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Abstract—Business Process Model and Notation (BPMN), now
at version 2.0.2, provides a standard graphical representation for
specifying business processes. In this paper we report on the first
stage of a semantic investigation of BPMN, using methods in
the tradition of programming languages semantics. We consider
a control-flow subset of BPMN and an execution architecture
based on an intermediate language that we name LBPMN .
The execution architecture comprises two main components: a
translator which takes as input a BPMN model and generates
LBPMN code, and an interpreter for LBPMN . LBPMN is a
process oriented imperative language providing a combination of
concepts, including maximal parallelism and durational activities.
We employ the mathematical methodology of metric semantics
in designing and relating an operational semantics O and a
denotational semantics D for LBPMN . We establish the formal
relation between O and D by using an abstraction operator and a
fixed point argument. In this way we prove the correctness of the
denotational semantics with respect to the operational semantics.
We focus on the semantic investigation of BPMN. We also explain
how the operational semantics can serve as a blueprint for an
implementation on a client-server architecture.

I. INTRODUCTION

Business Process Model and Notation (BPMN), now at
version 2.0.2 [20], provides a standard graphical representation
for specifying business processes. BPMN is maintained by
Object Management Group (OMG).1 BPMN is aimed to bridge
the gap between the business process design and process im-
plementation. Various implementations of BPMN are available
currently, and several papers investigate its semantics. The
specification [20] describes the semantics of BPMN using
natural language. In [17], [18] a control-flow subset of BPMN
is investigated with a Z model [16] of BPMN syntax, and
using CSP [7], [12] to describe the semantics. Petri nets are
used in [4], [15] to describe the semantics of BPMN with focus
on control-flow aspects and transactions. In [5] the execution
semantics of a control flow subset of BPMN is formalized as
graph rewrite rules.

In this paper we report on the first stage of a semantic
investigation of BPMN, using methods in the tradition of pro-
gramming languages semantics, viz. operational semantics and
denotational semantics. We consider a control-flow subset of
BPMN and an execution architecture based on an intermediate
language that we name LBPMN . The execution architecture
comprises two main components: a translator which takes as

1BPMN was initially developed by Business Process Management Initiative
(BPMI); at present it is maintained by Object Management Group (OMG),
since the two organizations merged in 2005.

input a BPMN model and generates LBPMN code, and an
interpreter for LBPMN . We design and relate formally an
operational and a denotational semantics for LBPMN .

LBPMN is a process oriented imperative language provid-
ing a combination of concepts, including maximal parallelism
and durational activities. LBPMN is designed to capture the
semantics of a variety of BPMN control concepts, including:

• Flow objects
◦ Events (Delay Timer Intermediate Events)
◦ Activities (Tasks, Sub-Processes)
◦ Gateways (Exclusive, Inclusive, Parallel)

• Connecting objects
◦ Sequence flow

Our work is closer to [17], [18], [19], where CSP is used
to describe the semantics of BPMN and for property checking.
The papers investigate control flow aspects and emphasize a
process oriented approach to system modelling. However, in
the semantic investigation of a subset of BPMN our focus is on
establishing the correctness of a denotational semantics with
respect to a corresponding operational semantics. Why are we
interested in two semantics?

The operational semantics is defined in an algorithmic
manner, with emphasis on the steps of the computation, and
often serves as a blueprint for an implementation. Its definition
is based on a transition relation, embedded in a deductive
system defined in the style of Plotkin’s structured operational
semantics (SOS) [11]. Though not dealt with in the present
paper, one can employ bisimulation semantics [9] to reason
about the properties of systems specified in SOS style.

A denotational semantics is a more abstract model. Initially
known as Scott-Strachey semantics, the denotational approach
is characterized by the compositionality principle: the de-
notational semantics of a composite construction is defined
solely based on the denotational semantics of its syntactic
constituents. An elegant theory of domains has been devel-
oped, which may use order-theoretic structures [6] or metric
spaces [1]. Semantic properties can be verified using specific
techniques and tools, e.g., Banach’s fixed point theorem in
the metric approach. The denotational approach is clearly
motivated by the desirability to achieve a modular design.

Next, the relation between a denotational semantics and
an operational semantics has to be investigated. The natural
question is whether the denotational semantics is correct



with respect to the operational semantics. The denotational
semantics is said to be correct with respect to a corresponding
operational semantics if whenever the denotational meanings
of two language constructs are equal the operational semantics
of the two language constructs are also equal in any syntactic
context. A formal definition is provided in section II-A.

In this paper we employ the mathematical methodology of
metric semantics [1] in designing and relating an operational
semantics O and a denotational semantics D for LBPMN . The
definition of O is based on a linear time (power) domain P.
An element of P is a (nonempty and compact) collection of
sequences of observables (states). The definition of D is based
on a branching time domain PD. As it is well-known (see,
e.g., chapter 17 in [1]), in order to prove the correctness of D
it is sufficient to find an (abstraction) operator abs : PD → P,
(which, in general, is not injective) such that: O = abs ◦ D,
where ◦ is the operator for function composition.

We define such a function abs that takes PD processes,
which are tree-like structures, as arguments and yields P
collections as results. In this way we establish the correctness
of the denotational semantics D with respect to the opera-
tional semantics O for the language LBPMN . The operational
semantics and the denotational semantics are presented in
sections IV and V, respectively. The semantic correctness
result is presented in Section VI.

A. LBPMN main concepts

The combination of concepts embodied in LBPMN can
capture various aspects of a business process model specified
in BPMN. LBPMN is a simple imperative language with
typical elements x, xi, that we call processes. We represent
a BPMN task as a multi-assignment statement in LBPMN ,
that we also call an (elementary) activity. Such a multi-
assignment statement can model, e.g., a data-collection screen,
implementing a business document manipulation. The effect
of a multi-assignment statement becomes visible for parallel
processes only after the passage of a given amount of time.

BPMN can be used to specify business processes that
are executed in parallel. The standard does not specify an
execution order for parallel tasks, hence we assume a model
based on maximal parallelism (noninterleaving semantics).

Note that any combination of sequential and parallel (fork
and join) composition is allowed in BPMN. Parallel Gateways
can be used for synchronizing parallel flows, as explained in
section 10.5.4 of [20]. A Parallel Gateway will wait for all
incoming flows before triggering the flow through its outgoing
Sequence Flows. Such a BPMN model can be translated into
an LBPMN program (x1 ‖ . . . ‖ xn);x, where the execution
of the process x starts only upon the completion of the parallel
execution of all processes x1, . . . , xn.

B. The time model

Several timed process calculi have been proposed in the
literature, which differ on the basis of a number of time-related
parameters (see, e.g., [2], and the references provided therein).
Activities (actions) can be durational, i.e., their execution can
take a certain a amount of time, or they can be durationless
(instantaneous). Time passing can be measured with respect to

some previous event, or with respect to the starting time of the
system execution. In the first case we speak of relative time;
in the second case we speak of absolute time. Time passing
can be governed by a single global clock, or, as in distributed
systems, by multiple local clocks (which elapse independently,
although they define a unique notion of global time). The time
model can be discrete o continuous. In a discrete time model,
time is modelled as a monotonically increasing sequence of
integers. In a continuous time (or dense time) model the times
of events are real numbers.

As explained, e.g., in [19], time information and con-
currency are essential for an accurate formal description of
BPMN. Business processes are lasting and relatively slow
activities, compared to the computation speed of a computer.
In designing an execution machine for BPMN we assume a
uniform, discrete time framework, based on local clocks and
durational activities and processes. Clocks are fictitious entities
associated with threads implementing Tasks. All the clocks
increase at a uniform rate counting time with respect to a fixed
global time frame. Also, following [19], we consider a relative
timed semantic model for BPMN. In the metric setting that we
employ in this paper [1] it is convenient to consider a discrete
time model. In the definition of the denotational semantics time
units correspond to contraction steps.

C. Implementation architecture

Our focus is on designing and relating a denotational se-
mantics and an operational for a language LBPMN embodying
some core concepts of a subset of BPMN 2.0. However,
our operational semantics can also serve as a blueprint for
an implementation of a workflow machine that can execute
business processes.

There are several machines that can execute business pro-
cesses described in (a subset of) BPMN 2.0, e.g., jBPM [21],
now at version 6.2, released by the Jboss company. In fact,
our implementation solution relies on the graphical designer
and the model to XML mapping (BPMN model serialization)
provided by jBPM 6.0. Our execution machine uses as input
the standard XML representation of a BPMN 2.0 model
[20]. The execution architecture comprises a translator which
takes as input a BPMN model in XML format and generates
LBPMN code, and an interpreter for LBPMN designed to run
on a client server architecture. The BPMN project is stored on
the server side as a shared repository, which can be updated
by a main process, also running on the server. The BPMN
to LBPMN translator and the implementation of the LBPMN

interpreter are described in more detail in Section VII.

D. Contribution

We present an execution architecture for a control-flow
subset of BPMN based on two main components: a translator
and an interpreter. The translator takes as input a BPMN
model and generates code in an intermediate language that
we name LBPMN . The LBPMN interpreter is designed to
execute both sequential and parallel Tasks. LBPMN combines
maximal parallelism with durational activities and processes.
We employ the mathematical methodology of metric semantics
[1] in designing and relating an operational semantics O and
a denotational semantics D for a LBPMN . We establish the



formal relation between O and D by using an abstraction
operator and a fixed point argument. In this way we prove
the correctness of D with respect to O. As far as we know,
this is the first paper that presents a denotational model and
a comparative semantics investigation for the combination of
concepts embodied in LBPMN .

II. MATHEMATICAL PRELIMINARIES

The notation (x ∈)X introduces the set X with typical
element x ranging over X .

Let f ∈ X → Y be a function; the function
( f | x 7→ y ) : X → Y is defined (for x, x′ ∈ X, y ∈ Y )
by: ( f | x 7→ y )(x′) = if x′ = x then y else f(x′).
Instead of ( ( f | x1 7→ y1 ) · · · | xn 7→ yn ) we write
( f | x1 7→ y1 | · · · | xn 7→ yn ).

Let f : X→X be a function. When x ∈ X is such that
f(x) = x, we call x a fixed point of f . When this fixed point
is unique, we write x = fix(f).

The semantic models given in this paper are defined fol-
lowing the mathematical methodology of metric semantics [1].
More exactly, we work within the mathematical framework of
1-bounded complete metric spaces. We assume the following
notions are known: metric and ultrametric space, isometry
(distance preserving bijection between metric spaces, denoted
by ’∼=’), complete metric space, and compact set. For details,
the reader may consult the monograph [1], for instance.

Some metrics are frequently used in metric semantics.
For example, if X is any nonempty set, we can define
the discrete metric d : X × X → [0, 1] as follows:
d(x, y) = if x = y then 0 else 1. (X, d) is a complete ul-
trametric space. Also, let (a ∈)A be a nonempty set, and
A∞ = A∗∪Aω , where A∗(Aω) is the set of all finite (infinite)
sequences over A. A metric over A∞ can be defined by
d(x, y) = 2− sup{n | x[n]=y[n] }, where x[n] denotes the prefix
of x of length n, in case length(x) ≥ n, and x otherwise (by
convention, 2−∞ = 0). d is a Baire-like metric, and (A∞, d) is
a complete ultrametric space. For any set A (by a slight abuse)
we denote by ε(∈ A∗) the empty sequence over A. Also, we
use ’·’ as a concatenation (and a prefixing) operator over A∞
sequences. In particular, when a ∈ A and x ∈ A∞, a ·x is the
sequence obtained by prefixing a to x.

We recall that if (X, dX), (Y, dY ) are metric spaces,
a function f :X→Y is a contraction if ∃c ∈ R, 0 ≤ c < 1,
∀x1, x2 ∈ X : dY (f(x1), f(x2))≤ c · dX(x1, x2). In metric
semantics, it is usual to attach a contracting factor c = 1

2 to
each computation step. When c = 1 the function f is called
nonexpansive. In what follows, we denote by X

1

→Y the set
of all nonexpansive functions from X to Y .

The following theorem is at the core of metric semantics.

Theorem 2.1 (Banach): Let (X, dX) be a complete metric
space. Each contraction f : X→X has a unique fixed point.

Definition 2.2: Let (X, dX), (Y, dY ) be (ultra)metric
spaces. We define the following metrics over X , X→Y
(function space), X×Y (Cartesian product), X + Y (disjoint
union defined by X + Y = ({1} × X) ∪ ({2} × Y )), and
P(X) (powerset of X), respectively.

(a) d 1
2 ·X

:X ×X→[0, 1]

d 1
2 ·X

(x1, x2) = 1
2 · dX(x1, x2)

(b) dX→Y : (X→Y )× (X→Y )→[0, 1]
dX→Y (f1, f2) = supx∈X dY (f1(x), f2(x))

(c) dX×Y : (X × Y )× (X × Y )→[0, 1]
dX×Y ((x1, y1), (x2, y2)) =
max{dX(x1, x2), dY (y1, y2)};

(d) dX+Y : (X + Y )× (X + Y )→[0, 1]
dX+Y (u, v)= if (u, v ∈ X) then dX(u, v)

else if (u, v∈Y ) then dY (u, v) else 1
(e) dH : P(X)× P(X)→[0, 1]

dH(U, V ) = max{supu∈U d(u, V ), supv∈V d(v, U)}
where d(u,W )= infw∈W d(u,w) and by convention
sup ∅=0 and inf ∅=1; dH is the Hausdorff metric.

We use the abbreviations Pco(X) and Pnco(X) to denote
the powerset of compact and non-empty and compact subsets
of X , respectively. Also, we often suppress the metrics part in
domain definitions, and write only 1

2 ·X instead of (X, d 1
2 ·X

).

Remark 2.3: Let (X, dX), (Y, dY ), d 1
2 ·X

, dX→Y , dX×Y ,
dX+Y and dH be as in Definition 2.2. If dX , dY are ul-
trametrics, then so are d 1

2 ·X
, dX→Y , dX×Y , dX+Y and dH .

Moreover, if (X, dX), (Y, dY ) are complete then 1
2 ·X , X→Y ,

X
1

→Y , X×Y ,X+Y , Pco(X) and Pnco(X) with their metrics
defined above are also complete metric spaces [1].

A. Semantic correctness

A semantics is a function M : L → M, where L is
a (formal) language and M is a mathematical domain (of
meanings). Let (x ∈)L be a language, C a typical element of
a class of syntactic contexts for L, D : L → D a denotational
semantics, and O : L → O an operational semantics.

Intuitively, a syntactic context is a language construct
with ’holes’. For example, let L be a very simple language
providing elementary actions a taken from a set (a ∈)A and
sequential composition written x1;x2. L is specified by the
little grammar: x ::= a | x;x. The class of syntactic contexts
for L can be defined as follows: C ::= (·) | a | C;C. For a
given context C one denotes by C(x) the result of replacing
all occurrences of the ’hole’ symbol (·) with x in C. This
notation can be defined inductively: (·)(x) = x, a(x) = a,
(C1;C2)(x) = C1(x);C2(x).

The denotational semantics D is said to be correct with
respect to the operational semantics O in case:

∀x1, x2 ∈ L [D[[P ]] = D[[Q]]⇒ ∀C [O[[C(x1)]] = O[[C(x2)]] ]]

Remark 2.4: In order to prove the correctness of D it
is sufficient to find an operator abs : D → O such that:
O = abs ◦ D (see, e.g., [1], chapter 17).

If D is correct and it is also complete with respect to O
then D is said to be fully abstract (we do not need the notion
of semantic completeness in this paper). The full-abstraction
problem was raised by Robin Milner [8].

III. SYNTAX OF LBPMN AND INFORMAL EXPLANATION

In our semantic investigation the behavior of a BPMN
Task is described by its duration and effect. The effect is



modelled in LBPMN as a multi-assignment statement, defined
with the aid of a class of expressions. Also, we use a class
of Boolean expressions to model BPMN Gateway conditions.
The syntax of LBPMN is given in Definition 3.1. The basic
components are a set (v ∈)V of variables and a class (e ∈)E
of expressions, whose type(s) we leave unspecified because
our focus is on control-flow aspects. Let (b ∈)B be a class of
boolean expressions. We also use (t ∈)T = N+ as the set of
(discrete) time values, where N+ = N\{0}, namely the set of
natural numbers without 0.

Definition 3.1: (LBPMN syntax) We define the class
(a ∈)A of multi-assignment statements and the the class
(x ∈)X of LBPMN processes by:

a ::= [] | [ (v := e, )∗ v := e ]

x ::= skip | (a, t) | if b then x else x

| while b do x | x;x | x ‖ x

A pair (a, t) is called an (atomic) activity.

The semantics of (Boolean) expressions we define in a stan-
dard manner. We assume given a set (σ ∈)Σ = V → V al
of states, and two valuations E [[·]] : E → Σ→ V al, and
B[[·]] : E → Σ→ Bool, where V al is some given set of values,
and Bool = {true, false}.

skip is the inoperative statement. (a, t) is an LBPMN

activity. a ≡ [v1 := e1, . . . , vn := en] is a multi-assignment
statement (n ≥ 0). LBPMN also provides constructions for
conditional statement ( if ) and while loop ( while ), sequential
composition (x;x) and parallel composition (x ‖ x).

Notation 3.2: In the above paragraph - and everywhere
later - we use the symbol ’≡’ to denote syntactic identity.

The semantic models of LBPMN are presented in Section
IV and Section V, respectively. They are designed under the
following assumptions. There is a shared global repository of
(business process) data. Parallel Tasks, implemented as parallel
LBPMN statements, can share data. Parallel Tasks are executed
in a maximal parallel manner. However, if two parallel tasks
attempt to modify some shared data, the result cannot be
predicted. The effect is given by the last task that performs
an update operation.

A. BPMN to LBPMN translator

We consider an implementation architecture for a control
flow subset of BPMN 2.0. The architecture comprises a
translator component, and an interpreter for LBPMN . The
translator takes as input a BPMN model (in XML format)
and generates LBPMN code. Our prototype implementation
is developed under the assumption that BPMN Tasks, Events
and Gateways can be annotated with labels. Such labels can be
attached to or placed inside the shape of the BPMN element,
representing its attributes (according to [20], Chapter 7). We
use Task annotations to specify the variable names of a multi-
assignment LBPMN statement. Also, we use Gateway annota-
tions to specify the conditions modeling Boolean expressions
of an LBPMN conditional or a loop statement.

The translator component works in several steps: a BPMN
to XML serialization, followed by a transalation from XML

into an internal graph representation (with loops detection),
followed by LBPMN code (and abstract syntax tree represen-
tation) generation. Further details are provided in Section VII.

Our translator, maps any BPMN Task to an LBPMN

activity (a, t). The time parameter t denotes the duration of
the Task (at implementation level the duration of a Task is
computed as the difference between the completion time and
the starting time of the Task). A multi-assignment statement
[v1 := e1, . . . , vn := en] can model a business document ma-
nipulation (e.g., in the form of a data-collection screen with
multiple fields).

LBPMN provides compositionality at the level of syntax
(and semantics), in terms of operators which can combine
simple components into more complex ones. LBPMN can
describe complex behaviors assembled in Sub-Processes. How-
ever, some features related to BPMN Sub-Processes, such as
scoping, are ignored in this paper.

A BPMN Delay Timer Event is translated into an activity
([], t), where [] is the empty multi-assignment statement, and
t is the parameter of the timer.

For the structured control constructs the translation algo-
rithm follows the patterns presented in [20], chapter 14, where
a BPMN to WS-BPEL mapping is presented. A parallel (fork
and join) Gateway is translated into a parallel composition
of LBPMN statements. A Sequence Flow is translated into a
sequential composition of LBPMN statements. Conditionals
and loops are also handled as in in [20], chapter 14.

IV. OPERATIONAL SEMANTICS (O)

It is convenient to extend the set of LBPMN statements
with threads. A thread is an activity with a local clock.

Definition 4.1: Let TA ⊆ A × T × T be given by TA =
{(a, t, t′) | t′ < t}. TA is a set of triples (a, t, t′), that we call
threads. The component t′ of a thread (a, t, t′) behaves as a
(discrete time local) clock, i.e., a variable whose values range
over the non-negative integers and which increases at the same
rate as time. Notice that the clock t′ of a thread (a, t, t′) must
satisfy the invariant condition t′ < t.

We define the set (r ∈)Conf of configurations by:

Conf = X ′ ∪ {E}

The set (x ∈)X ′ is given by:

x ::= skip | (a, t) | (a, t, t′) | if b then x else x

| while b do x | x;x | x ‖ x

where (a, t) ∈ A is an activity and (a, t, t′) ∈ TA is a thread.
Obviously, X ⊆ X ′, X 6= X ′ (and X ⊆ Conf , X 6= Conf ).

The parameter t gives the duration of an activity (a, t) or a
thread (a, t, t′). The thread clock t′ must satisfy the invariant
condition t′ < t. Clocks in parallel threads increase at the same
uniform rate, counting time with respect to a fixed global time
frame.

Notation 4.2: We use the convention that a configuration
E;x, E ‖ x, or x ‖ E is syntactically identified with x. Also,
we identify E ‖ E with E. Formally, for any x ∈ Conf ,



we have E;x ≡ x, E ‖ x ≡ x, x ‖ E ≡ x and E ‖ E = E.
We use the symbol ’≡’ to express syntactic identity. Similar
conventions are used systematically in [1], as they allow a
somewhat more concise formulation of the specification.

We define an operational semantics for LBPMN by means
of a transition relation embedded in a deductive system in the
style of Plotkin’s structured operational semantics [11].

The definition of the operational semantics of LBPMN is
based on a transition relation→⊆ (Conf×Σ)× (Conf×Σ).
We write (r, σ)→ (r′, σ′) to express that ((r, σ), (r′, σ′)) ∈→.
We use the following notation convention:

(r1, σ1) ↗ (r2, σ2) is an abbreviation for
(r2, σ2)→ (r′, σ′)

(r1, σ1)→ (r′, σ′)

Definition 4.3: The transition relation for LBPMN is the
smallest subset of (Conf × Σ) × (Conf × Σ) satisfying the
following axioms and rules:

(A1) ( skip , σ)→ (E, σ)

(A2) ((a, 1), σ)→ (E, ς(a, σ))

(A3) ((a, t), σ)→ ((a, t, 1), σ) if t > 1

(A4) ((a, t, t′), σ)→ (E, ς(a, σ)) if t = t′ + 1

(A5) ((a, t, t′), σ)→ ((a, t, t′ + 1), σ) if t > t′ + 1

(R5) ( while b do x, σ) ↗
( if b then x; while b do x else skip , σ)

(R6) ( if b then x1 else x2, σ) ↗ (x1, σ)

if B[[b]](σ) = true

(R7) ( if b then x1 else x2, σ) ↗ (x2, σ)

if B[[b]](σ) = false

(R8)
(x1, σ)→ (r1, σ1)

(x1;x2, σ)→ (r1;x2, σ1)

(R9)
(x1, σ)→ (r1, σ1) (x2, σ1)→ (r2, σ2)

(x1 ‖ x2, σ)→ (r1 ‖ r2, σ2)

(R10)
(x1, σ1)→ (r1, σ2) (x2, σ)→ (r2, σ1)

(x1 ‖ x2, σ)→ (r1 ‖ r2, σ2)

where ς([], σ) = σ, and ς([v1 := e1, . . . , vn := en], σ) =
(σ | v1 7→ E [[e1]](σ) | · · · | vn 7→ E [[en]](σ) ).

According to axioms (A2) and (A3), an activity (a, 1) with
duration 1 is executed as a durationless activity (an instant
action) that immediately updates the state; if t > 1 then a
thread (a, t, 1) is created, with a clock initialized to 1.

Acording to axioms (A4) and(A5), a thread (a, t, t′) is
executed by incrementing its clock t′ until t = t′ + 1; when
t = t′ + 1 the thread terminates and the state is updated by
using the mapping ς(a, σ).

The rules (R5)-(R7) for ( while ) loop and ( if ) conditional
statement are standard. Rule (R8) define the semantics o
sequential composition. According to rules (R9) and (R10),
parallel LBPMN statements are executed in a maximally par-
allel manner. For further explanations concerning the semantics
of maximal parallelism in the metric approach, the reader may
consult, e.g., [1], chapter 15, section 15.2.

Notice that, when two (or more) LBPMN parallel compo-
nents share data, the effect cannot be predicted. The effect is
given by the last component (parallel Task) that performs an
update operation. Also, notice that in LBPMN local clocks in
all parallel components increase at the same time rate.

Example 4.4: Let x = ([v := 10], 2) ‖ ([v := 20], 2),
and x1 = ([v := 10], 2, 1) ‖ ([v := 20], 2, 1). Notice that
x, x1 ∈ Conf , x ∈ X (but x1 /∈ X). Let σ ∈ Σ, and
let σ1 = (σ | v 7→ 10 ), σ2 = (σ | v 7→ 20 ). One
can check that: (x, σ)→ (x1, σ). Also, (x1, σ)→ (E, σ1) and
(x1, σ)→ (E, σ2).

A semantic description does not specify an implementation,
but it can suggest one. Based on the operational semantics pre-
sented in this section we design a distributed implementation
of LBPMN that can be deployed on a client-server system. The
execution architecture comprises a main process designed to
run on the server and a collection of parallel threads. The main
process can update a shared (business) data repository, and is
responsible for the creation and coordination of threads that
can be executed on different machines (to serve business tasks).
The main process communicates with the threads and performs
update operations (on the shared data repository) upon threads
completion. Threads are created and scheduled according to
the LBPMN specification. For example, in order to run the
LBPMN program ((a1, t1) ‖ (a2, t2));x, the main process
will create two threads that execute (in parallel) (a1, t1) and
(a2, t2). The rest of the program, namely x, is temporarily
suspended. The execution of x begins only after the completion
of the parallel execution of both (a1, t1) and (a2, t2).

Remark 4.5: The scheduling structure of the semantic in-
terpreter can be made explicit by using continuation semantics
for concurrency (CSC) [3], [13], [14]. One can use CSC in
designing a semantic interpreter for LBPMN where a contin-
uation is a collection of threads combined in parallel with a
main process. The main process is essentially an element of
the type X ′, in which threads are replaced by identifiers used
as thread references. In our model each thread implements a
BPMN Task. At any moment at most one instance of a Task
is active. At implementation level, Task identifiers (generated
automatically in the XML representation of a BPMN model)
can be used as thread identifiers.

In proofs we use structural induction and induction based
on the following complexity measure (the mapping c is well-
defined; see [1], chapters 1 and 7).

Definition 4.6: We define c : Conf → N by:

c(E) = 0 c( skip ) = c(a, t) = c(a, t, t′) = 1

c( if b then x1 else x2) = 1 +max{c(x1), c(x2)}
c( while b do x) =

1 + c( if b then (x; while b do x) else skip )

c(x1;x2) = 1 + c(x1)

c(x1 ‖ x2) = 1 +max{c(x1), c(x2)}
Definition 4.7: (Operational semantics O[[·]] for LBPMN )

Let (S ∈)SemO = (Conf × Σ) → Pnco(Σ∞).2 Let Ψ :
SemO → SemO be given by:

2The construction Σ∞ was introduced in Section II.



Ψ(S)(E, σ) = {ε}
Ψ(S)(x, σ) =

⋃
{σ′ · S(r, σ′) | (x, σ)→ (r, σ′)}

where we use the notation σ · p = {σ · q | q ∈ p}, for any
p ∈ Pnco(Σ∞). We put OL = fix(Ψ).

Let P = Σ → Pnco(Σ∞). We define O[[·]] : X → P by
O[[x]](σ) = OL(x, σ).

Remark 4.8: The set S(r, σ) = {(r′, σ′) | (r, σ)→ (r′, σ′)}
is finite for any (r, σ) ∈ Conf × Σ, hence the transition
system induced by the transition relation → is finitely
branching. This fact can be proved by an easy induction on
c(r), for any r ∈ Conf . It is a standard result in metric
semantics that a finitely branching transition system gives rise
to a compact operational semantics [1]. Ψ is a contraction
(hence it has a unique fixed point) in particular, due to the
”σ · . . .”-step in its definition.

Example 4.9: Let Let x ∈ X , σ, σ1, σ2 ∈ Σ be as in
Example 4.4. We have: O[[x]](σ) = {σσ1, σσ2}.

V. DENOTATIONAL SEMANTICS (D)

We present a denotational model D[[·]] based on a branching
domain PD. PD is the (unique) metric domain [1] satisfying:

PD ∼= {pε}+ (Σ→ Pnco(Σ×
1

2
· PD))

Definition 5.1: Let (φ ∈)Op = (PD × PD)
1

→PD. Let
Ω;,Ω‖ : Op→ Op, be given by:

Ω;(φ)(pε, p) = p

Ω;(φ)(p1, p2) =

λσ.{(σ′1, φ(p′1, p2)) | (σ′1, p′1) ∈ p1(σ)}, if p1 6= pε

Ω‖(φ)(pε, p) = Ω‖(p, pε) = p

Ω‖(φ)(p1, p2) =

λσ.({(σ2, φ(p′1, p
′
2)) | (σ1, p′1) ∈ p1(σ),

(σ2, p
′
2) ∈ p2(σ1)}∪

{(σ2, φ(p′1, p
′
2)) | (σ1, p′2) ∈ p2(σ),

(σ2, p
′
1) ∈ p1(σ1)})

if p1 6= pε, p2 6= pε

We define ; = fix(Ω;), ‖= fix(Ω‖). Ω;,Ω‖ are contractions,
essentially because the occurrences of φ in the right-hand sides
of the equations are stored in the space 1

2 · PD; in [1] various
similar operators are defined in this way.

Let θ : TA → PD be given (by induction on (t− t′)):

θ(a, t, t′) = λσ.{(ς(a, σ), pε)} if t = t′ + 1

θ(a, t, t′) = λσ.{(σ, θ(a, t, t′ + 1))} if t > t′ + 1

Definition 5.2: (Denotational semantics D[[·]] for LBPMN )
We define D[[·]] : X → PD by:

D[[ skip ]] = λσ.{(σ, pε)}
D[[(a, t)]] = if (t = 1) then λσ.{(ς(a, σ), pε)}

else λσ.{(σ, θ(a, t, 1))}

D[[ while b do x]] = fix(W )

D[[ if b then x1 else x2]] = λσ.

{
D[[x1]](σ) if B[[b]](σ)
D[[x2]](σ) if ¬(B[[b]](σ))

D[[x1;x2]] = D[[x1]];D[[x2]]

D[[x1 ‖ x2]] = D[[x1]] ‖ D[[x2]]

where W ∈ PD → PD,

W = λp.λσ. if B[[b]](σ) then (D[[x]]; p)(σ) else {(σ, pε)}

By an easy structural induction on x ∈ X , one can check
that D[[x]] 6= pε, for any x ∈ X . Also, one can check that
d(p; p1, p; p2) ≤ 1

2 · d(p1, p2), for any p1, p2 ∈ PD when
p 6= pε. Hence the higher order mapping W is a contraction,
and has a unique fixed point.

Example 5.3: D[[([v := 10], 2) ‖ ([v := 20], 2)]] =
λσ.{(σ, λσ′.{((σ′ | v 7→ 10 ), pε), ((σ

′ | v 7→ 20 ), pε)})}.
See also Example 4.9.

Remark 5.4: It is easy to check that D[[ while b do x]] =
D[[ if b then (x; while b do x) else skip ]].

VI. RELATION BETWEEN DENOTATIONAL SEMANTICS
AND OPERATIONAL SEMANTICS

We use different semantic domains for O[[·]] and D[[·]],
hence we cannot expect that O[[x]] = D[[x]], on LBPMN . In
order to establish the relation between O and D we introduce
an intermediate semantics I : Conf → PD, a branching time
operational semantics OD : Conf → PD, and an abstraction
operator abs : PD

1

→P. By an appeal to Banach’s Theorem
2.1, we prove that O = abs◦D. We conclude that D is correct
with respect to O.

Definition 6.1: We define I : Conf → PD by:

I(E) = pε

I( skip ) = λσ.{(σ, pε)}
I(a, t) = if (t = 1) then λσ.{(ς(a, σ), pε)}

else λσ.{(σ, θ(a, t, 1))}
I(a, t, t′) = θ(a, t, t′)

I( while b do x) = fix(W ′)

I( if b then x1 else x2) = λσ.

{
I(x1)(σ) if B[[b]](σ)
I(x2)(σ) if ¬(B[[b]](σ))

I(x1;x2) = I(x1); I(x2)

I(x1 ‖ x2) = I(x1) ‖ I(x2)

where W ′ ∈ PD → PD,

W ′ = λp.λσ. if B[[b]](σ) then (I(x); p)(σ) else {(σ, pε)}

Notice that I(x) 6= pε,∀x ∈ X ′; this property follows by an
easy induction on the structure of x ∈ X ′ (recall that Conf =
{E}∪X ′). Also, the higher order mapping W ′ is a contraction,
and has a unique fixed point.

Remark 6.2: It is easy to check the following properties:

(a) I( while b do x) =



I( if b then (x; while b do x) else skip ),

(b) I(r1 ‖ r2) = I(r1) ‖ I(r2), for any r1, r2 ∈ Conf .

Lemma 6.3: D[[x]] = I(x), for any x ∈ X .

Proof: Easy structural induction on x ∈ X .

Definition 6.4: Let (S ∈)SemD = Conf → PD. We put
OD = fix(ΨD), where ΨD : SemD → SemD is given by:

ΨD(S)(E) = pε

ΨD(S)(x) = λσ.{(σ′, S(r)) | (x, σ)→ (r, σ′)}

Lemma 6.5: I = fix(ΨD).

Proof: We show that I(r) = ΨD(I)(r), ∀r ∈ Conf . We
proceed by induction on c(r). Three subcases.

Case r ≡ while b do x.

ΨD(I)( while b do x)

= ΨD(I)( if b then (x; while b do x) else skip )

[Induction hypothesis]

= I( if b then (x; while b do x) else skip )

[Remark 6.2(a)]

= I( while b do x)

Case r ≡ x1 ‖ x2.

ΨD(I)(x1 ‖ x2) =

= λσ.{(σ′, I(r)) | (x1 ‖ x2, σ)→ (r, σ′)}

[Remark 6.2(b)]

= λσ.({(σ2, I(r1) ‖ I(r2)) |

(x1, σ)→ (r1, σ1), (x2, σ1)→ (r2, σ2)}∪

{(σ2, I(r1) ‖ I(r2)) |

(x2, σ)→ (r2, σ1), (x1, σ1)→ (r1, σ2)})

= ΨD(I)(x1) ‖ ΨD(I)(x2) [Induction hyp.]

= I(x1) ‖ I(x2) = I(x1 ‖ x2)

Definition 6.6: Let (φ ∈)Op = PD
1

→P. The mapping
Ωabs : Op→ Op is defined as follows:

Ωabs(φ)(pε) = λσ.{ε}

Ωabs(φ)(p) = λσ.
⋃
{σ′ · φ(p′)(σ′) | (σ′, p′) ∈ p(σ)}

if p 6= pε

We put abs = fix(Ωabs).

Lemma 6.7: (abs ◦ OD)(r)(σ) = OL(r, σ), for any
r ∈ Conf, σ ∈ Σ.

Proof: Let R : (Conf × Σ)→ Pnco(Σ∞) be given by:

R(r, σ) = (abs ◦ OD)(r)(σ) = abs(OD(r))(σ)

It is enough to prove that Ψ(R)(r, σ) = R(r, σ), for any r ∈
Conf, σ ∈ Σ. We only consider the case when r ≡ x, x ∈ X ′.

Ψ(R)(x, σ) =
⋃
{σ′ · R(r′, σ′) | (x, σ)→ (r′, σ′)}

=
⋃
{σ′ · (abs(OD(r′))(σ′) | (x, σ)→ (r′, σ′)}

[Definition 6.4]

=
⋃
{σ′ · (abs(p′)(σ′)) | (σ′, p′) ∈ OD(x)(σ)}

= (abs(OD(x)))(σ) = (abs ◦ OD)(x)(σ) = R(x, σ)

Hence R = fix(Ψ). By using Banach’s Theorem 2.1, R =
OL, and the desired result is immediate.

Theorem 6.8: O = abs ◦ D, on LBPMN .

Proof: For any x ∈ X we have:

O[[x]] = λσ.OL(x, σ) [Lemma 6.7]

= abs(OD(x)) [Lemma 6.5, Theorem 2.1]

= abs(I(x)) [Lemma 6.3]

= abs(D[[x]])

As a consequence of Theorem 6.8 and Remark 2.4 we obtain:

Corollary 6.9: D is correct with respect to O.

VII. IMPLEMENTATION CONSIDERATIONS

There are several machines that can execute business
processes described in (a subset of) BPMN 2.0, e.g., jBPM
6.2 [21]. Our implementation solution relies on the graphical
designer and the model to XML mapping (BPMN model
serialization) provided by jBPM 6.0. Our execution machine
uses as input the standard XML representation of a BPMN 2.0
model [20]. The execution architecture comprises two main
components: a translator that takes as input a BPMN model in
XML format and generates LBPMN code, and an interpreter
for LBPMN .

The XML representation is translated into an internal (di-
rected) graph representation of the BPMN model. The various
BPMN element types - including Tasks, (Delay Timer) Events,
(Conditional and Parallel) Gateways, and Loops (e.g. While
and Repeat loops) - are detected at this step. The internal
graph representation is then used to generate LBPMN code
and an optimized abstract syntax tree (AST) representation. For
the purpose of this prototype implementation we developed a
simple recursive translation algorithm that can only deal with
structured control constructs. This is sufficient in practice. Our
translation algorithm cannot deal with some BPMN models,
e.g. with models based on unstructured loops. However, notice
that a similar limitation is considered in [20], chapter 14, where
a BPMN to WS-BPEL translation is presented.

Next, the LBPMN program (in AST representation) is
executed by an interpreter designed based on the operational
semantics of LBPMN presented in this paper. The execution
model comprises a main process and a collection of threads
that can be deployed on a client server architecture. Each
thread executes a BPMN task. The main process manages the
execution order of threads and is designed to run on the server.
The data of the BPMN project are also stored on the server as
a repository shared by all Tasks.



Our prototype implementation is developed under the as-
sumption that Flow Objects (Tasks, Events and Gateways) can
be annotated with labels. Such labels can be attached to or
placed inside the shape of the BPMN element, representing
its attributes (according to [20], Chapter 7). Task and Gateway
attributes are specified in this way graphically at the level of the
BPMN model. We use Task annotations to specify the variable
names of a multi-assignment LBPMN statement. Although the
aspect is not captured in the formal specification given in this
paper, we mention that in the distributed implementation, Task
annotations are also used to specify the (physical) machine on
which a thread implementing a BPMN Task is to be executed.
Also, we use Gateway annotations to specify the conditions
modeling Boolean expressions of an LBPMN conditional or a
loop statement.

A. The present state of the implementation

For the purpose of an initial prototype implementation we
decided to use Java RMI. The distributed implementation is in
progress. It is designed to be deployed on a client-server archi-
tecture, with a main process running on the server. As an initial
step, we developed a Haskell [10] (sequential) implementation
of the operational semantics of LBPMN presented in Section
IV. The Haskell implementation serves as a prototype model
for the distributed implementation. For experimentation and
testing purposes, in the Haskell implementation execution
traces are augmented with time stamps.

The direct Haskell implementation of the operational se-
mantics produces all possible execution traces. It can be used
to verify the correctness of the implementation but it is not
tractable, hence it can only be tested on toy LBPMN programs.
Therefore we have also developed an implementation where
the main process and the parallel threads that implement
BPMN tasks are activated in a random manner, thus simu-
lating their parallel execution. This version produces a single
execution trace, and the nondeterminism of a (real) distributed
implementation is simulated using a (pseudo) random number
generator. In general, at subsequent execution in ”single trace
semantics” the interpreter can produce different results. In
”single trace semantics” the Haskell interpreter is reasonably
efficient and can be used to test complex LBPMN programs
representing corresponding BPMN models.

VIII. CONCLUDING REMARKS AND FUTURE RESEARCH

We report on the first stage of a semantic investigation
of BPMN 2.0 [20]. We consider a control-flow subset of
BPMN and an execution architecture based on an intermediate
language that we name LBPMN . The execution architecture
comprises two main components: a translator which takes as
input a BPMN model and generates LBPMN code, and an
interpreter for LBPMN , designed to execute both sequential
and parallel Tasks. LBPMN is a process oriented imperative
language providing a combination of concepts, including max-
imal parallelism and durational activities. By using techniques
from metric semantics [1] we design and relate an operational
semantics and a denotational semantics for LBPMN . By using
an abstraction operator and a fixed point argument we prove
the correctness of the denotational semantics with respect to
the operational semantics.

We intend to continue the research concerning the semantic
foundations of BPMN, by using methods in the tradition of
programming language semantics. Our next aim is to design
a fully abstract denotational model for the LBPMN formal-
ism. Also, we will investigate extensions of the intermediate
language LBPMN that can be used in designing execution
machines for more comprehensive subsets of BPMN 2.0.
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