The 3rd Romanian Conference
on Open Systers

[echnical Sessions Promotional Papers

1-4 November 1995, Bucharest, Romania '

An Operational Semantics for NPL

; Eneia Todoran "
. Department of Computer Engineering, Technical University of Cluj-Napoca
26 Baritiu Street, 3400 Cluj-Napoca, Romania
e-mail; eneia@utcluj.ro

Abstract. NPL is a concurrent programming language. NPL combines in a uniform framework
basic control flow concepts from sequential logic programming with backtracking and cut and from
parallel logic programming with committed choice. ‘I'his paper presents some sample programs and
an operational semantics for NPL in the style of the Structured Operational Semantics of Plotkin.

1. Introduction.

The language NPL wus developed in a series of papers ([6],[7]). Intuitively, it is obtained by
parameterizing a process algebra (the process layer) with Lisp expressions (the data layer). This
paper focuses on the approach to non-determinism in NPL. In NPL the non-determinism is a union of
behaviors. In this model it is possible to combine in a uniform framework basic control flow concepts

. from sequential logic programming with backtracking and cut and from parallel logic programming

} - with committed choice. In this paper we present some sample programs and an operational semantics
for NPL in the style of Plotkin’s Structured Operational Semantics. The transition system presented
in section 3. has been implemented as an executable Prolog prototype and it has been tested on a
large number of examples (including the ones presented in section 2.)

$ 2. An informal introduction to the Language

The syntax of NPL is very intuitive: a mixture of Lisp and process algebra. 'I'he statements

- of the language are built by Lisp expressions, process names and a special process '!” named select,
combined by means of operators on processes. Process names are distinguished from Lisp symbols

by beginning with an uppercase letter (Lisp symbols must begin with a lower case letter; in this paper

we only deal with parameterless processes in NPL - see also [7]). There is a special process named

"Root’ which has the task to create all the other processes for a certain program. NPL provides (bin-

i ary) operators for sequential composition (.), for parallel compasition (||) (with a lower precedence
{ than ’.’; curly braces may be used to force the precedence in expressions), and two (n-ar:) operators
for non-deterministic choice (in the general notation: §;8;=8;--...+8,): [81+4...+s,] (abbreviated as

[+]) and <s;+...+8,> (abbreviated as <+>). In NPL the non-determinism is a union of behaviors.

The operatdr [s;+...+8y] introduces an ordering relation (specified by the textual order) between the

AT

:I ;

non-deterministic alternatives (s;). Operationally, this comes to a mechanism of backtracking. The
-operator <+> specifies a parallel evaluation of the non-deterministic alternatives. In both cases the
non-deterministic alternatives operate on different data as in Prolog and Concurrent Prolog. There is
a mechanism of “negation by failure” in NPL. T'he evaluation of any Lisp expression to nil produces
the abandon of the continuation of the current non-deterministic alternative of the process. In NPL
logic is a consequence of an interpretation of process behavior. The values of truth are inherited from
Lisp (nil for false and everything else for true). The operators on processes allow for the following
logic interpretation: [+] = OR, <+>=(parallel) OR, .=AND, ||=(parallel) AND. The Lisp in NPL
is extended with a logic of work with free and bound variables, which is the basis for the dataflow
- mechanism (see [6]). Assuming that the variables x, y and z are initially unbound (undefined), the
tollowing program fragment has the predictable behavior of assigning them the values x=1, y=3 and
z=2: (setf x 1)||(setfy (+ x))||(setfz 2). The Lisp command setfis used in NPL as an assignment
primitive. There are two types of elementary actions in NPL: simple expressions (without any side
effect) and assignments. ; ; :

As a starting programming example we present a process that computes the length of a list 1.
It is based on a simple while loop. The program below is deterministic. The guards: I’ and ’(null
1)’ can be inspected in any order, so we could have used the operator <+> instead of [+].

Root=(setf1 (12 3 ...)).(setf n 0).While.(print n) -
While=[(null 1)-+1.(list (setf1 (cdr1))).(setf n (+ 1 n)).While]

We continue with two processes that search an element in a tree. ‘I'hey only differ with respect
to the operational strategy that they use (i.e. sequential or parallel). In both cases the search process
is abandoned as soon as the element was found. When the special process ! is executed it selects a
non-deterministic alternative in a set by destroying all the others. 1t is (syntactically) attached to the
- group of non-deterministic alternatives where it appears. For instance in the process ‘SeqlreeSearch’
below, the (three) non-deterministic alternatives are inspected in textual order. If elem’ is equal with
the raot of the tree (treel) wien the search process stops. Otherwise the search process continues on
the left subtree: *(car (cdr treel))’. If elem’ is found on the left subtree then the search of the right
subtree is abandoned. In the case of the 'Parl'reeSearch’ process all the non-deterministic alternatives
are inspected in parallel, and the first one which succeeds executes its (own) select process which
destroys the other two alternatives. Both the processes use deep guards in performing their task.

SeqTreeSearch=treel.[(equal elem (car treel)).!-
(setf treel (car (cdr treel))).SeqTreeSearch.!+
(setf treel (cdr (cdr treel))).SeqTreeSearch]

ParTreeSearch=tree2.< (equal elem 7(car tree2)).!+-
(setf tree2 (car (cdr tree2))).ParTreeSearch.!+
(setf tree2 (cdr (cdr tree2))).ParTreeSearch.!>

The operator ! does not alter the compositionality of the semantics in the presence of the
(sequential or of the) parallel processes. The two tree search processes can be performed in parallel
(II)- If both the searches are successfull (‘elem’ is present in both trees: ’treel’ and ’tree2’) then,
their (||[=AND) parallel evaluation is succesfull. Otherwise the search process fails.

Root={(setf treel ...)[|(setf tree2 ...)||(setf elem ...)}.{SeqTreeSearch||ParTreeSearch}

In the sequel we preseﬁt three algorithms for g1'apll search. The graph is represented as an
association list indexed with the nodes of the graph. T'o each node it is attached the list of its neigh-

48

L

bors. T'he process 'Search’ computes all all the paths between a start node and a goal node.

Root={Init||(setf path ’(a))}.Search.(print path)
Init=(setf graph ‘((a b d nil nil)(b a d e nil}(c d e nil nil) (d a b c e)(e b d c nil)))
||(setf node "a)||(setf goal 'e)
- NotMb=<(null pp)+ pp.(not (equal (car pp) neighbor)). (list (setf pp (cdr pp))).NotMb>

Search=<(equal node goal)+(not (equal node goal)). (setf neighbors (cdr (assoc node graph))).
Sel.(setf pp path).NotMb.(setf node neighbor).(setf path (cons neighbor path)).Search>

The effective operational strategy of search is specified by the process 'Sel’ that (non-determi-
nistically) selects a 'neighbor’ for the current 'node’. We present three possible versions for this
process. A Prolog-like depth-first search is obtained if the neighbors are inspected in a specified
order (by means of [+]).

Sel=neighbors.[(set{ neighbor (car neighbors))+ (setf neighbors (cdr neighbors)).Sel]

- A parallel search is obtained by using the following process (that uses <+> instead of [+]).

- Sel=neighbors.<(setf neighbor (car neighbors))- (setf neighbors (cdr neighbors)).Sel>

In this case the solutions are returned in an unpredictable order.

The problem of search is in general NP-complete. The time complexity t(n) of a depth first
search - where n is the “depth” of the search tree - is exponential in n, i.e. t(n)=0(f") where { is
the “fan-out” of the search tree. A parallel search can be very fast (t(n)=O(n)) but it assumes the
availability of a number of processors that is exponential in n, p(n)=0(f"). For n=10 and f=4 (we
assume that the search tree is uniform, i.e. each node has 4 neighbors), either t(n) or p(n) would

~ be of the order of 10%(=4!%). The combination of the two operators for non-deterministic choice
(in the process that selects a neighbor) can distribute the computing task among the two coordin-
ates of the algorithm (time and number of processors). For n=10 and f=4 wc obtain an algorithm
with both t(n) and p(n) of the order of 103(=21°) by using the following process for neighbor selection.

Sel=<[(setf neighbor (car neighbors))+(setf neighbor (car (cdr (cdr (cdr neighbors)))))+
[(setf neighbor (car (cdr neighbors)))+(setf neighbor (car (cdr (cdr neighbors))))]>

3. Operational Semantics for NPL

‘ In this section we present an operational semantics for NPL. It is based on a transition re-
lation embedded in a deductive system in the style of Plotkin’s Structured Operational Semantics
[4]. The configurations that we use in the definition of the transition relation are partially ordered
sets with a tree structure. The elementary actions - which are Lisp expressions in NPL - will be
modeled by simple expressions over some data algebra and by assignment statements. The style
of the presentation follows the one in [3], where semantics is studied in a metric framework. The
Operational Semantics will be defined as the fixed point of a suitable contraction, and the semantic
universe will be a complete metric space. We will use a so-called “linear-time” semantic domain.
The elements of such a domain are sets of (possible) “traces”.

We recall that given a set A, a partial orderon A (often denoted by < in analogy with familiar
orderings on numbers) is a reflexive, transitive and antisymmetric relation on A. A linear order on

49

- @

- Ais a partial order on A which satisfies: a>b or b>a, for all a,b €A. A linear ordering > on a set
A is a well ordering, if each non-empty SCA has a least element, that is there is s€S such that 8'>s,
for all s’€S. A tree T=(T,>7) is a partially ordered set with a least element (the root) such that, for
every x€'l', the set of predecessors of x is well-ordered. We only consider trees such that the set of
predecessors of each element in ‘I' is finite. :

Inthe sequel the notation (x€)X introduces the set X with typical element x ranging over
X. For X a set, we denote by P(X) the power set of X, i.e., the collection of all subsets of X.
Pr(X) denotes the collection of all subsets of X which have the property 7. For instance we note
by P i (X) the set of all finite subsets of X. We introduce a number of syntactic and semantic notions.

Definition 3.1. (Expressions and states)

a) Let Alg=<V;op;,0ps,...> be a (data algebra) over some domain V (R might be an example).
Let Var, with elements x,y,... be a class of simple variables. Let moreover Y.=Var->VU{?}. We
extend the definition of the operators op; of Alg, so that an expression which has ’?’ as either of
the arguments always evaluates to *?". The elements o € Y have the intuitive meaning of machine
states. When a variable x has the value ’?" in the state o"(a(x)="7") we say that the variable is
free/unbound. When o(x) €V we say that x is bound. TLroughout the rest of this paper o € 3.
will denote the state in which all the variables are unbound (i.e. op(x)=?,V XEVar). '

. b) Let veVU{?}, c€Y, x€Var. We use the “variant” notation turning the state o into a state
o{v/x} by putting: : :
; el R vifa=sy
a{v/a}(y) = { o(y)if a sy
) We introduce the class (e €) Exp of expressions (over the data algebra Alg). We assume

given the valuation Val: Exp -> (T -> V), and an “interpretation” function B:V -> Boolu{?}
(Bool={TF'}) for the values in VU{?}, such that B(?)=? (in NPL the interpretation function (which
maps Lisp values in BoolU{?}) is B(nil)=F, B(?)=? and for every other (Lisp) value v B(v)=T).
- Definition 3.2. (NPL syntax) :
- a) (Statements). The class (s €) NPL of statements is given by:

si=e [xi=e | X | ! |s1.8 |5 || 57 | [B1+...48n] | <81+...48,>
with XePvar, a set of procedure variables. We will assume that each program uses exactly the
procedure variables in the initial segment A'={Xo,....Xn} of Pvar, for some n > 0.

b) (Guarded statements). The class (g€) NPL? of guarded statements is given by:

gi=e | xi=e | g.s | gillgs | (g1 +8n] | <g1t..tgn>

Note that '!” does not act as a‘guard.

c) (Declarations). The class (De) NPLP of declarations consists of n-tuples D=Xo=gp,., Xn=gn
or <X;=g; >; for short, with X;eXandg; e NPL?, i=0...,n.]

d) (Programs). The class (p €)NPL® of programs consists of pairs p E(Xg'D>, with DeNPLP e

and Xg € X (Xg.plays the role of the process 'Root’).

Definition 3.3. (Configurations)

a) (Identifiers) The class (@, B €)Id, of identifiers is defined by: a:=i | a:, for ieN. We also
. use the class of finite sets of integers: (I€)Pid=P Tin (N A

b) (Parallel Processes) The class (r€) PP of parallel processes is defined by: PP=Py,.(Id x
Pid x NPL). We will call an element pEr (for some rePP) a process cell. : :

c) (Parallel Non-deterministic alternatives) The class (t€)PN of parallel non-deterministic
alternatives is defined by: PN=Psin(Id x Pid X 3= x PP), The elements t€PN will be the con-
figurations of the transition system that defines the operational semantics for NPI,. We will call an

~element n€t (for some t€PN) a non-deterministic alternative,

Definition 3.4. (Consistent configurations) ‘
We say that an element rePP is consistent if the identifier component of each process cell in r

50

T ———— ,___Lr‘___

f

is unique among all the identifiers of the process cells in r. Similarly, we say that an element tePN
is a consistent if the identifier component of each non- -deterministic alternative in t is unique among
all the identifiers of the non-deterministic alternatives i in i.

Definition 3.5. (Partial orderings on configurations)
: On any consistent t€PN and consistent re PP we define the following relations, >, >,:
if p1,p2 € T, P1=< (- (Fii1)1)il 81 > (for k20), and py=< fil2,82 > then py 2, p2 -
: if ny,02 € £, m=< (oe(@zip)sn)tigdy o1,y > (for k>0), and np=< « Jg,62,r2 > then ny > na.
We will sometimes refer to the computing entities of a consistent configuration by only mentioning
their identifier.

We must point out here that both the non-deterministic alternatives in a configuration, and
the process cells in a non-deterministic alternative are grouped in a tree structure in which only the
| leaves are active computing entities.

Definition 3.6. (Derivable configurations)
We note by '’ the componerts of the computing entities that are irrelevant for the exposure (and
uniquely determined by the identifier).
1) An element rePP is derivable if r is consistent and:
l a) p=<0,.,->€r and Vp'er p’2,p.

b) < B:j,—>€r = < fB,],>€r, and jeL

c) < AL,.>er = Vjel < f:j,,,>€r.
If p=< 3,0,8> (s€NPL) then we say that'p is an active process cell.
'2) An element tEPN is derivable if t is consistent, for every < a, l,0,r>€t, r is derivable and:

a) n=<0,,-,->€t and VYn’€t n'>;n.

b) < atjj44>€t = < a,],_>€t and jeL

¢} < el >t = Yjel < aij,4->EL.
If n=< a,,0,r> (o € ¥, r€PP) then we say that n is an active non-deterministic alterndnve

Remark that each derivable computing entity is a partially ordered set (with respect to the

relations defined in 3.5.) with a tree structure. Indeed, by a) the structures have a root and all the

. computing entities have identifiers of the form: a=(...((0:i):;j)..):k. By b) the predecessors of e are

0, 0:1,(0:i):j,... which clearly form a well ordered set. I'he representation that we use for the trees is
suggested in the following picture:

0:1 ; 0:2
0:1:1 0:1:2 0:2:1 0:2:2

 Whenever we introduce a configuration, it will be tacitly assumed that it is derivable. This
fact will be justified by lemma 3.9.
Let now (r €)Q=({A x T)U{e}) - (a€)A is the set of “elementary actions” in NPL: a::=e|
x:=e. The operational semantics for NPL is based on a transition relation € PNxQxNPL”xPN.
We write the elements-of such a transition relation in the notation:

t1—T->ply (1)
We specify the transltlon relation by a (finite) set of azioms (written in the form asin (1)) and rules,
in the form:

ty—7r—>pt’

b1

— (2)
to—7->pt’

T'he transitions of the system can be infered by backward chaining. In order to find the transitions
of tz in (2) we try to infer the transitions of t1, as any transition of t; is also a transition of t,.

- In the sequel we note by B&C, a non-empty set A such that A=BUC' and BNC=0. We (espe-
cially) use this notation as a mechanism for choice. ’:,

Definition 3.7.(Transition relation specification for NPL)
The transition relation for NPL is the smallest relation satisfying:

(End) {<0,0,0,0 >} —-> 1

(Eleml) {< a,0,0,{< B:i0,e>,< A {i el s> er> Yt "“[E!,O’];>[)
{<a,0,0,{< 15>} s>}t A if B(Val(e)(a))=T

(Elem2) {<a,0,0,{< B xi=e> < B {i}&l s>} er> et —[x:’ze,cr]—>p I
{< a,0,0{Val(e)(s)/2} {< B 1s>}eer> poet if B(Val(e)(a))=T

s

{(0‘,1,01,[‘] >}&t —T*>D£ ; !
B(Val(e)(c))=F

(Faill) i
{< aifo{< B,0,e>}&r>,< a{i}l,oy,r > et —r->p §

=)

{<a, 1,0y, >}&t —r->p t
(Fail2) - — if B(Val(e)(a))=F
{< aiifho,{< A0,x:=c>}r> < a,{i}l,o1,r1>}&t —r->p F

{< o, g! 31{< ﬂ, ®1g>}&f>}&t “—T—>D f

(Rec) - if X=geD
{<a,0,0,{< 5, 0, X>}er>} ot —r->p 5
. ¢
s {<a,0,0,{<p:1,0,8>,<3, {1} 82> }&r> &t —r->p §
Seq :
{<a,0,0,< 3, 0,51.89> }er> Y&t —r—>p ©
i {<a,0,0{<3:1,0,8> < 3:2, 085> ,< AAL,2} E>}er> et —r->p
Par _
{< a,0,0,< By Ds1lse>}eer> et —r—>p &
{<a,00,< Bls>&r>}&t —r->p5 7
(Pend)
{<a,0,0{<p:i0,E> < B,{i}&ls>}her>} ot —r—>p £
: {< aLioy 1>}t —r—>p ¢
(Nend) : -

{< aif,0,0 > < o, {i}&l,o1,r> } et —r->p £

52

n times (n—t)times

franl vt T M Bl s sy war 14w {1 e {< B,0,73> >,
< o {1},00,0 >}&:t —pe>pit

- (SegNed) »
‘ {< a,0,0,{<3,0,s1+...+sp]> >}t —7->p €

(n—i)times

f—"\"'-"‘\ s b
where sel(s;,o,a: 1 : ... : 1,5 > for i=1,...,n

Tl

{< e:1,0,0,{< B,0,57>}er>,..., < ain B,0,{< 3, 0,5,> } &r>, :
< a,{l,..n}hagd>}t —7->p f

(ParNed) :
{< a,0,0,{< B,0,<s1+..48,>>}&r>}&t —m->p ¢

where sel(s:,o,a:1,5) for i=1,...,n

{< a,0,0,r>}&t’ —7->p it

(Select)
{< o, 0,0.{< B, 0} a1,02)>}r>} &t —7->p t

where t'=(t - tg)U t;
t0={< a;,l;,0i,1;> | < @i, Li,o0,1> € tand a; > @ an
tl={< a;,l;,00,0> | < a;liyoi,ri> € t and 0; > @) an

o

not(a;>ay)}
not(a >)}

[

The predicate “sel’ is:

sel(l,aq,01,! (o, 001)).

llaaa):

sel(X,a0,21,X).

sel([s1+...4+8a] 0,01, [514...455]).
sel(<sy+...48,>,00,01,<81+...+5,>).

sel(s).s9,00,01,51.57) if sel(sy,a0,01,57) and sel(sy,a0,a1, 57).
sel(si||s2,00,01,57]|52) if sel(s1,c0,01,51) and sel(sy,00,01,52).

Some comments are necessary. We begin with a definition.

Definition 3.8. ‘ .
For t;,t2€PN, the relation t;—t; holds between t; and t;, whenever (for some T €Q,

DeNPLP, and t’€PN) we have:

to —7->p t’

ty —7->p t’

—+* denotes the reflexive and trensitive closure of —.

An element tePN performs an e-transition only if t—"{<0,0,0,0 >}. t—e-> 0 (specified in rule

63

_

———

(End)) is the final transition for every finite trace: § has no further transitions. The rules (Elem1)
and (Elem2) specify the semantics of the elementary actions. Remark that there is no transition if
the expression 'e’ evaluates to an undefined value: '7'. The execution of the elementary actions is
postponed until the necessary information becomes available, In this way we model the dataflow
behavior in NPL. T'he rules (Faill) and (Fail2) model the mechanism of “negation by failure” in
NPL. An expression that is interpreted (by B) as false in the language produces the “failure” of the
non-deterministic alternative in which it appears, The rule (Rec) embodies procedure execution by
body replacement. The rules (Seq) and (Par) create pracesses and puts them in an appropriate order
for further execution. The same thing hapness in the rules (SeqNed) and (ParNed), but in these
cases entire non-deterministic alternatives are involved (entire contexts, consisting of a common state

and a tree of processes are copied in each non-deterininistic alternative). In the rules (SeqNed) and

(ParNed) the (syntactically) corresponding instances (see the definition of the predicate ’sel’) of the
special process select are marked with two (semantic) addresses in the configuration tree as suggested
in the picture below. :

(SeqNed) (ParNed)

[a] s

! HeatER
[a:1 = !a,a:1)] , o [a = Hegai)]
! .

. n times n times

e
[l st 1= Haanl's . i T)]

It is easy to see that the process ! (ev1,02) will be executed by a process in a non-deterministic al-
ternative in the subtree rooted at ay. Moreover (by (SeqNed) and (ParNed)), a2 > a), i.e. ay is a
subtree of &;. By the rule (Select) the special process ! performs the transformation: < ay,l;,04,1; >
— < a,];,00, 0> on all the non-deterministic alternatives in the tree rooted at o, except for those
in the subtree rooted at a-. By rule (Nend) a non-deterministic alternative of the form < ay,li,0,
0> terminates immediately without performing any transition. Thus, given a configuration tree, the
special process '!’ selects one of its subtree. This remark sugests us another (intuitive) interpretation
for the process operators in NPL based on operations on sets (of behaviors). In this interpretation
[+] and <+> stand for set union, and . and || for set intersection. This interpretation is useful for
the understanding of the semantics of the special process '!' (select) that performs a subset selection.
Remark also that rule (Select) keeps unchanged the (tree) structure of the configurations. The rules
(Pend) and (Nend) model “normal” process and non-deterministic choice termination. The constant
E does not belong to the language. 1t is necessary for the creation of a dummy process that we use
only to keep the configurations derivable,

Lemma 3.9. (Well definedness of Definition 3.7.) :

a) {<0:1,0,00,{<0,0,Xg}>, <0,{0:1},00,00 >} (this is the initial configuration of the system) is
a derivable configuration..

b) If t; is derivable and ty—ty then ty is derivable.

c) If t; is derivable and t; —l[a,g]->p ty then t, is derivable.
Proof. Clear by the various axioms and rules of the transition relation specification for NPL.

b4

-

‘'he way we define the operational semantics for NPL is completely inspired by [3]. [3] is a
necessary prerequisite for an accurate understanding of the rest of this paper, that concludes with
Definition 3.11. Let now (f# €)R=Q“UQ" , i.e. R is the set of all finite and infinite sequences over Q.
If -’ is the usual concatenation operator, then with € (see the definition of Q) we compute as follows:
¢ 0=0-e=0. We define a metric on R. Let for § €R, #(n) denote the prefix of # of length n, in
case length(8)>n, and @ otherwise. We put d(B;,92)=2““‘P{”|01(“)=92(“”, with the convention that
p—°=(). Then (R,d) is an ultrametric space.

Definition 3.10. (Semantic Universe)

We define the semantic domaiu for the operational semantics of NPL by (© €)P=P.15sc4(R),
the set of all closed subsets of R (we have that (P,dg) is a complete ultrametric space, where dy is
the Hausdorff metric on P induced by the metric d defined above).

‘ We use the notation 7 - © to denote the prefixing of all the sequences in © by . For example
I T'{TI:TZTS}z{TThTTZTB}- ¢)
Definition 3.11. (Operational Semantics for NPL)
~a) The mapping O:NPLF—P is:
O[[(XQ]D}I'Z OD[[{(UZ].,@,UQ,{(O,W,XU}>,<0,‘{011},O'0,m >}]] i

b) We farmally define Op as the (unique) fixed point of the (higher order) operator ®p:(PN—P)

—(PN—P), which for any FEPN—P is defined by: ~
@p(F)(t)={c | t—e->p P}U{[a,0]-F(t") | t—[a,c]->pt’}.
l‘ 4. Conclusions

“"I'he paper has presénted some basic design considerations and an operational semantics for
NPL in the style of the Structured Operational Semantics of Plotkin. The style of the semantic
description follows the one in [3]. There is however; a distinctive part in our presentation. More
precisely, the configurations of the transition system (that is the basis for the operational semantics)
are partially ordered sets with a tree structure. I'he development of a denotational semantics, and a

/ comparison between the two semantics ask for further research work.

References

| [1] S.G. Akl. Design and Analysis of Parallel Algorithms. Prentice Hall, (1989).
i [2] J.C.M. Baeten, C. Weijland. Process Algebra. Cambridge University Press, (1990).
[8] J.W. De Bakker, J.J.M.M. Rutten, (editors). Ten Years of Concurrency Semantics,
- World Scientific Publishing Co. Pte Ltd. (1992).
L: [4] - G.D. Plotkin. A Structural Approach to Operational Semantics, Report DAIMI FN-19,
Comp. Sci. Dept., Aarhus Univ, (1981).
[5] V. Stoltenberg-Hansen, I. Lindstrom, E.R. Griffor. Mathematical Theory of Domains,
~ Cambridge University Press (1994).
[6] E. Todoran. Dataflow Semantics in NPL, in Proceedings of the Conference on Control and
-Technical Informatics, Timisoara, Romania, (1994).
[7] E. Todoran. Non-determinism and Logic Programming in NPL, ACAM vol 3., no. 2, (1994).

55

