
Automation
Computers

Applied Mathematics
ISSN 1221–437X

Vol. 19 (2010) no. 2
pp. 11–27

Comparative Metric Semantics for Modern Second Order

Communication Abstractions

Mircea Ivan and Eneia Nicolae Todoran

Mircea Ivan: Department of Mathematics
Technical University of Cluj-Napoca
Str. G. Baritiu 25, 400027, Cluj-Napoca, Romania

Mircea.Ivan@math.utcluj.ro

Eneia Nicolae Todoran:
Department of Computer Science
Technical University of Cluj-Napoca
Faculty of Automation and Computer Science
Baritiu Street 28, 400027, Cluj-Napoca, Romania

Eneia.Todoran@cs.utcluj.ro

Abstract: We study the semantics of a language L2
J that provides second order commu-

nication and synchronization on multiple channels in the style introduced in
Join calculus. We employ the mathematical methodology of metric seman-
tics in designing and relating a denotational and an operational semantics
for L2

J . The semantic models are designed with continuations.

Key Words: Metric semantics, continuations for concurrency, second order communica-
tion, Join synchronization

Received: October 20, 2010

12 Comparative Metric Semantics

1 Introduction

In a recent paper [18] we presented a semantic study of an imperative language LJ that
extends Hoare’s CSP model [9] with communication on multiple channels and synchronization
based on join patterns in the style introduced in Join calculus [8]. In this paper we consider
a language L2

J that extends LJ with second order communication: sending and receiving of
statements rather than values.

L2
J generalizes the traditional model of second order communication - studied, e.g., in [2, 3]

and also in our previous work [19] - with a mechanism of synchronization inspired by the
Join calculus. L2

J provides two primitives for concurrent interaction on multiple channels:
c!s and c1?x1& ∙ ∙ ∙&cn?xn; we call the latter a join pattern. A communication in L2

J is an
interaction between n + 1 processes, one executing a join pattern c1?x1 & ∙ ∙ ∙ & cn?xn, and
n other processes executing corresponding (send) actions c1!s1, ∙ ∙ ∙ , cn!sn. The statements
s1, ∙ ∙ ∙ , sn are transmitted concurrently along the channels c1, ∙ ∙ ∙ , cn (each si is transmitted
along the corresponding channel ci) from the processes that execute the actions c1!s1, ∙ ∙ ∙ , cn!sn

to the process that holds the join pattern c1?x1 & ∙ ∙ ∙ & cn?xn. The latter stores the n received
statements in the variables x1, ∙ ∙ ∙ , xn (each si is assigned to the corresponding statement
variable xi). The communication only occurs when the n + 1 processes are all ready for the
interaction. The stored statements can be called by call(xi) statements. When n = 1 the
whole interaction behaves like a (classic second order) point-to-point communication.

In this paper we employ the mathematical methodology of metric semantics [4, 1] in de-
signing and relating an operational and a denotational semantics for L2

J . The semantic models
are designed with the ”continuation semantics for concurrency” (CSC) technique introduced
by us in [22]. CSC is a general tool for designing denotational and operational models of
concurrency in interleaving semantics. The central characteristic of the CSC technique is the
modeling of continuations as structured configurations of computations (denotations) rather
than the straightforward functions to some answer type that are used in the classic technique
of continuations [16]. The structure of an CSC continuation is representative for the control
concepts of the (concurrent) language under study.

The focus of this study is on the communication primitives of L2
J . We show that CSC

continuations can easily synchronize multiple communication attempts and allow us to com-
bine in a simple and flexible manner traditional concurrent control concepts with second order
communication primitives and advanced synchronization mechanisms. In [17] we presented a
denotational semantics for a language similar to L2

J . In this paper we offer both a denotational
semantics and an operational semantics for L2

J . Next, we establish the precise mathematical
relation between the two semantic models, following the general methodology advocated in [4].
The first paper that uses metric spaces and continuations for concurrency in designing and
relating semantic models of second order communication is [19]. [19] studies traditional com-
munication between two processes that synchronize on a single (second-order) communication
channel. The present paper offers a generalization of [19] to second-order communication on
multiple channels, in the style introduced in Join calculus.

The Join calculus has recently inspired the design of Join Java [10], Polyphonic C# [5] (con-
current extensions of the mainstream languages Java and C#, respectively) and JoCaml [11]
(a concurrent extension of the functional programming language ML). The relevance of our
work is given by the presence of higher-order features in JoCaml. Also, second order com-
munication provides a simple form of code mobility. Our work may be seen as a first step
toward a formal treatment of object mobility in languages with Join methods like Join Java

Mircea Ivan and Eneia Nicolae Todoran 13

and Polyphonic C#.

Contribution

As far as we know this is the first paper that presents a comparative semantics study for (a
form of) higher-order communication with synchronization on multiple channels in the style
introduced in the Join calculus [8].

The CSC technique seems to simplify the semantic treatment of second order communi-
cation. We obtain a relatively simple relation between the operational and the denotational
semantics of L2

J by using only basic techniques of metric semantics. In [2, 3] a comparative
metric semantics study of second order communication is presented. The relation obtained
there between the denotational and the operational models is more complex than the one re-
ported by us in section 7 of this paper. Also, in [2, 3] more advanced techniques, like processes
as terms [15] and metric labelled transition systems [6] are needed to establish that relation.

Overview

The rest of the paper is organized as follows. The formal syntax of L2
J is introduced in

section 3. The operational and the denotational semantics are presented in sections 5 and 6
and are related in section 7.

2 Notation and theoretical preliminaries

The notation (x ∈)X introduces the set X with typical element x ranging over X. Let
f ∈ X →Y be a function. The function (f | x 7→ y) : X →Y , is defined (for x, x′ ∈ X, y ∈ Y)
by:

(f | x 7→ y)(x′) =

{
y if x′ = x
f(x′) if x′ 6= x

We write (f | x1 7→ y1 | ∙ ∙ ∙ | xn 7→ yn) as an abbreviation for (∙ ∙ ∙ (f | x1 7→ y1) ∙ ∙ ∙ | xn 7→ yn).
If f : X →X and f(x) = x we call x a fixed point of f . When this fixed point is unique (see
theorem 2.1) we write x = fix(f).

The study presented in this paper takes place in the mathematical framework of 1-
bounded complete metric spaces. We assume known the following notions: metric (and ul-
trametric) space, isometry (distance preserving bijection between metric spaces; we denote
it by ’∼=’), complete metric space, and compact set. We recall that if (X, dX), (Y, dY) are
metric spaces, a function f :X →Y is a contraction if ∃k ∈ R, 0 ≤ k < 1, ∀x1, x2 ∈ X :
dY (f(x1), f(x2))≤k∙dX(x1, x2). When k = 1 the function f is called non-expansive. In the

sequel we denote the set of all nonexpansive functions from X to Y by X
1

→Y . The following
theorem is at the core of metric semantics.

Theorem 2.1 (Banach) Let (X, dX) be a complete metric space. Each contracting function
f : X →X has a unique fixed point.

Definition 2.2 Let (X, dX), (Y, dY) be (ultra) metric spaces. On (x ∈)X, (f∈)X →Y
(the function space), ((x, y)∈)X×Y (the cartesian product), (u, v∈)X + Y (the disjoint
union of X and Y) and (U, V ∈)P(X) (the power set of X), one can define the following
metrics:

14 Comparative Metric Semantics

(a) d 1
2
∙X : X × X →[0, 1], d 1

2
∙X(x1, x2) = 1

2 ∙ dX(x1, x2)

(b) dX →Y : (X →Y) × (X →Y)→[0, 1], dX →Y (f1, f2) = supx∈XdY (f1(x), f2(x))

(c) dX×Y : (X × Y) × (X × Y)→[0, 1]

dX×Y ((x1, y1), (x2, y2)) = max{dX(x1, x2), dY (y1, y2)}

(d) dX+Y : (X + Y) × (X + Y)→[0, 1]

dX+Y (u, v) = if (u, v ∈ X) then dX(u, v) else if (u, v∈Y) then dY (u, v) else 1

(e) dH : P(X) × P(X)→[0, 1], dH(U, V) = max{supu∈Ud(u, V), supv∈V d(v, U)} where
d(u,W)=infw∈W d(u,w) and by convention sup∅=0, inf∅=1 (dH is the Hausdorff dis-
tance).

We use the abbreviations Pnco(∙) and Pfinite(∙) to denote the power sets of non-empty and
compact and finite subsets of ’∙’, respectively. Also, we often suppress the metrics part in
domain definitions, and write, e.g., 1

2 ∙ X instead of (X, d 1
2
∙X).

Remark 2.3 Let (X, dX), (Y, dY), d 1
2
∙X , dX →Y , dX×Y , dX+Y and dH be as in definition 2.2.

In case dX , dY are ultrametrics, so are d 1
2
∙X , dX →Y , dX×Y , dX+Y and dH . If in addition

(X, dX), (Y, dY) are complete then 1
2 ∙X, X →Y , X

1

→Y , X ×Y , X +Y , and Pnco(X) (with
the metrics defined above) are also complete metric spaces.

3 Syntax of L2
J

The syntax of L2
J is given in BNF in 5.1. The basic components are a set (v ∈)V ar

of variables, a set (e ∈)Exp of expressions, a set (c ∈)Ch of (second order) communication
channels and a set (x ∈)Svar of statement variables.

Definition 3.1 (Syntax of L2
J)

(a) (Join patterns) j(∈ J)::=c?x | j & j

For an L2
J program to be valid the channels c1,∙ ∙ ∙, cn and the statement variables

x1,∙ ∙ ∙, xn in a join pattern j = (c1?x1 & ∙ ∙ ∙ & cn?xn) must be pairwise distinct.

(b) (Statements) s(∈ Stat) ::= skip | v := e | c!s | j | call(x) | s; s | s + s | s ‖ s

The language L2
J provides assignment (v := e), recursion, sequential composition (s; s), non-

deterministic choice (s + s), parallel composition (s ‖ s) and the communication mechanism
(based on the interaction between a join pattern c1?x1 & ∙ ∙ ∙ & cn?xn and n corresponding
send statements c1!s1, ∙ ∙ ∙ , cn!sn) that was explained informally in the introduction. We as-
sume that the meaning of expressions is given by a valuation E [[∙]] : Exp→Σ→V al, where
V al is a set of values and (σ ∈)Σ = V ar→V al is a set of states.

Mircea Ivan and Eneia Nicolae Todoran 15

4 Continuation structure for L2
J

In the definition of the denotational semantics we use a complete ultrametric space. The
operational semantics is defined by means of a transition relation embedded in a deductive sys-
tem define in the style of structured operational semantics [14]. Following [4], we use the term
resumption as an operational counterpart of the term continuation. The distinctive character-
istic of the CSC technique is the representation of continuations as structured configurations
of computations (denotations of statements). Similarly, resumptions are structured configu-
rations of statements. The structure of a CSC continuation (resumption) is representative of
the language under study.

As shown in [22] in order to handle the general combination of sequential and parallel
composition in L2

J we need a tree-like structure with active elements at the leaves. The major
issue that gives rise to a tree-like structure is the presence of statements such as (s1 ‖ s2); s3.
In such a statement the execution of s3 can only begin after the completion of the parallel
execution of both s1 and s2. The basic idea is that we place s3 as an inner node and s1 and
s2 as leaves of such a tree and we give priority to the leaves. Following [22] we define the
domain of continuations and the set of resumptions with the aid of an auxiliary set (α ∈)Id
of identifiers endowed with a partial ordering relation.

Definition 4.1

(a) Let (α ∈)Id = {1, 2}∗ be a set of identifiers, equipped with the following partial ordering:
α ≤ α’ iff α′ = α ∙ i1 ∙ ∙ ∙ in for i1, ∙ ∙ ∙ , in ∈ {1, 2}, n ≥ 0.

(b) We define a function max : P(Id)→P(Id) by:

max(A) = {α | α is a maximal element of (A,≤A)}

where A ∈ P(Id) and ≤A is the restriction of ≤ to the subset A of Id.

Id is the set of all finite (possibly empty) sequences over {1, 2}. α ≤ α′ iff α is a prefix of
α′. In this paper we use the symbol ’∙’ as a concatenation operator over sequences and we
use the symbol ’ε’ to represent the empty sequence. We can represent tree-like structures as
suggested below:

α
α ∙ 1 α ∙ 2

α ∙ 1 ∙ 1 α ∙ 1 ∙ 2 α ∙ 2 ∙ 1 α ∙ 2 ∙ 2

hhhh
hh

`̀

((((
((
`̀

Let A = {α, α ∙ 1, α ∙ 2, α ∙ 1 ∙ 1, α ∙ 1 ∙ 2, α ∙ 2 ∙ 1, α ∙ 2 ∙ 2}. The maximal elements of (A,≤A) are
exactly the leaves of the tree: max(A) = {α ∙ 1 ∙ 1, α ∙ 1 ∙ 2, α ∙ 2 ∙ 1, α ∙ 2 ∙ 2}.

Let (π ∈)Π = Pfinite(Id) and let (x ∈)X be a metric domain. We use the following
notation:

{|X|}
not.
= Π × (Id→X)

Let α ∈ Id, (π,$) ∈ {|X|} (with π ∈ Π, $ ∈ Id→X). We define id : {|X|}→Π, id(π,$) = π.
We also use the following abbreviations:

16 Comparative Metric Semantics

(π,$)(α)
not.
= $(α) (∈ X)

(π,$) \ π′ not.
= (π \ π′, $) (∈ {|X|})

((π,$) | α 7→ x)
not.
= (π ∪ {α}, ($ | α 7→ x)) (∈ {|X|})

Let (π,$) ∈ {|X|}. We treat (π,$) as a ’function’ with finite graph {(α,$(α)) | α ∈ π}, thus
ignoring the behavior of $ for any α /∈ π (π is the ’domain’ of (π,$)). We use this mathemat-
ical structure to represent finite partially ordered bags (or multisets)1 of computations. The
set Id is used to distinguish between multiple occurrences of a computation in such a bag.
We can obtain a domain by endowing the sets Id and Π with the discrete metric (which is
an ultrametric).2 id(π,$) returns the collection of identifiers for the computations contained
in the bag (π,$), (π,$)(α) returns the computation with identifier α, (π,$) \ π removes
the computations with identifiers in π, and ((π,$) | α 7→ x) replaces the computation with
identifier α.

By a slight abuse we will use the same notations when (x ∈)X is an ordinary set (rather
than a metric domain): {|X |} = Π×(Id→X); in this case we do not endow {|X |} with a metric
structure. Again, if (π,$) ∈ {|X |} we write: id(π,$) = π, (π,$)(α) = $(α), (π,$) \ π′ =
(π \ π′, $) and ((π,$) | α 7→ x) = (π ∪ {α}, ($ | α 7→ x)).

5 Operational semantics (O)

In 5.1 we introduce the class of resumptions and the configurations of the transition system
for L2

J .

Definition 5.1 We define (ρ ∈)Comp = J♦ ∪ (Ch × Stat) ∪ Stat, where J♦ = {♦} × J
(J ⊆ Stat, but J♦ ∩ Stat = ∅). For any (♦, j) ∈ J♦ we use the notation 〈j〉 = (♦, j). Also,
for easier readability, we denote typical elements (c, s) of (Ch × Stat) by c!s.

(a) The class (r ∈)Res of resumptions is given by: Res = {|Comp|}.

(b) Let Resα = Res × Id. We denote typical elements (r, α) of Resα by rα. We define the
class (t ∈)Conf of configurations by:

Conf = (Stat × Resα × Θ × Σ) ∪ (Res × Θ × Σ)

where (θ ∈)Θ is the class of syntactic stores

Θ = Svar → Stat

We say that a configuration t ∈ Conf is derivable if either t ∈ (Res × Θ × Σ) or
t = (s, rα, θ, σ)∈ (Stat × Resα × Θ × Σ) with α /∈ id(r) and α ∈ max({α}∪ id(r)). Let
Conf ′ be the class of derivable configurations.

We introduce three auxiliary mappings that produce values of the type Sched = Pfinite(Id+),
which are finite collections of schedules. A schedule (∈ Id+) is a finite and nonempty sequence
of identifiers. We define the mappings sched, scheda, scheds : Res → Sched as follows:

1We avoid using the notion of a partially ordered multiset which usually denotes a more elaborated mathe-
matical structure; see, e.g., ch. 16 of [4].

2d(x, y) = 0 if x = y. If x 6= y then d(x, y) = 1.

Mircea Ivan and Eneia Nicolae Todoran 17

sched(r) = scheda(r) ∪ scheds(r)

scheda(r) = {(α) | α ∈ max(id(r)), r(α) ∈ Stat}

scheds(r) = {(α, α1, ∙ ∙ ∙ , αn) |

α, α1, ∙ ∙ ∙ , αn ∈ max(id(r)),

r(α) ∈ J♦, r(α1), ∙ ∙ ∙ , r(αn) ∈ Ch × Stat,

r(α) = 〈c1?x1& ∙ ∙ ∙&cn?xn〉, r(α1) = c1?s1, ∙ ∙ ∙ , r(αn) = cn?sn}

scheda produces schedules of length 1, that are used to activate individual computations
(statements). scheds produces schedules of length > 1 that are used to model the pattern
matching synchronization that is characteristic for languages based on the Join calculus [8].
Obviously, scheda(r) ∩ scheds(r) = ∅, for all r ∈ Res.

The operational semantics of L2
J is based on a transition relation → ⊆ Conf ′×(Res ×

Θ × Σ), with elements (t, t′) written in the notation t→ t′. It is easy to check, by using the
rules of T 2

J (definition 5.2), that if t ∈ Conf ′ and t → t′ then t′ ∈ (Res × Θ × Σ), first for
all t = (s, rα, θ, σ) ∈ (Stat × Resα × Θ × Σ) by structural induction on s, and next for all
configuration of the form t = (r, θ, σ) ∈(Res × Θ × Σ), by using the fact that id(r) is finite.
We use the convention:

t1↗ t2 is an abbreviation for:
t2 → t′

t1 → t′

Definition 5.2 (Transition system for L2
J : T 2

J) The transition relation for L2
J is the smallest

subset of Conf ′ × (Res × Θ × Σ) satisfying the rules below. In (A2) σ = (σ | v 7→ E [[e]](σ)).

(A1) (skip , rα, θ, σ)→ (r, θ, σ)

(A2) (v := e, rα, θ, σ)→ (r, θ, σ)

(A3) (c!s, rα, θ, σ)→ ((r | α 7→ c!s), θ, σ)

(A4) (j, rα, θ, σ)→ ((r | α 7→ 〈j〉), θ, σ)

(A5) (call(x) , rα, θ, σ)→ (θ(x), rα, θ, σ)

(R6) (s1+s2, r
α, θ, σ)↗ (s1, r

α, θ, σ)

(R7) (s1+s2, r
α, θ, σ)↗ (s2, r

α, θ, σ)

(R8) (s1; s2, r
α, θ, σ)↗ (s1, (r | α 7→ s2)

α∙1, θ, σ)

(R9) (s1‖s2, r
α, θ, σ)↗ (s1, (r | α ∙ 2 7→ s2)

α∙1, θ, σ)

(R10) (s1‖s2, r
α, θ, σ)↗ (s2, (r | α ∙ 1 7→ s1)

α∙2, θ, σ)

(A11) (r, θ, σ)→ (r \ {α, α1, ∙ ∙ ∙ , αn}, θ, σ) ∀(α, α1, ∙ ∙ ∙ , αn) ∈ scheds(r)

where r(α) = 〈c1?x1& ∙ ∙ ∙&cn?xn〉, r(α1) = c1!s1, ∙ ∙ ∙ , r(αn) = cn!sn,

θ = (θ | x1 7→ s1 | ∙ ∙ ∙ | xn 7→ sn)

18 Comparative Metric Semantics

(R12) (r, θ, σ)↗ (r(α), (r \ {α})α, θ, σ) ∀(α) ∈ scheda(r)

The CSC technique is a semantic formalization of a process scheduler [22]. In a configuration
of the form (s, rα, θ, σ) the computation (statement) s is active. The other computations
are contained in the resumption r and wait for their turn to be activated (scheduled for
evaluation). The identifier α points to the conceptual position of the active computation s
with respect to the computations contained in r. Each computation remains active only until
it performs an elementary step (axioms A1-A5). Subsequently, another computation taken
from the resumption is activated (rule (R12)). In this way it can be obtained the desired
interleaving behavior for parallel composition.

The axioms (A3) and (A4) create communication attempts that are combined by using
rule (A11). An L2

J communication is an interaction in which several statements are transmit-
ted concurrently on different channels. In (A11) the process that executes the join pattern
c1?x1& ∙ ∙ ∙&cn?xn receives the statements s1, ∙ ∙ ∙ , sn and assigns them to corresponding state-
ment variables x1, ∙ ∙ ∙ , xn. Rule (A5) specifies that the execution of procedure x in the current
syntactic store θ amounts to the execution of θ(x). Rules (A11) and (R12) give priority to
the computations at the leaves of the tree that represents the resumption. In the case of a
sequential composition s1; s2 (rule (R8)) the computations s1 and s2 are given the identifiers
α ∙ 1 and α, respectively. As α ∙ 1 > α, the evaluation of s2 will begin only after the completion
of the evaluation of s1. Rules (R9) and (R10) define the semantics of a parallel composition
s1 ‖ s2. The computations s1 and s2 are given the identifiers α ∙ 1 and α ∙ 2, respectively;
α ∙ 1 and α ∙ 2 are incomparable (with respect to ≤) therefore the statements s1 and s2 are
evaluated in an interleaved manner.

Definition 5.3 (Normal termination and deadlock) We define terminates, blocks : Res →
Bool:

terminates(r) = (id(r) = ∅)

blocks(r) = (id(r) 6= ∅) ∧ (sched(r) = ∅)

Let t(∈ Conf ′). We say that t terminates if t = (r, θ, σ) ∈ (Res×Θ×Σ) and terminates(r).
Also, we say that t blocks if t = (r, θ, σ) ∈ (Res × Θ × Σ) and blocks(r).

Let t ∈ Conf ′. We write t → to express the fact that t has transitions, i.e. ∃t′ : t → t′.
Also, we write t 6→ to express the fact that t has no transitions, i.e. ¬(∃t′ : t → t′).

Lemma 5.4

(a) t 6→⇔ t terminates or t blocks

(b) If t =(s, rα, θ, σ) ∈ (Stat×Resα × Θ × Σ) then t →.

Lemma 5.4 follows easily from the rules of T 2
J (5.4(b) follows by structural induction on s).

Definition 5.5 Let (x ∈)X be a nonempty complete space. The space X δ
∞ is defined by

the domain equation X δ
∞ ∼= {ε} + {δ} + (X × 1

2 ∙ X δ
∞). ε models the empty sequence. δ

is used to model deadlock. The elements of X δ
∞ are finite sequences (possibly followed by

δ) or infinite sequences over X. We usually write x1x2 ∙ ∙ ∙ xn and x1x2 ∙ ∙ ∙ xnδ instead of
(x1, (x2, ∙ ∙ ∙ (xn, ε) ∙ ∙ ∙)) and (x1, (x2, ∙ ∙ ∙ (xn, δ) ∙ ∙ ∙)). Also, instead of (x1, (x2, ∙ ∙ ∙)) we write
x1x2 ∙ ∙ ∙ . If X is endowed with the discrete metric we obtain a Baire-like distance on X δ

∞ [4].

Mircea Ivan and Eneia Nicolae Todoran 19

Definition 5.6 (Operational semantics (O) for L2
J)

(a) (Semantic universe) The final yield of the operational semantics is an element of a
linear-time domain, i.e. a collection of execution traces (see, e.g. [4]); each execution
trace is a sequence of pairs (θ, σ) ∈ Θ × Σ. We endow the space Θ × Σ with the discrete
metric and define: PO = Pnco((Θ × Σ) δ

∞).

(b) Let (S ∈)SemO = Conf ′→PO and let Ψ : SemO →SemO be given by:

Ψ(S)(t) =

{ε} if t terminates
{δ} if t blocks
∪{(θ, σ) ∙ S(r, θ, σ) | t→ (r, θ, σ)} otherwise

(c) Let r0(∈ Res) = (∅, λα. skip). We put O = fix(Ψ) and define O[[∙]] : Stat→ (Θ ×
Σ)→PO

O[[s]](θ, σ) = O(s, r0
ε, θ, σ)

It is easy to check that (s, r0
ε, θ, σ) is a derivable configuration, and if t is derivable and

t→ t′ or t↗ t′ then t′ is also derivable. Also, one can check that T 2
J is finitely branching

(for all t ∈ Conf ′ the set {t′ | t → t′} is finite). The proof can proceed in two steps: first for
all the derivable configurations of the form (s, rα, θ, σ) by structural induction on s and next
for all configurations of the form (r, θ, σ) by using the fact that the set id(r) is finite. This
implies that T 2

J induces a compact operational semantics [4]. The mapping Ψ is a contraction
(and thus it has a unique fixed point) due to the ”(θ, σ)”-step in its definition.

Example 5.7 Let s! = (c1!(v := 1)) ‖ (c2! skip)
and s? = (c1?x1&c2?x2); (call(x1) ‖ call(x2)). Let also σ ∈ Σ, θ ∈ Θ and σ = (σ | v 7→ 1),
θ=(θ |x1 7→(v :=1) |x2 7→ skip). One can check that:

O[[s! ‖ s?]](θ, σ) = {(θ, σ)(θ, σ)(θ, σ)(θ, σ)(θ, σ)(θ, σ)(θ, σ)(θ, σ),

(θ, σ)(θ, σ)(θ, σ)(θ, σ)(θ, σ)(θ, σ)(θ, σ)(θ, σ),

(θ, σ)(θ, σ)(θ, σ)(θ, σ)(θ, σ)(θ, σ)(θ, σ)(θ, σ)}

The first 3 steps correspond to applications of rules (A3) and (A4) of T 2
J . The 4th step results

from an application of (A11). The 5th step is a silent step produced by using (A5). Depending
on the moment when the assignment v := 1 is executed we obtain 3 different execution traces.

6 Denotational semantics (D)

In this section we employ the CSC technique in designing a continuation-based denota-
tional (compositional) semantics for L2

J . The final yield of the denotational semantics is also
an element of a linear-time domain PD (a collection of execution traces). In the case of deno-
tational semantics each trace is a sequence of pairs (ω, σ), where ω(∈ Ω) is a semantic store.
The type of the denotational semantics D for L2

J is SemD = Stat → D:

(φ ∈)D ∼= (Contα × Ω)
1

→Σ → PD

20 Comparative Metric Semantics

(γ ∈)Cont = {|Comp|} Contα = Cont × Id

(% ∈)Comp = J♦ + (Ch × 1
2 ∙ D) + 1

2 ∙ D

(ω ∈)Ω = Svar → 1
2 ∙ D (p ∈)PD = Pnco((Ω × Σ) δ

∞)

A continuation is a configuration of computations (∈ Comp). In [21] the elements of Cont are
called closed continuations, and the elements of Contα are called open continuations. Both
open and closed continuations are representations of the rest of the computation [16]. An open
continuation is also an evaluation context [7, 21] for the active computation (denotation). In
an expression D(s)(γα, ω)(σ) the identifier α points to the conceptual position of the active
computation D(s) with respect to the other computations contained in the continuation γ.
We denote typical elements (γ, α) of Contα by γα. Also, for easier readability we denote
typical elements (c, φ) of Ch × D by c!φ. In the equations above the sets Id (and Π), Σ, J♦

and Ch are endowed with the discrete metric, which is an ultrametric. The above system of
domain equations has a unique solution (up to isometry) [1]. The solutions for D and the
other domains are obtained as complete ultrametric spaces.

We define the mappings Sched, Scheda, Scheds : Cont→Sched that compute schedules
and the predicates Terminates,Blocks : Cont→Bool that we need to detect normal termi-
nation and deadlock. Obviously, Scheda(γ) ∩ Scheds(γ) = ∅, for all γ ∈ Cont.

Sched(γ) = Scheda(γ) ∪ Scheds(γ)

Scheda(γ) = {(α) | α ∈ max(id(γ)), γ(α) ∈ D}

Scheds(γ) = {(α, α1, ∙ ∙ ∙ , αn) | α, α1, ∙ ∙ ∙ , αn ∈ max(id(γ)),

γ(α) ∈ J♦, γ(α1), ∙ ∙ ∙ , γ(αn) ∈ Ch × D,

γ(α) = 〈c1?x1& ∙ ∙ ∙&cn?xn〉, γ(α1) = c1?φ1, ∙ ∙ ∙ , γ(αn) = cn?φn}

Terminates(γ) = (id(γ) = ∅)

Blocks(γ) = (id(γ) 6= ∅) ∧ (Sched(γ) = ∅)

Definition 6.1 (Denotational semantics (D) for L2
J)

(a) We define C : (Cont × Ω)→Σ→PD by:

C(γ, ω)(σ) =

if Terminates(γ) then {ε}

else if Blocks(γ) then {δ}

else (
⋃
{γ(α)((γ \ {α})α, ω)(σ) | (α) ∈ Scheda(γ) })

⋃

(
⋃
{(ω, σ) ∙ C(γ \ {α, α1, ∙ ∙ ∙ , αn}, ω)(σ)

where γ(α) = 〈c1?x1& ∙ ∙ ∙&cn?xn〉, γ(α1) = c1!φ1, ∙ ∙ ∙ , γ(αn) = cn!φn,

ω = (ω | x1 7→ φ1 | ∙ ∙ ∙ | xn 7→ φn)

Mircea Ivan and Eneia Nicolae Todoran 21

| (α, α1, ∙ ∙ ∙ , αn) ∈ Scheds(γ)})

(b) We define Φ : SemD →SemD (for (S ∈)SemD) by:

Φ(S)(skip)(γα, ω)(σ) = (ω, σ) ∙ C(γ, ω)(σ)

Φ(S)(v := e)(γα, ω)(σ) = (ω, σ) ∙ C(γ, ω)(σ) where σ = (σ | v 7→ E [[e]](σ))

Φ(S)(c!s)(γα, ω)(σ) = (ω, σ) ∙ C((γ | α 7→ c!S(s)), ω)(σ)

Φ(S)(j)(γα, ω)(σ) = (ω, σ) ∙ C((γ | α 7→ 〈j〉), ω)(σ)

Φ(S)(call(x))(γα, ω)(σ) = (ω, σ) ∙ ω(x)(γα, ω)(σ)

Φ(S)(s1 + s2)(γα, ω)(σ) = Φ(S)(s1)(γα, ω)(σ) ∪ Φ(S)(s2)(γα, ω)(σ)

Φ(S)(s1; s2)(γα, ω)(σ) = Φ(S)(s1)((γ | α 7→ S(s2))
α∙1, ω)(σ)

Φ(S)(s1‖s2)(γα, ω)(σ) =

Φ(S)(s1)((γ | α ∙ 2 7→ S(s2))
α∙1, ω)(σ) ∪ Φ(S)(s2)((γ | α ∙ 1 7→ S(s1))

α∙2, ω)(σ)

(c) We put D = fix(Φ). Let γ0 = (∅, λα.D(skip)). We define D[[∙]] : Stat→(Ω × Σ)→PD

by:

D[[s]](ω, σ) = D(s)(γ0
ε, ω)(σ)

Definition 6.1 is justified by lemma 6.2.

Lemma 6.2

(a) The mapping C (introduced in 6.1) is well-defined.

(b) For all γ1, γ2 ∈ Cont, ω1, ω2 ∈ Ω : d(C(γ1, ω1), C(γ2, ω2)) ≤ 2 ∙
d((γ1, ω1), (γ2, ω2)).

Also, for all S ∈ SemD, s ∈ Stat, γα∈Contα, ω∈Ω, σ∈Σ:

(c) Φ(S)(s)(γα, ω)(σ) ∈ PD (it is well defined),

(d) Φ(S)(s) is nonexpansive (in (γα, ω)), and

(e) Φ is 1
2 - contractive (in S).

Proof. Similar lemmas are given in [18, 22]. Here we only prove 6.2(e). We proceed by
structural induction on s. We only consider the subcase s ≡ s1 ‖ s2.

d(Φ(S1)(s1 ‖ s2)(γα, ω)(σ), Φ(S2)(s1 ‖ s2)(γα, ω)(σ))

= d(Φ(S1)(s1)((γ | α ∙ 2 7→ S1(s2))α∙1, ω)(σ) ∪ Φ(S1)(s2)((γ | α ∙ 1 7→ S1(s1))α∙2, ω)(σ),

Φ(S2)(s1)((γ | α ∙ 2 7→ S2(s2))α∙1, ω)(σ) ∪ Φ(S2)(s2)((γ | α ∙ 1 7→ S2(s1))α∙2, ω)(σ))

≤ [’∪’ is nonexpansive]

max{d(Φ(S1)(s1)((γ | α ∙ 2 7→ S1(s2))α∙1, ω)(σ)

Φ(S2)(s1)((γ | α ∙ 2 7→ S2(s2))α∙1, ω)(σ))(∗)

22 Comparative Metric Semantics

d(Φ(S1)(s2)((γ | α ∙ 1 7→ S1(s1))α∙2, ω)(σ),

Φ(S2)(s2)((γ | α ∙ 1 7→ S2(s1))α∙2, ω)(σ))(∗∗)}

We only treat (∗); (∗∗) can be handled similarly.

(∗) ≤ [d is an ultrametric]

max{d(Φ(S1)(s1)((γ | α ∙ 2 7→ S1(s2))α∙1, ω)(σ), Φ(S1)(s1)((γ | α ∙ 2 7→
S2(s2))α∙1, ω)(σ)),

d(Φ(S1)(s1)((γ | α ∙ 2 7→ S2(s2))α∙1, ω)(σ), Φ(S2)(s1)((γ | α ∙ 2 7→
S2(s2))α∙1, ω)(σ))}

≤ [6.2(d), ind. hyp.]

max{d((γ | α ∙ 2 7→ S1(s2)), (γ | α ∙ 2 7→ S2(s2))), 1
2 ∙ d(S1, S2)}

= max{1
2 ∙ d(S1(s2), S2(s2)), 1

2 ∙ d(S1, S2)} ≤ 1
2 ∙ d(S1, S2)

�

7 Relating O and D

We prove that ∀s ∈ Stat, θ ∈ Θ, σ ∈ Σ : SEM(O[[s]](θ, σ)) = D[[s]](sem(θ), σ), where:

Definition 7.1

(a) sem : Θ→Ω is defined by: sem(θ) = λx.D(θ(x)).

(b) We let w range over (w ∈)(Θ × Σ) δ
∞ and define Sem : (Θ × Σ) δ

∞→(Ω × Σ) δ
∞ as the

unique mapping satisfying: Sem(ε) = ε, Sem(δ) = δ and Sem((θ, σ) ∙w) = (sem(θ), σ) ∙
Sem(w).

(c) Recall that PO = Pnco((Θ × Σ) δ
∞) and PD = Pnco((Ω × Σ) δ

∞). We let W range over
(W ∈)PO and define SEM : PO →PD by: SEM(W) = {Sem(w) | w ∈ W}.

Definition 7.2 Let ς : Comp→Comp, ς(〈j〉) = 〈j〉, ς(c!s) = c!D(s) and ς(s) = D(s). We
define Γ : Res→Cont by Γ(r) = (id(r), λα. ς(r(α))). By using the abbreviation introduced
in section 4 we can write Γ(r)(α) = ς(r(α)). Also, we define R : Conf ′→PD:

R(r, θ, σ) = C(Γ(r), sem(θ))(σ)

R(s, rα, θ, σ) = D(s)(Γ(r)α, sem(θ))(σ)

As D[[s]](sem(θ), σ) = D(s)(γ0
ε, sem(θ))(σ) = D(s)(Γ(r0)

ε, sem(θ))(σ) = R(s, r0
ε, θ, σ), and

O[[s]](θ, σ) = O(s, r0
ε, θ, σ), in order to prove that SEM(O[[s]](θ, σ)) = D[[s]](sem(θ), σ) it

suffices to show that SEM ◦ O = R. In 7.4 and 7.6 we prove that both SEM ◦ O and R are
fixed points of the same (higher-order) contraction ΦR, defined in 7.3.

Mircea Ivan and Eneia Nicolae Todoran 23

Definition 7.3 Let (S ∈)SemR = Conf ′→PD. We define ΦR : SemR→SemR by:

ΦR(S)(t) =

{ε} if t terminates
{δ} if t blocks
∪{(sem(θ), σ) ∙ S(r, θ, σ) | t→ (r, θ, σ)} otherwise

The transitions t→ (r, θ, σ) are with respect to T 2
J (5.2).

Lemma 7.4 SEM ◦ O = fix(ΦR)

Proof. We show that for all t ∈ Conf ′ : (SEM ◦ O)(t) = ΦR(SEM ◦ O)(t). If t
terminates ΦR(SEM ◦ O)(t)= {ε} = (SEM ◦ O)(t). Also, if t blocks ΦR(SEM ◦ O)(t)=
{δ} = (SEM ◦O)(t). It is easy to check that SEM((θ, σ) ∙W) = (sem(θ), σ) ∙ SEM(W) and
SEM(W1 ∪ W2) = SEM(W1) ∪ SEM(W2). So, if t has indeed transitions we have:

ΦR(SEM ◦ O)(t) = ∪{(sem(θ), σ) ∙ (SEM ◦ O)(r, θ, σ) | t→ (r, θ, σ)}

= ∪{SEM((θ, σ) ∙ O(r, θ, σ)) | t→ (r, θ, σ)} [T 2
J is finitely branching]

= SEM(∪{(θ, σ) ∙ O(r, θ, σ) | t→ (r, θ, σ)})

= SEM(O(t)) = (SEM ◦ O)(t)

�

Lemma 7.5 collects some properties that are used in the proof of 7.6. The proof of 7.5 is
simple enough and left to the reader.

Lemma 7.5

(a) If t terminates then R(t) = {ε}.

(b) Also, if t blocks then R(t) = {δ}.

(c) For all r ∈ Res : scheda(r) = Scheda(Γ(r)).

(d) For all r ∈ Res : scheds(r) = Scheds(Γ(r)).

(e) For all r ∈ Res, π ∈ Π : Γ(r \ π) = Γ(r) \ π

(f) For all r ∈ Res, α ∈ Id, ρ ∈ Comp: Γ(r | α 7→ ρ) = (Γ(r) | α 7→ ς(ρ))

(g) For all θ ∈ Θ, x1, ∙, xn ∈ Svar, s1, ∙ ∙ ∙ , sn ∈ Stat:

sem(θ | x1 7→ s1 | ∙ ∙ ∙ | xn 7→ sn) = (sem(θ) | x1 7→ D(s1) | ∙ ∙ ∙ | xn 7→ D(sn))

Lemma 7.6 R = fix(ΦR)

The proof of lemma 7.6 is relegated to the appendix. The main result of the paper is
obtained in theorem 7.7. The proof of 7.7 combines 7.4, 7.6 and Banach’s theorem 2.1.

24 Comparative Metric Semantics

Theorem 7.7 SEM(O[[s]](θ, σ)) = D[[s]](sem(θ), σ), ∀s ∈ Stat, θ ∈ Θ, σ ∈ Σ.

Proof.

SEM(O[[s]](θ, σ)) = (SEM ◦ O)(s, r0
ε, θ, σ) [7.4,7.6,2.1]

= R(s, r0
ε, θ, σ) = D(s)(Γ(r0)

ε, sem(θ))(σ)

= D[[s]](sem(θ), σ)

�

8 Concluding remarks and future research

In this paper we extended the semantic models given in [18] with second order communi-
cation: sending and receiving of statements rather than simple data values. As far as we know
this is the first paper that reports a denotational semantics for (a form of) higher-order com-
munication combined with synchronization on multiple channels in the style introduced in the
Join calculus [8]. The semantic models given in this paper and in [18] are designed with CSC
continuations, a technique introduced by us in previous work [22]. In a denotational model
designed with the CSC technique all (concurrent) control concepts are represented as oper-
ations manipulating continuations. The use of CSC continuations proved to be fruitful. We
obtained a relatively simple relation between the denotational semantics and the operational
semantics by using only basic techniques of metric semantics [4].

In [20] we presented a semantic interpreter designed with the CSC technique for a concur-
rent object-oriented language with Join methods, inspired by Join Java [10] and Polyphonic
C# [5], which in turn are based on the Join calculus [8]. The communication of statements
provides a simple form of code mobility. The research reported in this paper shows that CSC
continuations can provide a framework for combining code mobility with other fundamental
concurrent control concepts in a uniform manner. In the near future we intend to extend
the object-oriented system with Join methods introduced in [20] with primitives for object
mobility.

Second order communication is a particular form of higher order interaction. Another
objective of future research is the study of ω-order communication (parameterized processes
of arbitrary high order) in the presence of Join synchronization. In recent unpublished work
we developed in Haskell [13] a semantic interpreter that implements a dynamic denotational
semantics designed with CSC continuations for a language with ω-order communication and
classic point-to-point communication. It should be possible to extend that interpreter with
Join synchronization by using the technique presented in this paper. The complete mathe-
matical formalization is again subject of future research that would represent an important
step toward a formal denotational semantics for JoCaml [11].

9 Acknowledgements

This paper is based on work partially funded by ANCS, CNMP-PC project no. 11-
052/2007, project title: “GlobalComp: Models, semantics logics and technologies for global
computing” (2007-2010).

Mircea Ivan and Eneia Nicolae Todoran 25

References

[1] P. America, and J.J.M.M. Rutten. Solving reflexive domain equations in a category of
complete metric spaces. Journal of Computer and System Sciences, 39(3):343–375, 1989.

[2] J.W. de Bakker, and F. van Breugel. Topological models for higher order control flow.
Lecture Notes in Computer Science, 802:122–142, 1994.

[3] J.W. de Bakker, and F. van Breugel. From Banach to Milner: Metric semantics for second
order communication and concurrency. In Proof, Language and Interaction: Essays in
honor of Robin Milner, Foundations of Computing Series, MIT Press, pages 99–132, 2000.

[4] J.W.de Bakker, and E.P. de Vink. Control flow semantics. MIT Press, 1996.

[5] N. Benton, L. Cardelli, and C. Fournet. Modern concurrency abstractions for C#. ACM
Transactions on Programming Languages and Systems, 25(5):769–804, 2004.

[6] F. van Breugel. Generalizing finiteness conditions of labelled transition systems. Lecture
Notes in Computer Science, 820:376-387, 1994.

[7] O. Danvy. On Evaluation Contexts, Continuations, and the Rest of the Computation. In
H. Thielecke, editor, Proc. of the 4th ACM SIGPLAN Continuations Workshop, pages
13–23, 2004.

[8] C. Fournet, and G.Gonthier. The Join calculus: a language for distributed mobile pro-
gramming. Lecture Notes in Computer Science, 25:268–332, 2002.

[9] C.A.R. Hoare. Communicating sequential processes. Prentice Hall, 1985.

[10] G.S. von Itzstein. Introduction of high level concurrency semantics in object-oriented
languages. Ph.D. Thesis, University of South Australia, 2005.

[11] L. Mandel, and L. Maranget. The JoCaml language, release 3.10. Available from:
http://jocaml.inria.fr/, 2007.

[12] INMOS Ltd. Occam programming manual. Prentice-Hall, 1984.

[13] S. Peyton Jones, and J. Hughes, editors. Report on the Programming Lan-
guage Haskell 98: A Non-Strict Purely Functional Language, 1999. Available from
http://www.haskell.org/.

[14] G.D. Plotkin. A structural approach to operational semantics. Report DAIMI FN-19,
Aarhus University, 1981.

[15] J. Rutten. Processes as terms: non-well founded models for bisimulation. Mathematical
Structures in Computer Science, 2:257–245, 1992.

[16] C. Stratchey, and C. Wadsworth. Continuations: a mathematical semantics for handling
full jumps. Journal of Higher-Order and Symbolic Computation, 13(1):135–152, 2000
(Reprint of the Technical Monograph PRG-11, Oxford University, Computing Labora-
tory, 1974).

26 Comparative Metric Semantics

[17] E.N. Todoran. Metric semantics for modern second order communication abstractions.
In Proceedings of 2009 IEEE International Conference on Intelligent Computer Commu-
nication and Processing (ICCP’09), pages 215-219, 2009.

[18] E.N. Todoran. Comparative semantics for modern communication abstractions. In Pro-
ceedings of 2008 IEEE International Conference on Intelligent Computer Communication
and Processing (ICCP’08), pages 153–161, 2008.

[19] E.N. Todoran, and D.M. Ivan. Metric semantics for second order communication: a
continuation-based approach. Automation, Computers, Applied Mathematics, 16(2),
pages 201–215, 2007.

[20] E.N. Todoran, and N. Gherman. Semantic interpreter for modern communication abstrac-
tions in concurrent object-oriented programming. In Proc. of 2008 IEEE 10th Int. Sym-
posium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC’08) ,
pages 289-295, Computer Press, 2008.

[21] E.N. Todoran, and N. Papaspyrou. Continuations for prototyping concurrent languages.
Technical Report CSD-SW-TR-1-06, National Technical University of Athens, Software
Engineering Laboratory, 2006.

[22] E.N. Todoran. Metric semantics for synchronous and asynchronous communication: a
continuation-based approach. Electronic Notes in Theoretical Computer Science, 28:119–
146, Elsevier, 2000.

A Appendix

Proof. Lemma 7.6 We show that ∀t ∈ Conf ′ : ΦR(R)(t) = R(t). This follows immediately
from lemma 7.5(a) and 7.5(b) if t terminates or t blocks (i.e. if t 6→). We handle the case
when t has indeed transitions in two steps. First, we prove the desired property for all t of
the form t = (s, rα, θ, σ)(∈ Stat × Resα × Θ × Σ) by structural induction on s.

• Case s ≡ j.

ΦR(R)(j, rα, θ, σ) = (sem(θ), σ) ∙R((r | α 7→ 〈j〉), θ, σ)

= (sem(θ), σ) ∙ C(Γ(r | α 7→ 〈j〉), sem(θ))(σ) [7.5(f)]

= (sem(θ), σ) ∙ C((Γ(r) | α 7→ 〈j〉), sem(θ))(σ)

= D(j)(Γ(r)α, sem(θ))(σ) = R(j, rα, θ, σ)

• Case s ≡ s1 ‖ s2.

ΦR(R)(s1 ‖ s2, r
α, θ, σ) [def. T 2

J]

= (
⋃
{(sem(θ′), σ′) ∙ R(r′, θ′, σ′) | (s1, (r | α ∙ 2 7→ s2)

α∙1, θ, σ)→(r′, θ′, σ′)}) ∪

(
⋃
{(sem(θ′), σ′) ∙ R(r′, θ′, σ′) | (s2, (r | α ∙ 1 7→ s1)

α∙2, θ, σ)→(r′, θ′, σ′)})

= ΦR(R)(s1, (r | α ∙ 2 7→ s2)
α∙1, θ, σ) ∪ ΦR(R)(s2, (r | α ∙ 1 7→ s1)

α∙2, θ, σ) [ind. hyp.]

= R(s1, (r | α ∙ 2 7→ s2)
α∙1, θ, σ) ∪ R(s2, (r | α ∙ 1 7→ s1)

α∙2, θ, σ) [def. R, 7.5(f)]

Contents 27

= D(s1)((Γ(r) | α ∙ 2 7→ D(s2))
α∙1, sem(θ))(σ)∪

D(s2)((Γ(r) | α ∙ 1 7→ D(s1))
α∙2, sem(θ))(σ)

= D(s1 ‖ s2)(Γ(r)α, sem(θ))(σ) = R(s1 ‖ s2, r
α, θ, σ)

In the second step we prove that Φ(R)(r, θ, σ) = R(r, θ, σ) when (r, θ, σ)→. By 5.6 and 5.2
(rules (A11) and (R12)):

ΦR(R)(r, θ, σ)

= (
⋃
{(sem(θ′), σ′)∙R(r′, θ′, σ′) |(α)∈scheda(r), (r(α), (r\{α})α, θ, σ)→(r′, θ′, σ′)})(∗) ∪

(
⋃
{(sem(θ), σ) ∙ R(r \ {α, α1, ∙ ∙ ∙ , αn}, θ, σ)

where r(α) = 〈c1?x1& ∙ ∙ ∙&cn?xn〉, r(α1) = c1!s1, ∙ ∙ ∙ , r(αn) = cn!sn,

θ = (θ | x1 7→ s1 | ∙ ∙ ∙ | xn 7→ sn)

| (α, α1, ∙ ∙ ∙ , αn) ∈ scheds(r)})(∗∗)

In the sequel we obtain:

(∗) =
⋃
{ΦR(R)(r(α), (r \ {α})α, θ, σ) | (α) ∈ scheda(r)} [first step of the proof]

=
⋃
{R(r(α), (r \ {α})α, θ, σ) | (α) ∈ scheda(r)} [7.5(c), 7.5(e)]

=
⋃
{Γ(r)(α)((Γ(r) \ {α})α, sem(θ))(σ) | (α) ∈ Scheda(Γ(r))}

By using 7.5(d) and 7.5(g), for (∗∗) we have:

(∗∗) =
⋃
{(ω, σ) ∙ C(Γ(r) \ {α, α1, ∙ ∙ ∙ , αn}, ω)(σ)

where Γ(r)(α) = 〈c1?x1& ∙ ∙ ∙&cn?xn〉,

Γ(r)(α1) = c1!φ1, ∙ ∙ ∙ , Γ(r)(αn) = cn!φn,

ω = (sem(θ) | x1 7→ φ1 | ∙ ∙ ∙ | xn 7→ φn)

| (α, α1, ∙ ∙ ∙ , αn) ∈ Scheds(r)}

In (∗∗) φi = D(si), 1 ≤ i ≤ n. We obtain:

ΦR(R)(r, θ, σ) =(∗) ∪(∗∗)

= C(Γ(r), sem(θ))(σ)

= R(r, θ, σ)

�

