
Metric Denotational Semantics for Parallel Rewriting of Multisets

Gabriel Ciobanu
Institute of Computer Science

Romanian Academy, Iaşi
Email: gabriel@iit.tuiasi.ro

Eneia Nicolae Todoran
Department of Computer Science

Technical University of Cluj-Napoca, Romania
Email: eneia.todoran@cs.utcluj.ro

Abstract—We present a denotational semantics designed with
metric spaces and continuations for an abstract concurrent
language embodying two new features: the semantics of parallel
composition is based on the concept of maximal parallelism,
and computations are specified by means of multiset rewriting
rules. To the best of our knowledge, this is the first paper that
presents a metric denotational semantics for this combination
of features, encountered also in membrane computing.

Keywords-metric semantics; continuations; parallel multiset
rewriting; membrane computing

I. INTRODUCTION

In this paper we present a denotational semantics of an
abstract concurrent language LMR embodying two features:
the semantics of parallel composition is based on the concept
of maximal parallelism, and computations are specified by
means of multiset rewriting rules.

In LMR, all the applicable multiset rewriting rules are
applied in parallel. Parallel computations proceed simulta-
neously, without using interleaving. When several combina-
tions of rules are applicable, the selection of (the combina-
tion of) rules is nondeterministic.

Denotational semantics (initially known as mathematical
semantics or Scott-Strathchey semantics) is an important ap-
proach to formalizing the meanings of languages. The most
important principle in denotational semantics is composition-
ality: the meaning of a compound construct is determined
solely on the basis of of the meanings of its components. In
general, denotational semantics assigns to every construct
of a language a certain formal meaning, which is a value
from a suitably chosen mathematical model. Following [3],
we choose to use the mathematical framework of complete
metric spaces for our semantic description. In this aproach
to semantics one can define mathematical objects and prove
their properties by making use of Banach’s theorem [4]
which states that contracting functions on complete metric
spaces have unique fixed points.

In classic (order-theoretic) domains [9] one typically
works with least fixed points of continuous functions. Com-
pared to classic domains, metric spaces employ additional
information. One can (compare and even) measure the dis-
tance between any two elements of a metric space. In classic
domains the order is partial (not all elements are compara-
ble), and there is no quantitative measure of how much two

elements differ. In semantics, the extra information may be
both a strength and a weakness of metric techniques. Metric
spaces may be more appropriate for models that are naturally
characterized by unique fixed points. On the other hand,
the use of metric structures may make certain optimizations
more difficult to achieve. For example, in some applications
it may be difficult to avoid using hiatons or silent steps to
achieve the contractiveness of the semantic operators [3].

In the design of the denotational semantics of LMR we use
the continuation semantics for concurrency (CSC) technique
[13]. We need the theory developed in [1] for solving
reflexive domain equations in a category of complete metric
spaces as continuations in the CSC approach are elements of
a complete space which is the solution of a domain equation
where the domain variable occurs in the left-hand side of a
function space construction. The denotational semantics of
LMR produces as meaning a pair consisting of a multiset and
a mapping from continuations to collections of sequences of
multisets. For a given LMR statement x, the first component
(the multiset) is a semantic representation of the interaction
capability specified by the statement x, and the second
component describes the behavior of the language construct
in continuation semantics. Our denotational model captures
the meaning of an LMR program as a collection of sequences
of multisets with no silent steps intersperesed.

A. Continuation semantics for concurrency

The distinctive characteristic of the continuation seman-
tics for concurrency (CSC) technique is the modeling of
continuations as application-specific structures of compu-
tations (denotations). Intuitively, a denotational model de-
signed with CSC is a semantic formalization of a process
scheduler; the scheduling policy is given by the structure of
continuations. In the particular case of LMR a continuation
is a multiset of computations that are evaluated in parallel.

The evaluation by maximal parallel rewriting in LMR
allows to express repetitive (including non-terminating)
computations. In this paper it is shown that by using
continuations and classic fixed-point constructions, the con-
cepts of maximal parallelism and multiset rewriting can
be handled denotationally using techniques from metric
semantics. The CSC technique can be used to express tree-
structured parallelism [13]. Based on ongoing research we

believe the CSC technique provides sufficient flexibility for
expressing in a denotational manner the nested structure
and the complex interactions of some biologically-inspired
models of computation.

B. Semantic prototype interpreter

The denotational (mathematical) specification given in
this paper was developed following a prototyping approach.
We used the functional language Haskell [11] as a prototyp-
ing tool (and as a metalanguage) for denotational semantics.

A variant of the language LMR was introduced in our
previous work [7]. In [7] we have presented a compositional
interpreter for LMR - also designed with continuations
and implemented in Haskell - which served as an initial
prototype in the development of the denotational model
given in this paper. Unfortunately, a straight formalization
using metric spaces of the Haskell interpreter given in [7]
leads to a denotational model that produces (unnatural) silent
steps with no operational counterpart, that are only needed
to obtain the contractiveness of the semantic operators.

We had to further adapt the model given in [7] to obtain a
semantic interpreter that may serve as an accurate prototype
for the denotational (mathematical) semantics given in this
paper. This new Haskell prototype is available at [14]. The
reader may (download and) run the interpreter to see the
execution of a couple of LMR programs, including the two
example programs given in section III. The final yield of
our denotational semantics models the intended behavior of
an LMR program as a collection of sequences of multisets
with no silent steps interspersed.

C. Contribution

To the best of our knowledge, this is the first paper that
presents a (metric) denotational semantics for a language in-
corporating the concepts of maximal parallelism and multiset
rewriting. The denotational model is designed with metric
spaces and continuation semantics for concurrency.

II. MATHEMATICAL PRELIMINARIES

The notation (x ∈)X introduces the set X with typical
element x ranging over X . A multiset is a generalization
of a set. Intuitively, a multiset is a collection in which an
element may occur more than once. Within set theory, one
can represent the concept of a multiset of elements of type
X by using functions from X → N, or partial functions
from X → N+, where N+ = N \ {0} (N+ is the set of
natural numbers without 0).

Let (x ∈)X be a countable set. We use the notation:

[X] not.=
⋃
A∈Pfinite(X){m | m ∈ (A→ N+)}

where Pfinite(X) is the power set of all finite subsets of
X . As X is countable, Pfinite(X) is also countable. An
element m ∈ [X] is a (finite) multiset of elements of type
X , a function m : A→ N+, for some finite subset A ⊆ X ,
such that ∀x ∈ A : m(x) > 0. m(x) is called the multiplicity

(number of occurrences) of x in m. [X] is the set of all finite
multisets of elements of type X .

One can represent a multiset m ∈ [X] by enumerating
its elements between parentheses ’[’ and ’]’. Notice that the
elements in a multiset are not ordered; to give yet another
intuition, a multiset is an unordered list of elements. For ex-
ample, [] is the empty multiset, i.e. the function with empty
graph. As another example [x1, x1, x2] = [x1, x2, x1] =
[x2, x1, x1] is the multiset with two occurrences of x1 and
one occurrence of x2, i.e. the function m : {x1, x2} →
N+,m(x1) = 2,m(x2) = 1.

One can define various operations on multisets m1,m2 ∈
[X]. Below, dom(·) is the domain of function ’·’.
• Multiset sum: m1]m2 (] : ([X]× [X])→ [X])

dom(m1]m2) = dom(m1) ∪ dom(m2)
(m1]m2)(x) = m1(x) +m2(x) if x ∈ dom(m1) ∩ dom(m2)

m1(x) if x ∈ dom(m1) \ dom(m2)
m2(x) if x ∈ dom(m2) \ dom(m1)

• Multiset difference: m1 \m2 (\ : ([X]× [X])→ [X])
dom(m1 \m2) = (dom(m1) \ dom(m2)) ∪
{x | x ∈ dom(m1) ∩ dom(m2) ,m1(x) > m2(x)}

(m1 \m2)(x) ={
m1(x) if x ∈ dom(m1) \ dom(m2)
m1(x)−m2(x) if x ∈ dom(m1) ∩ dom(m2)

• Submultiset: m1 ⊆ m2 (⊆: ([X]× [X])→ Bool)
m1 ⊆ m2 =

(dom(m1) ⊆ dom(m2)) ∧
(∀x ∈ dom(m1) : m1(x) ≤ m2(x))

The free commutative monoid on a set X can be taken to
be the set of finite multisets with elements drawn from X .

Let f ∈ X→Y be a function. The function (f |
x 7→ y) : X→Y , is defined (for x, x′∈X, y∈Y) by:
(f | x 7→ y)(x′) = if x′=x then y else f(x′). We also use
the notation (f | x1 7→ y1 | · · · | xn 7→ yn) as an abbrevia-
tion for ((f | x1 7→ y1) · · · | xn 7→ yn). If f : X→X and
f(x) = x we call x a fixed point of f . When this fixed point
is unique (see Theorem 2.1) we write x = fix(f).

The denotational semantics given in this paper is built
within the mathematical framework of 1-bounded complete
metric spaces. We work with the following notions which we
assume known: metric and ultrametric space, isometry (dis-
tance preserving bijection between metric spaces, denoted
by ’∼=’), complete metric space, and compact set. For details
the reader may consult, e.g., the monograph [3].

1) Examples.: The following metrics are frequently used
in semantic applications.

1) If (x, y ∈)X is any nonempty set, one can define
the discrete metric on X (d : X × X → [0, 1]) as
follows: d(x, y) = if x = y then 0 else 1. (X, d) is
a complete ultrametric space.

2) A central idea in metric semantics is to state that
two computations have distance 2−n whenever the
first difference in their behaviors appears after n

computation steps. Let (a ∈)A be a nonempty set,
and let (x, y ∈)A∞ = A∗ ∪ Aω , where A∗(Aω) is
the set of all finite (infinite) sequences over A. One
can define a metric over A∞ as follows: d(x, y) =
2− sup{n | x(n)=y(n) }, where x(n) denotes the prefix of
x of length n, in case length(x) ≥ n, and x otherwise
(by convention, 2−∞ = 0). d is a Baire-like metric.
(A∞, d) is a complete ultrametric space.

We recall that if (X, dX), (Y, dY) are metric spaces, a
function f :X→Y is a contraction if ∃c ∈ R, 0 ≤ c < 1,
∀x1, x2 ∈ X : dY (f(x1), f(x2))≤c · dX(x1, x2). In metric
semantics it is customary to attach a contracting factor of
c = 1

2 to each computation step. When c = 1 the function f
is called non-expansive. In what follows we denote the set
of all nonexpansive functions from X to Y by X

1
→Y . The

following theorem is at the core of metric semantics.
Theorem 2.1 (Banach): Let (X, dX) be a complete met-

ric space. Each contraction f : X→X has a unique fixed
point.

Definition 2.2: Let (X, dX), (Y, dY) be (ultra) metric
spaces. On (x ∈)X , (f∈)X→Y (the function space),
(x, y)∈X×Y (the Cartesian product), u, v∈X + Y (the
disjoint union of X and Y , which can be defined by:
X + Y = ({1} × X) ∪ ({2} × Y)), and U, V ∈P(X) (the
power set of X) one can define the following metrics:

(a) d 1
2 ·X

:X×X→[0, 1] d 1
2 ·X

(x1, x2) = 1
2 · dX(x1, x2)

(b) dX→Y : (X→Y)× (X→Y)→[0, 1]
dX→Y (f1, f2) = supx∈X dY (f1(x), f2(x))

(c) dX×Y : (X × Y)× (X × Y)→[0, 1]
dX×Y ((x1, y1), (x2, y2)) =
max{dX(x1, x2), dY (y1, y2)}

The functions
fst : (X × Y)→ X and snd : (X × Y)→ Y
are defined by

fst(x, y) = x and snd(x, y) = y.
Both fst and snd are nonexpansive mappings.

(d) dX+Y : (X + Y)× (X + Y)→[0, 1]
dX+Y (u, v) = if (u, v ∈ X) then dX(u, v)

else if (u, v∈Y) then dY (u, v) else 1
(e) dH : P(X)× P(X)→[0, 1]:

dH(U, V) = max{supu∈U d(u, V), supv∈V d(v, U)}
where d(u,W)= infw∈W d(u,w) and by convention
sup ∅=0, inf ∅=1 (dH is the Hausdorff metric).

We use the abbreviation Pnco(·) to denote the power set
of non-empty and compact subsets of ’·’. Also, we often
suppress the metrics part in domain definitions, and write,
e.g., 1

2 · X instead of (X, d 1
2 ·X

).
Remark 2.3: Let (X, dX), (Y, dY), d 1

2 ·X
, dX→Y , dX×Y ,

dX+Y and dH be as in Definition 2.2. In case dX , dY are
ultrametrics, so are d 1

2 ·X
, dX→Y , dX×Y , dX+Y and dH .

Moreover, if (X, dX), (Y, dY) are complete then 1
2 · X ,

X→Y , X
1
→Y , X × Y ,X + Y , and Pnco(X) (with the

metrics defined above) are also complete metric spaces [3].

We also use the abbreviation Pfinite(·) to denote the
power sets of finite subsets of ’·’. In general, the construct
Pfinite(·) does not give rise to a complete space. In our
study, we use it to create a structure that we endow with the
discrete metric. Any set endowed with the discrete metric is
a complete ultrametric space.

III. SYNTAX OF LMR AND INFORMAL EXPLANATION

Let (o ∈)O be an alphabet of objects. We assume that O
is a (finite or a) countable set. Let also (w ∈)W be the set
of all finite multisets of O objects. The abstract syntax of
LMR is given below.

Definition 3.1: (Syntax of LMR)
(a) (Statements) x(∈ X) ::= o | x‖x
(b) (Rules) r(∈ R) ::= ε | w ⇒ x2 r
(c) (Programs) (ρ ∈)LMR = R×X

An LMR program is a pair (r, x) consisting of a set of
rewriting rules r(∈ R) and a statement x(∈ X). The rules
in a list r = (w1 ⇒ x1 2 · · · 2wn ⇒ xn) are assumed to
be pairwise distinct. A statement may be either an object or
the parallel composition of two statements.

Intuitively, a rule w ⇒ x is like a ’procedure’ definition,
with ’name’ w and ’body’ x. The objects o1, · · · , on in the
multiset w = [o1 · · · on] are ’fragments’ of the procedure
name. This intuition is based on the Join calculus [8], where
procedure names are also composed of several fragments.
Only when all the ’fragments’ of such a ’procedure name’
are prepared for interaction a rewriting rules is applied,
which replaces the ’name of the procedure’ with its ’body’.
The ’body’ (the right hand side) of a rule is a statement. In
the semantic model that we give in this paper a statement
is executed also as a multiset of computations that are
evaluated in parallel. The basic idea is that a construct
w ⇒ x is the specification of a multiset rewriting rule.

The reader may wonder why we use the semantic notion
of a multiset in the syntax definition of LMR. It would be
easy to make a complete separation between syntax and
semantics. For example, in definition 3.1 we could have
used rules of the form j ⇒ x, where j ::= o | j& j is
the set of ’procedure names’ (this syntax is again inspired
by the Join calculus [8]). But we use multisets (as procedure
names) because the order in which fragments occur in such
a ’procedure name’ is irrelevant.

Let’s describe informally the behavior of LMR programs.
Intuitively, in LMR ’procedure calls’ are applications of
multiset rewriting rules. Moreover, all rewriting rules that
can be used are applied in maximal parallel rewriting steps.
We consider the LMR program given below.

ρ1 = (r1, o1 ‖ o2)
r1 = ([o1]⇒ o2‖o4 2 [o1o2]⇒ o2 2 [o2]⇒ o3)

In general, LMR programs can give rise to nonterminating
computations. ρ1 is just a trivial LMR program, whose
execution terminates in few steps. There are two possible

executions, which are selected in a nondeterministic manner.
Here, we describe the execution of the program in an oper-
ational manner. The execution begins with the evaluation of
the statement o1 ‖ o2 which reduces to the multiset [o1o2].
The behavior is nondeterministic, because two combinations
of rules can be applied: either [o1]⇒ o2‖o4 and [o2]⇒ o3,
or [o1o2]⇒ o2. If the rules [o1]⇒ o2‖o4 and [o2]⇒ o3 are
selected then the multiset [o1o2] is rewritten as the statement
o2 ‖ o3 ‖ o4. Notice that the both rules are applied in parallel
in a single step; according to the intuition given above, two
’procedure calls’ are performed in parallel. The statement
o2 ‖ o3 ‖ o4 reduces to the multiset [o2o3o4]. The multiset
[o2o3o4] reduces to the statement o3 and the irreducible
multiset [o3o4] by using the third rule [o2]⇒ o3; in the end
it is obtained the multiset [o3o3o4], which is irreducible. If
the rule [o1o2] ⇒ o2 is selected then the multiset [o1o2] is
rewritten as o2, which reduces to the multiset [o2]. At this
point the ’procedure call’ [o2] ⇒ o3 is performed (i.e. the
multiset rewriting rule is applied) and in the end o3 reduces
to the multiset [o3].

The execution of the program can be described by the
following two sequences of multiset rewriting steps.

[o1o2]⇒ [o2o3o4]⇒ [o3o3o4]
[o1o2]⇒ [o2]⇒ [o3]

In this paper we present a denotational semantics for LMR
designed with continuations and powerdomains [12], within
the mathematical framework of metric semantics [3]. The
behavior of an LMR program is described by a collection
of execution traces. Each trace is a sequence of multisets,
showing the effect of the maximal parallel rewriting steps.
For example, we model the semantics of ρ1 by the following
collection of two traces:

{ [o1o2][o2o3o4][o3o3o4] , [o1o2][o2][o3] }

IV. CONTINUATION STRUCTURE

In the semantic domain, we use continuation semantics
for concurrency to express behavior. In the CSC approach,
a continuation is an application specific structure of com-
putations (denotations). It will not come as a surprise that
in the particular case of LMR a continuation is a multi-
set of computations that are evaluated in parallel. In the
domain for the denotational semantics we implement this
concept with the aid of a set (α ∈)Id of identifiers. Let
also (π ∈)Π = Pfinite(Id). We assume given a function
ν : Π → Id, such that ν(π) /∈ π, for any π ∈ Π. Given a
set π ∈ Π, the function ν yields a new identifier not in π. A
possible example of such a set Id and function ν could be
obtained by setting Id = N (N is the set of natural numbers)
and ν(π) = 1 +max{α | α ∈ π}.

Let (x ∈)X be a metric domain, i.e. a complete metric
space. We use the following notation:

{|X|} not.= Π× (Id→X)

Let α ∈ Id, (π,$) ∈ {|X|} with π ∈ Π, $ ∈ Id→X.
We define id : {|X|}→Π, id(π,$) = π. We also use the
following abbreviations:

(π,$)(α) not.= $(α) (∈ X)
(π,$) \ π′ not.= (π \ π′, $) (∈ {|X|})
x : (π,$) not.= (π ∪ {α}, ($ | α 7→ x)) (∈ {|X|})

where α = ν(π)

The basic idea is that we treat (π,$) as a ’function’
with finite graph {(α,$(α)) | α ∈ π}, thus ignoring the
behaviour of $ for any α /∈ π (π is the ’domain’ of
(π,$)). We use this mathematical structure to represent
finite bags or multisets or lists of computations. The set
Id is used to distinguish between multiple occurrences of a
computation in such a bag. We endow both sets Id and Π
with discrete metrics; every set with a discrete metric is a
complete ultrametric space. The metric on {|X|} is obtained
by using the composite metrics given in Definition 2.2. The
operators behave as follows. id(π,$) returns the collection
of identifiers for the valid computations contained in the bag
(π,$), (π,$)(α) returns the computation with identifier α,
(π,$) \ π removes the computations with identifiers in π.
x : (π,$) adds the computation x to the bag; a new (fresh)
identifier identifier α(/∈ π) is automatically generated for x.

The reader may wonder why we use two different no-
tations for the same concept. We represent multisets (un-
ordered lists) of objects by using the construct [·] explained
in section II. At the same time we use the construct {| · |} to
represent (ordered) lists of computations, which we use also
to model multisets of computations. [·] is a more abstract
representation of multisets, but works only in classic set
theory. At the same time we use the construct {| · |} to
represent multisets of computations which are elements of
a semantic domain (a complete metric space). It is not
straightforward to generalize the construct [·] to work with
semantic domains rather than plain sets. This may be a
subject of future research.

V. DENOTATIONAL SEMANTICS

We present a continuation-based denotational semantics
for LMR. The domain definitions are given below.

(ψ ∈)D = W × F
(φ ∈)F ∼= C

1
→P

(γ ∈)C = W ×K
(κ ∈)K = {|W × (1

2 · F)|}
(η ∈)E = O → D
(p ∈)P = Pnco(Q)
(q ∈)Q ∼= {ε}+ (W × (1

2 · Q))

D is the domain of denotations. A denotation ∈ D is a
pair consisting of a W multiset and a computation of type
F. We put W = [O]. The construct [·] was explained in

section II. A computation of type F is a (non-expansive)
mapping from continuations to processes of type P. A
process is a (non-empty and compact) collection of Q
execution traces. A trace is a finite or infinite sequence
of multisets, representing a possible execution of an LMR
program. C is the domain of (structured) CSC continuations.
A C continuation is a pair consisting of a W multiset
(representing an irreducible multiset with respect to the
set of rules of an LMR program) and a K multiset of
computations of type (W × (1

2 · F)). E is a domain of
semantic environments - a standard notion in denotational
semantics - mapping O objects to denotations.

In the equations given above the sets O and W (= [O])
are endowed with the discrete metric which is an ultrametric.
The composed metric spaces are built up using the metrics of
Definition 2.2. To conclude that such a system of equations
has a solution, which is unique up to isometry, we rely on the
general method developed in [1]. The space F is defined by a
recursive domain equation. The solution for F is obtained as
a complete ultrametric space. In [1], the family of complete
(ultra)metric spaces is made into a category C. It is proved
that a generalized form of Banach’s fixed point theorem
holds, stating that a functor F : C → C that is contracting (in
a sense) has a unique fixed point (up to isometry). Intuitively,
in the equation above the relevant functor is contracting as
a consequence of the fact that the recursive occurrence of F
is preceded by a 1

2 · -factor.
We define the denotational mapping [[·]] (with respect to

an arbitrary semantic environment η) as follows:

[[·]] : X → E
1
→D

[[o]]η = η(o)
[[x1 ‖ x2]]η =

let (w1, φ1) = [[x1]]η
(w2, φ2) = [[x2]]η

in (w1] w2 , λ(w, κ).(φ1(w, (w2, φ2) : κ)∪
φ2(w, (w1, φ1) : κ)))

] is the multiset sum (see section II) and ∪ is the standard
set union operator. It is easy to check that the multiset
sum operation] : W × W → W (defined in section II)
is nonexpansive. The denotational mapping is designed by
using continuations. The second components of the yield
of a denotational mapping is a computation of type F,
which is a (non-expansive) function from C continuations to
processes of type P. Following the continuation semantics
for concurrency technique [13], the semantics of parallel
composition is modeled as a non-deterministic choice be-
tween two alternative computations: one starting from the
first statement and another starting from the second. The
following Lemma is easily established.

Lemma 5.1: (Well-definedness of [[·]]) For all x ∈ X ,
η ∈ E, (w, κ) ∈W ×K:

(a) [[x]]η ∈ D
(b) (snd([[x]]η))(w, κ) ∈ P
(c) (snd([[x]]η)) ∈ C

1
→P

(d) [[x]] ∈ E
1
→D

Proof: The proofs can proceed by structural induction
on x ∈ X . We present here only the proof for Lemma 5.1(d).
We show that:

d([[x]]η, [[x]]η) ≤ d(η, η)
by structural induction on x ∈ X . We use the symbol ’≡’
to express syntactic identity.

Case x ≡ o.
d([[o]]η, [[o]]η) = d(η(o), η(o)) ≤ d(η, η)

Case x ≡ x1 ‖ x2.
d([[x1 ‖ x2]]η, [[x1 ‖ x2]]η)
= d(let (w1, φ1) = [[x1]]η

(w2, φ2) = [[x2]]η
in (w1] w2 , λ(w, κ).(φ1(w, (w2, φ2) : κ)∪

φ2(w, (w1, φ1) : κ))),
let (w1, φ1) = [[x1]]η

(w2, φ2) = [[x2]]η
in (w1] w2 , λ(w, κ).(φ1(w, (w2, φ2) : κ)∪

φ2(w, (w1, φ1) : κ)))
)(+)

By the induction hypothesis:
d([[x1]]η, [[x1]]η) = d((w1, φ1), (w1, φ1)) ≤ d(η, η)

and
d([[x2]]η, [[x2]]η) = d((w2, φ2), (w2, φ2)) ≤ d(η, η)

d((w1, φ1), (w1, φ1)) = max{d(w1, w1), d(φ1, φ1)},
so d(w1, w1) ≤ d(η, η) and d(φ1, φ1) ≤ d(η, η). Sim-
ilarly, d(w2, w2) ≤ d(η, η) and d(φ2, φ2) ≤ d(η, η).
Therefore

(+) = max{d(w1] w2, w1] w2),
d(λ(w, κ).(φ1(w, (w2, φ2) : κ)∪

φ2(w, (w1, φ1) : κ)),
λ(w, κ).(φ1(w, (w2, φ2) : κ)∪

φ2(w, (w1, φ1) : κ)))}
[] and ∪ are nonexpansive, Definition 2.2(b)]
≤ max{d(w1, w1), d(w2, w2),

sup(w,κ)∈W×K

(max{d(φ1(w, (w2, φ2) : κ),
φ1(w, (w2, φ2) : κ))(++),

d(φ2(w, (w1, φ1) : κ),
φ2(w, (w1, φ1) : κ))(+++)})}

We already know that d(w1, w1) ≤ d(η, η) and
d(w2, w2) ≤ d(η, η). To obtain the desired result it
suffices to show that (++) ≤ d(η, η) for any (w, κ) ∈
W ×K. The proof that (+++) ≤ d(η, η) is symmetric.
Indeed:

d(φ1(w, (w2, φ2) : κ), φ1(w, (w2, φ2) : κ))
≤max{

d(φ1(w, (w2, φ2) : κ), φ1(w, (w2, φ2) : κ)),

d(φ1(w, (w2, φ2) : κ), φ1(w, (w2, φ2) : κ))
}

We now that d(φ1, φ1) ≤ d(η, η) and d(φ2, φ2) ≤
d(η, η) therefore:

d(φ1(w, (w2, φ2) : κ), φ1(w, (w2, φ2) : κ))
≤ d(φ1, φ1) ≤ d(η, η)

and
d(φ1(w, (w2, φ2) : κ), φ1(w, (w2, φ2) : κ))
[Lemma 5.1(c)]
≤ d((w, (w2, φ2) : κ), (w, (w2, φ2) : κ))
= d((w2, φ2), (w2, φ2)) ≤ d(η, η)

In 5.3 we define a semantic environment that captures the
rewriting semantics of the rules of an LMR program. The
rewriting rules are applied in a maximally parallel manner.
Execution terminates ({ε} is produced as observable result)
when no rule is applicable. Let {||} = (∅, λα.([], λγ.{ε})) ∈
K. It is convenient to use the following notations:

{|(w1, φ1), (w2, φ2) · · · , (wn, φn)|} not.=
(w1, φ1) : ((w2, φ2) : · · · ((wn, φn) : {||}) · · ·)

{|(wi, φi) | i ∈ I = {i1, · · · , im}|}
not.=

{|(wi1 , φi1), · · · , (wim , φim)|}
The semantic environment is defined as fixed point of an
appropriate higher-order mapping.

Φ : R→ E→ E
Φ(r)(η)(o) =

([o],
λ(w, κ) .

let w′ = [o]] w] (
⊎
α∈id(κ) fst(κ(α)))

% = appRules(r, w′)
in w′ · (if % = {(ε, w)} then {ε}

else
⋃

(r,w′′)∈% exe(r, w′′, η)))
where

exe(w1 ⇒ x1 2 · · · 2wn ⇒ xn, w
′′, η) =

let I = {1, · · · , n}
in
⋃
i∈I(snd([[xi]]η))(w′′, {|[[xj]]η | j ∈ I \ {i}|})

We use ’·’ as a prefixing operator over (Q) sequences: w·q =
(w, q), for q ∈ Q. Also, we use the notation

w · p = {w · q | q ∈ p}
for any p ∈ P. Notice that d(w · p1, w · p2) = 1

2 · d(p1, p2)
and d(w1 · p1, w2 · p2) = 1 when w1 6= w2, because W is
endowed with the discrete metric.

The mapping appRules(r, w′) computes a (finite) set of
pairs, where each pair consists of a multiset of rewriting
rules applicable to w′ and an irreducible (sub)multiset (of
w′). It may be defined as follows:

appRules : (R×W)→ Pfinite(R×W)
appRules(r, w) =

if aux(r, w) = ∅
then {(ε, w)}
else {(w ⇒ x2 r′, w′′)

| ((w, x), w′) ∈ aux(r, w)
(r′, w′′) ∈ appRules(r, w′)}

where
aux : (R×W)→ Pfinite((W ×X)×W)
aux(ε, w) = ∅
aux(w′ ⇒ x′2 r, w) =

if (w′ ⊆ w)
then {((w′, x′), w \ w′)} ∪ aux(r, w)
else aux(r, w)

The definitions of mappings appRules(r, w) and aux(r, w)
can be justified by an easy induction (on the number of
elements in the w multiset, respectively by induction on the
length of list r).

The definition of Φ is justified by the following Lemma.
Lemma 5.2: For all r ∈ R, η ∈ E and o ∈ O:

(a) Φ(r)(η)(o) ∈ D

(b) Φ(r) ∈ E
1
2→E

Proof:
(a) It is obvious that fst(Φ(r)(η)(o)) ∈ W . In addition

one has to prove that snd(Φ(r)(η)(o)) is a nonexpan-
sive mapping (∈ C

1
→P). We leave this as an exercise

to the reader.
(b) We show that for any r ∈ R, η, η ∈ E, o ∈ O

d(Φ(r)(η)(o),Φ(r)(η)(o)) ≤ 1
2 · d(η, η)

We compute as follows:
d(Φ(r)(η)(o),Φ(r)(η)(o))
= d(([o],

λ(w, κ). let w =
⊎
α∈id(κ) fst(κ(α))

w′ = [o]] w] w
% = appRules(r, w′)

in w′ · (if % = {(ε, w′′′)} then {ε}
else

⋃
(r,w′′)∈ % exe(r, w′′, η))),

([o],
λ(w, κ). let w =

⊎
α∈id(κ) fst(κ(α))

w′ = [o]] w] w
% = appRules(r, w′)

in w′ · (if % = {(ε, w′′′)} then {ε}
else

⋃
(r,w′′)∈ % exe(r, w′′, η)))

)
= sup(w,k)∈W×K

d(let w =
⊎
α∈id(κ) fst(κ(α))

w′ = [o]] w] w
% = appRules(r, w′)

in w′ · (if % = {(ε, w′′′)} then {ε}
else

⋃
(r,w′′)∈ % exe(r, w′′, η))),

let w =
⊎
α∈id(κ) fst(κ(α))

w′ = [o]] w] w
% = appRules(r, w′)

in w′ · (if % = {(ε, w′′′)} then {ε}
else

⋃
(r,w′′)∈ % exe(r, w′′, η)))

)(∗∗∗∗)

Clearly, for any (w, κ) ∈ W ×K such that % =
{(ε, w′′′)} (for some w′′′ ∈W) (∗∗∗∗) = 0. When for
(w, κ) ∈W ×K, % 6= {(ε, w′′′)} (for any w′′′ ∈W)
we have (% is as in (∗∗∗∗), i.e. % is a function of o, w
and κ):

(∗∗∗∗) =
1
2 · sup(w,κ)∈W×K d(

⋃
(r,w′′)∈% exe(r, w′′, η),⋃
(r,w′′)∈% exe(r, w′′, η))

[∪ is nonexpansive]
= 1

2 · sup(w,κ)∈W×K

max{d(exe(r, w′′, η), exe(r, w′′, η))
| (r, w′′) ∈ %}

To obtain the desired result it suffices to show that:
d(exe(r, w′′, η), exe(r, w′′, η)) ≤ d(η, η)

for any (r, w′′) ∈ %. Now assume that I = {1, · · · , n}
and r = w1 ⇒ x1 2 · · · 2wn ⇒ xn. Then

d(exe(r, w′′, η), exe(r, w′′, η))
= d(

⋃
i∈I(snd([[xi]]η))(w′′, {|[[xj]]η

| j ∈ I \ {i}|}),⋃
i∈I(snd([[xi]]η))(w′′, {|[[xj]]η

| j ∈ I \ {i}|}))
= maxi∈I

d((snd([[xi]]η))(w′′, {|[[xj]]η | j ∈ I \ {i}|}),
(snd([[xi]]η))(w′′, {|[[xj]]η | j ∈ I \ {i}|}))

Again, it suffices to show that
d((snd([[xi]]η))(w′′, {|[[xj]]η | j ∈ I \ {i}|}),

(snd([[xi]]η))(w′′, {|[[xj]]η | j ∈ I \ {i}|}))
≤ d(η, η)

for any i ∈ I .
d((snd([[xi]]η))(w′′, {|[[xj]]η | j ∈ I \ {i}|}),

(snd([[xi]]η))(w′′, {|[[xj]]η | j ∈ I \ {i}|}))
≤ max{

d((snd([[xi]]η))(w′′, {|[[xj]]η | j ∈ I \ {i}|}),
(snd([[xi]]η))(w′′, {|[[xj]]η | j ∈ I \ {i}|})),

d((snd([[xi]]η))(w′′, {|[[xj]]η | j ∈ I \ {i}|}),
(snd([[xi]]η))(w′′, {|[[xj]]η | j ∈ I \ {i}|}))
}

Finally,
d((snd([[xi]]η))(w′′, {|[[xj]]η | j ∈ I \ {i}|}),

(snd([[xi]]η))(w′′, {|[[xj]]η | j ∈ I \ {i}|}))
[Lemma 5.1(c)]
≤ d({|[[xj]]η | j ∈ I \ {i}|}, {|[[xj]]η | j ∈ I \ {i}|})
= 1

2 · maxj∈I\{i} d([[xj]]η, [[xj]]η)
[Lemma 5.1(d)]
≤ 1

2 · d(η, η)
and

d((snd([[xi]]η))(w′′, {|[[xj]]η | j ∈ I \ {i}|}),
(snd([[xi]]η))(w′′, {|[[xj]]η | j ∈ I \ {i}|}))
≤ d(snd([[xi]]η), snd([[xi]]η))
≤ d([[xi]]η, [[xi]]η) [Lemma 5.1(d)]
≤ d(η, η)

As for any r ∈ R, Φ(r) is a contraction, we can define:
η0 = fix(Φ(r)). The mapping D[[·]] can be used to compute
the collection of sequences of multisets representing the
execution of an LMR program.

Definition 5.3: We define D[[·]] : LMR → P by
D[[(r, x)]] = let η0 = fix(Φ(r))

γ0 = ([], {||})
in (snd([[x]]η0))(γ0)

Remark 5.4: Let mset : X → W be given by:
mset(o) = [o], mset(x1 ‖ x2) = mset(x1)]mset(x2). It
is easy to check that fst([[x]]η0) = mset(x), for all x ∈ X .

Examples 5.5:
(a) Let r2 = [o1] ⇒ o2 2 [o1] ⇒ o3, ρ2 = (r2, o1 ‖ o2).

Let also η0 = fix(Φ(r2)). We compute:
D[[ρ2]] = D[[(r2, o1 ‖ o2)]]
= (snd([[o1 ‖ o2]]η0))([], {||})
= (snd([[o1]]η0))([], {|[[o2]]η0|})∪

(snd([[o2]]η0))([], {|[[o1]]η0|})
= (snd(η0(o1)))([], {|[[o2]]η0|})(∗)∪

(snd(η0(o2)))([], {|[[o1]]η0|})(∗∗)

We compute (∗). Let w′ = [o1]] []] (fst([[o2]]η0)) =
[o1, o2], by Remark 5.4. As appRules(r2, w′) =
{([o1]⇒ o2, [o2]), ([o1]⇒ o3, [o2])}, we obtain:

(∗) = [o1, o2] · ((snd([[o2]]η0))([o2], {||})∪
(snd([[o3]]η0))([o2], {||}))

Next, we compute:
(snd([[o3]]η0))([o2], {||})(∗∗∗) =
(snd(η0(o3)))([o2], {||})

Let w′′ = [o3]] [o2]] [] = [o2, o3]. As
appRules(r2, [o2, o3]) = {(ε, [o2, o3])} we obtain:

(∗∗∗) = [o2, o3] · {ε} = {[o2, o3]}
Similarly

(snd([[o2]]η0))([o2], {||}) = {[o2, o2]}
Therefore,

(∗) = {[o1, o2][o2, o2], [o1, o2][o2, o3]}
It turns out that (∗∗) =(∗). Therefore:
D[[([o1]⇒ o2 2 [o1]⇒ o3, o1 ‖ o2)]] =
{[o1, o2][o2, o2], [o1, o2][o2, o3]}

(b) Program ρ1 given in section III is a bit too complex
to give here the details of how the (mathematical)
denotational mapping computes its meaning. In order
to test more complex LMR programs one can use
the semantic interpreter available at [14], which is a
Haskell implementation of the denotational mapping.
Running (the Haskell implementation of) ρ1 with the
semantic interpreter one obtains the following result:1

[[["o1","o2"],["o2","o4","o3"],["o3","o4","o3"]]
[["o1","o2"],["o2"],["o3"]]]

1In the implementation available at [14] sets and multisets are mod-
eled as Haskell lists. For example, the list ["o3","o4","o3"] is the
Haskell implementation of the multiset [o3, o3, o4] (= [[o3, o4, o3] =
[o4, o3, o3]).

VI. CONCLUDING REMARKS AND FUTURE RESEARCH

We presented a denotational semantics for a simple ab-
stract concurrent language LMR. LMR combines two im-
portant features encountered also in membrane computing
[10], namely the parallel composition operator is based on
the concept of maximal parallelism and computations are
specified by means of multiset rewriting rules.

The biologically-inspired model of computation called
membrane systems (or P systems) is represented by complex
hierarchical structures with a flow of materials and infor-
mation which supports their functioning. Essentially, the
membrane systems are composed of various compartments
with different tasks, all of them working simultaneously to
accomplish a more general task. However it is possible to
construct a “flat” membrane system by replacing the objects
in membranes of a hierarchical structure with pairs of objects
and labels of membranes. Each rule of the hierarchical
system is translated into sets of rules in the ”flat” system,
and an evolution step of the hierarchical system is translated
into a single evolution step of the flat corresponding system.
Informally, a membrane system consists of a hierarchy of
nested membranes, placed inside a distinguishable mem-
brane called skin. Each membrane can contain multisets of
objects, evolution rules and other membranes. The structure
of a membrane system is represented by a tree structure
(with the skin as its root), or equivalently, by a string of
correctly matching parentheses, placed in a unique pair of
matching parentheses; each pair of matching parentheses
corresponds to a membrane. The membranes are labelled
in a one-to-one manner. A membrane without any other
membrane inside is said to be elementary. Each membrane
contains a finite set of rules having the form u⇒ v, where
u and v are usually nonempty multisets of objects. The rules
are applied in a maximally parallel manner. This model has
the same computational power as a Turing machine, even
a rather small number of objects, rules and membranes are
involved [10], [6].

The model presented in this paper is both parallel and
nondeterministic. All rules that can be applied are applied
in parallel, and nondeterminism occurs when several combi-
nations of rules are applicable. The denotational semantics
is designed within the mathematical framework of metric se-
mantics [3] by using continuation semantics for concurrency
(CSC) [13].

In the future we intend to continue the investigation
of the behaviour of membrane systems by using methods
in the tradition of programming languages semantics. In
previous work we have defined the operational semantics
for membrane systems [2], [5], and proved certain semantic
properties. We have also considered some alternative modes
of evolution, based on either minimal parallelism, maximiz-
ing the quantities of consumed resources or maximizing the
number of applied rules.

We plan to further develop the semantic model given in
this paper in order to obtain a metric denotational seman-
tics of the full model of membrane computing [10]. We
believe the CSC technique provides sufficient flexibility for
expressing in a denotational manner the nested structure and
the complex interactions of a membrane computing system.
Next, we will study the formal relationship between the
denotational and the operational semantics of membrane
systems also by using techniques from metric semantics.

REFERENCES

[1] P. America, J.J.M.M. Rutten, ”Solving Reflexive Domain
Equations in a Category of Complete Metric Spaces”, J. of
Comput. System Sci., vol. 39, pp. 343–375, 1989.

[2] O. Andrei, G. Ciobanu and D. Lucanu, ”A Rewriting Logic
Framework for Operational Semantics of Membrane Systems,”
Theoretical Computer Science, vol. 373, pp. 163–181, 2007.

[3] J.W. de Bakker, E.P. de Vink. Control Flow Semantics, MIT
Press, 1996.

[4] S. Banach. Sur les Operation dans les Ensembles Abstrait
et leurs Application aux Equation Integrales, Fundamenta
Mathematicae, vol. 3, pp. 133-181, 1922.

[5] G. Ciobanu. Semantics of P Systems, Handbook of Membrane
Computing, Oxford University Press, pp. 413-436, 2009.

[6] G. Ciobanu, Gh. Păun, M.J. Pérez-Jiménez. Applications of
Membrane Computing, Natural Computing Series, Springer,
2006.

[7] G. Ciobanu, E.N. Todoran. Continuation Semantics for Con-
currency Applied to Parallel Rewriting of Multisets. In Pro-
ceedings SYNASC 2010, pp. 387–395, IEEE Computer Press,
2010.

[8] C. Fournet, G. Gonthier. The Join Calculus: a Language for
Distributed Mobile Programming, Lecture Notes in Computer
Science vol. 25, pp. 68-332, 2002.

[9] G. Giertz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mis-
love, D.S. Scott. Continuos lattices and domains. Cambridge
University Press, 2003.

[10] Gh. Păun, Membrane Computing. An Introduction. Springer,
2002.

[11] S. Peyton Jones, J. Hughes (Eds.). Report on the
Programming Language Haskell 98: a Non-Strict
Purely Functional Language, 1999. Available at
http://www.haskell.org/.

[12] G.D. Plotkin. A Powerdomain Construction, SIAM Journal
of Computing, vol.5, pp. 452–487, 1976.

[13] E.N. Todoran. Metric Semantics for Synchronous and Asyn-
chronous Communication: a Continuation-Based Approach,
Electronic Notes in Theoretical Computer Science, vol.28, pp.
119–146, Elsevier, 2000.

[14] ftp://ftp.utcluj.ro/pub/users/gc/synasc2011.

