis upon the
evaluation 1o nil of a LISP expression (such a non-deterministic alternative is denoted by the
conslant "empiy’) it is simply removed from the criginal list by a call to the predicate ‘rem’.

ke rem(lconf,lconf) b4
rem([L{]):-L

rem({[work | RN],RN):-L.
rem([N|RNL[N|NRN]):-rem(RN,NRN).

A non-deterministic alternative consists of a state (a LISP structure in NPL) and a list of
processes. The domain of processes is defined as follows:

proc = p(id,stmt,id,id)
Iproc=proc*®

In fact, we use lists (of processes) to model partially ordered sets with a tree siruciure. The
physical order of the elements in a list of processes (Iproc) is immaterial and the partial order
is determined by the value of the first argument (id) of the functor p in the definition of the
domain proe. Thus, the following list

[p(12,1,1],81,111,112),p([1,1,1},52,121,122),
p([1,1],53,131,132),p([1],54,141,142)]

is the syntactic representation of the tree depicted below.

p([1],54,141,142)
p([1,11,83,131,i32)
p([2,1,1),SL,111,112) p([1,1,1],52,121,122)

Only the leaves of the tree (i.e. the maximal elements according with the above defined partial
order) are active computing entities. The predicate leaf defined below chooses an arbitrary
maximal element (leaf of the tree) in such an (ordered) set.

/= leaf(lproc,proc,lproc) =

leaf(LP.PP,NRLP):-length(LP,N),random(M,K), p]cl\(K,LP P,RLP),
max(P,RLP,PP,NRLP).

/% length(lproc,integer) =

length({],0):-1.

length([_|T),N):-length(T,NO),N =NO + 1.




Vs pick(integer, sproc.pmc,lpmc} o
pick(0,[P| RLP],P,RLP):-i.
" pick(i,[P|RLPLPP,[P|NRLP):-K1= K-1 Jpick(K1,RLP,PP,NRLP).

/* max(proc,lproc,proglproc) /- —

max(P,[1,B,[1):-L T

max(p(1,5i,A1,Bi),[p(J,S}.Aj.Bj) [RLPLP,
[p(L,8i,AL,Bi) | NRLP]):-
leq(L3),!,max(p(3,5],ALB]),RLP,P,NRLP).

max(PiL[Pj| RLP],P,[Pj{ NRLP|}:-max(Pi,RLF,P,NRLP).

The other arguments of the functor p are: a statement and two other identifiers used for the
labeling of the operators [+ Jand < + >as explained at the beginning of this section. In order
to distinguish between the control primitives ! (rsel(id)} and !! (asel(id)) and the ordinary
atomic actions (evaluations of LISP expressions) we also use the following domain:

act =tau;rsel(id);asel(id)
The execution of a given NPL program is initiated by a call to the predicate o5’
?-os(ned(nil,[p([},def("Root"),[L,[D1)-

"ned{nil,[p({],def("Root"),[},[1)])’ represents the initial configuration of the sysiem. The
definition of the predicate 'os’ is presented below.

i o0s(conf) i
os(empty):-l.
0s(C):-r(C,_.C1),05(C1).

The predicate 'r’ defines a transition relation in the style of the structured operational
semantics [5], i.e. we define the transition of a composite structure in terms ot the transitions
of its constituents.

/* r(conf,act,conf) */
r(empty,tau,empty):-1.
r(ned(_.[]),Act,C):-L,r(empty,Act,C).
r(ned(S,LP),Act.C):-Leaf(LP.P.RLP),m(ned(S,[P|RLP]),Act C).
r(seq_ned(_,0,[]1),Act,C):-L,r(empty,Aci,C).
r(par_ned(_,0,[]),Act,C):-Lr(empty,Act,C).
r(seq_ned(LK [empty | RN]),Act,C):-,
K1=K-1,r(seq_ned(LK1,RN)Act,C).
r(seq_ned(LK,[N]RN]),Act,C):-l,
r(MN,Act,NN),new_sc(LAcL, NN,RN,K,C).
r(par_ned(LKLLN),Act,C):-choose(I,LN,N,RLN),r(N,Act, NN),
new_pc(LAct, NN,RLN,K.C).

The predicate '’ called in the third clause will be explained later. The last two clauses define

a3




the evaluation of an operator [ -+ |and < + >Thus, after ons transition siep performed by one
of the nop-deterministic alternatives, the predicates 'mew_sc’ and respectively ‘new_bc
computs the nevr confipuration.

/* new_pe(id act,confleont iuteger,cont) 2/

new pL'I, Lempty, RN iup.n n GLELENY-LK] = Ke1rem( RN, LN).
new_pe(Lrsel(1),NN,_,_,INNj:

new_ DL(iJ.:L.]‘.])UN, ,_ TN 'r'q(‘ f.l.

new_pe(l, NN, R’ﬂ,l(,p.Lr_i\ﬂdf!,R_LN)) -ins(INN,RN,LN}

I -sew_sqm,ur‘t,cnnf,lcunf,imcger,csmf} %/
new_sc{Lrsel{I),NN,_, ,NN}.-L

new_sc{Lascl(J). ‘\JN. L NN p-leg(d,i),!

new_sc(l, ,NN,RN,K seq nzd(LK,[NN|RN])).

Remark the way that they select only une non-deterministic alternarive upon the execution of
one of the control primitives ! or I,

Finaily, the predicate 'ro’ defines the transitions for one (singie) non-deterniinistic
alternative; it alco performs the labeling of the contained processes.

* ra{cont,act,conf) 2!
ra{ned(S.[p(_null,_. )| LP])Act.Ch-Lr(ned(S,LP},Act,C).
rn{red(S,[p(_rsel A, )| LP]),rsel(A),ned(S,LP)):-L
rn(ned(S,[p(_asel, A )| LP])asei(A)ned(S,LP)):-L
ra{ned(S,[p(_atom(Lisp),_,_) | LP]).Act,C):-1,
eval(Lisp,Val,5,S1),new_c(Val,S1,Act,LP,C).
ra{ned(S,[p(Ldef{ PN),A,B) | LP1),Act,Cj:-1,
process_definition(PN,PDef),
r{ned(S,[p(LFDef,A,B) | LP]),Ac,C).
ro(ned(S.[p(Lseq(51,52),A,B) | LP]},Act,C):-l,
r(ned(S,[p(1]1],5LA.{1B])p(LS2,A,[2] B]) |LP]),Act,C).
ro(ned(S,[p(l,par(51,52),A.B) | LP]),Act,C):-1,
r(ned(S,[p((1]1,SLA[1] B]),p(21 11SZ.A 2| B]).
p(1,nulLAB)|LP]),Act.C).
riv(ned(S,[ptlseq_ned(LS),_B)|LPD.Act,C-!,
mul(B,5,LLS LN, L‘\led) iasbq_ned{B ‘\I JLNed),Act, ("1
rn{ned(S,|p(Lpar_ned(LS),_,B)|LP]),Act,C):-
mul{8 S LLS I PN I Ned),r(par_ned(B,N Lch) ALL,C)

The first three clauses should be clear. In the fourth clause, afier the evaluation of a LISP
expression, a decision is iaken by the predicate *new_c’. The evaluation to a#if of the LISP
expressien produces the failure of the curren: non-deterministic alternaiive.

/* new_c(lisp,lisp,act.lproc,conf) 7
new_c(nil,_ Act,_,C):-!,r(empty,Act,C).
new_c{_,5,Act,LP,C)-r(ned(S,LP),Act.C).

ch
e

T




The fifth clause embodies procedure execution by body replacement. The sixth and the seventh
cluuses deal with the sequential composition (+) und witk the parallel composition ([)
operuiots in NPL. New processes ire created and put in an approprisie oider for further
execution. Finally, the last two clauses model the creation of a new (semantic) siruclure
seq_ned or par_ned. Enlire Coniexis, consisting of a common staie and a tree of processes are
multiplied. A new instance of the current non-determimisticaliernative is created for such erm
s, of a compasile statemeit TR [ S TR P This operation 15 performed with the
help of the predicate 'mul’.

/A mal{idlisp,idlstmylproc,integer,iconf) 7/

mal( 000D

mul(B,5T,L[S | RLS),LP,MN1,[ned(ST [p(L.5.B,1) |LP]) | RLNed]):-
mul(B,5T,LRLS.LP, N, RLNed),N1=N+ L

4, Conciusions

The muin conribution of this paper is the introduction of a new control feature in
which is a generalization of the cui primitive in PROLOG. For the resulted language we hav,
presented some justifying programming examples and 4 (briefly commented) PROLOG
prototype. The PROLOG protorype is a gond starting point for the definition uf an operationad
cemantics for MPL in the style of the structured operational semantics of Plotkin.

Heferences

3] S.G. Akl Design and Analyss of Parallel Algorithis. Prantice Hall, (1989}

(2] JCM. Baewen C Weijland. Process Algebro. Cambridge University Press, (1990}

3] 1.W.DeBakker, JT.M.M. Runten, {editors). Ten Years of Concurrency Semantics. World
Seientific Publishing Co. Pre Lid. (1992},

[4] KL Clark, 8. Cregory. Parallel Programming in Logic. ACM Trans. Programming
Language Systems 8(1), (1986).

[51 G.D.Plotkin. 4 Structural Appreach to Operational Semaritics, Report DAIMI FN-19,
Comp. Sci. Dept., Aarhus Univ, (1981).

[6] E.Y.Shapiro, Concumen: Prolcg: Collected Papers, Vals. 1, 2, MIT Press, Cambridge,
MA, (1988).

7 E. Todoran. Dataflow Semansics in NPL, in Proceedings of the lst Conference on
Control and Technical Informatics, Timisoara, Romania, (1994).

18] E. Todoran. An Operational Semantics for NFL, in Proceedings of ROSE "93, the 3rd

Romanian Conference on Open Systems, Bucuresti, Romania, (1995).

E. Todoran. A Process Algebra Language, in Proceedings of the 9th Romanian

Symposium on Computer Science (ROSYCS '93), lasi, Romania, (1993).




