
Continuation Semantics for
Dynamic Hierarchical Systems

Gabriel Ciobanu
Institute of Computer Science

Romanian Academy, Iaşi
Email: gabriel@iit.tuiasi.ro

Eneia Nicolae Todoran
Department of Computer Science

Technical University of Cluj-Napoca, Romania
Email: eneia.todoran@cs.utcluj.ro

Abstract—We present a denotational semantics designed
with metric spaces and continuations for a simple concurrent
language LMB embodying a representative set of features en-
countered in membrane computing. LMB is a multiset rewriting
language. In LMB multisets of objects are encapsulated in
hierarchical structures of compartments, or regions, delimited
by membranes. The behaviour of each membrane is specified
by means of multiset rewriting rules. The semantics of parallel
composition in LMB is based on the concept of maximal
parallelism. Computations proceed according to the multiset
rewriting rules, nondeterministically choosing the rules and
the objects. Membranes can be grouped into classes based on
the rewriting rules that they encapsulate; LMB also provides
a primitive for membrane creation, or instantiation. In this
sense, LMB is similar to an object oriented language. We use
continuations and a powerdomain construction to represent
nondeterministic behavior. An element of a powerdomain is
a collection of sequences of observables representing dynamic
membrane structures. Our continuation semantics describes in
a compositional manner the behavior of an LMB program as
a dynamic hierarchical system. As far as we know, this is the
first paper that presents a metric denotational semantics for
the combination of features embodied in LMB .

Keywords-metric semantics; continuations; parallel multiset
rewriting; dynamic hierarchical system; membrane computing

I. INTRODUCTION

Membrane computing [11] is a research area within
computer science, which investigates computing patterns
inspired by the functioning of living cells. In this paper we
investigate the domain by using methods in the tradition
of programming language semantics. We consider a sim-
ple concurrent language LMB in which computations are
specified by means of multiset rewriting rules distributed
into membrane-delimited compartments, or regions. The
language is partly inspired by object oriented programming.
In LMB there is a notion of membrane declaration, which
introduces a type of membranes. Membranes are grouped
into classes based on the rewriting rules that they encapsu-
late. Also, LMB provides a primitive for membrane creation,
or instantiation. Each membrane instance is given a unique
label. For illustration purposes, in Section I-A we present a
small LMB example program.

By using metric spaces and continuations we design a
denotational semantics for LMB . We use continuations and
a powerdomain construction to represent nondeterministic
behavior. An element of a powerdomain is a collection of
sequences of observables representing dynamic membrane
structures. We employ a fixed point construction to express
the semantics of multiset rewriting computations. Our con-
tinuation semantics describes in a compositional manner the
behavior of an LMB program as a dynamic hierarchical
system.

A membrane system, also called a P-system [11], com-
prises a hierarchical structure of nested regions, delimited
by membranes. The outermost membrane is called the skin.
Each membrane can contain a multiset of objects, evolution
rules, and zero or more nested membranes. The behavior of
each membrane is specified by means of multiset rewriting
rules. The computing model is parallel and nondeterministic.
The behavior of objects in a membrane system can be
described based on the concept of maximal parallelism. All
applicable rewriting rules are applied in parallel, without
using interleaving. Also, when several combinations of rules
are applicable the selection of (the combination of) rules is
nondeterministic.

The membrane computing paradigm involves a whole
class of models, and there is a large panoply of options
in devising a membrane system. There are various features
that we ignore in this paper. For example, trans-membrane
communication is not included in LMB . However, we are
confident that most (even all) membrane computing concepts
that are investigated in the literature can be given a deno-
tational semantics by using the techniques that we employ
in this paper. Continuations for concurrency [15], [7] and
classic continuation passing style represent essential tools
in this semantic investigation, because they can be used to
describe in a purely compositional manner the behavior of
dynamic hierarchical systems.

Denotational semantics (initially known as mathematical
semantics or Scott-Strathchey semantics) is an important
approach to formalizing the meanings of languages. The
most important principle in denotational semantics is com-
positionality: the meaning of a compound construction is

determined solely on the basis of of the meanings of its
components. In general, denotational semantics assigns to
every construction of a language a certain formal meaning,
which is a value from a suitably chosen mathematical model.
Following [3], we choose to use the mathematical framework
of complete metric spaces for our semantic description.
In this aproach to semantics one can define mathematical
objects and prove their properties by making use of Banach’s
theorem which states that contracting functions on complete
metric spaces have unique fixed points.

A. The language LMB
The aim of this paper is to offer a semantic investigation

in the area of membrane computing. For this purpose we
use methods and tools consecrated in the tradition of pro-
gramming language semantics. Hence, we find convenient
to use terms which are usually employed in the context
of programming languages. In particular, the elements of
LMB are syntactic constructions that we call statements, or
programs. Also, when we describe the behavior of an LMB
program we use the term execution.

An LMB program comprises a list of membrane declara-
tions, which is similar to a list of class declarations in an
object oriented language. The list of membrane declarations
is followed by an LMB statement, which is executed in the
skin membrane. We illustrate the concepts embodied in LMB
by a brief example.

membrane M0 {
[o1, o3]⇒ o2 ‖ o4;
[o2]⇒ o5 ‖ new(M1, o1 ‖ o5);
[o2]⇒ o4;
[o5]⇒ o4

};
membrane M1 {

[o1]⇒ o2;
[o2]⇒ o3

};
o1 ‖ o3

This program comprises two membrane declarations, and
the statement o1 ‖ o3. Computations are specified by lists
of rewriting rules included in the membrane declarations.

A rewriting rule is a construction of the form w ⇒ x,
where w is a multiset, and x is an LMB statement. If we
compare LMB with an object oriented (OO) language we can
make the following analogy. An LMB rewriting rule w ⇒ x
corresponds to an OO method declaration. The multiset w is
the name of the ’method’, and the statement x is the body of
the ’method’. A membrane declaration membrane M {r}
corresponds to an OO class declaration, i.e., it introduces a
new type of membranes with name M . LMB also provides a
primitive for membrane creation new(M,x), which creates
a new instance of a membrane of the type M to execute
statement x.

We assume given a (countably infinite) alphabet of sym-
bols with typical elements o, oi. To continue the analogy
with object oriented programming, we must state clearly that
an object is not an instance of a membrane. In LMB an object
is just an elementary statement, a symbol taken from some
given alphabet. An LMB statement may be either an object,
or a membrane creation statement of the form new(M,x),
where M is a membrane name and x is a statement, or a
parallel composition of two LMB statements of the form
x1 ‖ x2. Semantically, the parallel composition of two LMB
constructions is also handled by using the concept of a
multiset.1 Whence, a construction w ⇒ x specifies a multiset
rewriting rule. We use the notation [o1, . . . , on] to describe
the multiset containing the objects o1, . . . , on.

In the example given above, an instance of the membrane
named M0 is created which executes the statement o1 ‖
o3; this membrane instance becomes the skin membrane of
the system. By convention, the skin is always an instance
of the first membrane in the membrane declarations list (in
this case M0). The structure of a membrane system can be
represented by a tree structure, or equivalently, by a string
of correctly matching parentheses. We represent the contents
of a membrane between parentheses ’〈’ and ’〉’. The system
behavior is described below by two sequences of membrane
configurations, representing the possible executions of the
system. We use the symbol ’V’ to describe each complex
computation step. Each such step may involve applications
of several rewriting rules in all nested membranes.

〈M0, l0 | [o1, o3]; 〉
V 〈M0, l0 | [o2, o4]; 〉
V 〈M0, l0 | [o4, o4]; 〉

The first execution sequence corresponds to the application
of two rewriting rules inside the skin membrane, namely:
[o1, o3] ⇒ o2 ‖ o4, followed by [o2] ⇒ o4. At this point
a halting configuration is reached, where no further rule
can be applied. The execution model is both parallel and
non-deterministic. In this particular case two alternative
execution traces are possible; the second one is given below.

〈M0, l0 | [o1, o3]; 〉
V 〈M0, l0 | [o2, o4]; 〉
V 〈M0, l0 | [o5, o4]; 〈M1, l1 | [o1, o5]; 〉〉
V 〈M0, l0 | [o4, o4]; 〈M1, l1 | [o2, o5]; 〉〉
V 〈M0, l0 | [o4, o4]; 〈M1, l1 | [o3, o5]; 〉〉

Note that, in general, all rules (in all nested membranes) are
applied in a maximally parallel manner. This phenomenon
occurs in this second execution sequence. The first two steps
of the second execution sequence correspond to the applica-
tion of the following rules in the skin membrane: [o1, o3]⇒
o2 ‖ o4, followed by [o2] ⇒ o5 ‖ new(M1, o1 ‖ o5). The
second rule creates an inner membrane of the type M1, with
label l1. In the next step two rules are applied in parallel:

1A multiset is a generalization of a set, a collection in which an element
may occur more than once; a formal definition is provided in Section II.

rule [o5] ⇒ o4 in membrane l0 (of the type M0) and rule
[o1]⇒ o2 in membrane l1 (of the type M1). Rule [o2]⇒ o3
is applied in the last step in the inner membrane l1.

A membrane may contain several nested membranes of
the same type, but each membrane has a unique label. Labels
are generated automatically at execution time.

B. Semantic prototype interpreter

The denotational (mathematical) specification given in
this paper was developed following a prototyping approach.
We used the functional language Haskell [13] as a prototyp-
ing tool (and as a metalanguage) for denotational semantics.
An implementation of the semantic interpreter described in
this paper is available from [17]. The interpreter contains a
couple of LMB test programs, including the LMB program
presented in Section I-A.

C. Contribution

In previous work we have defined the operational se-
mantics for membrane systems [2], [4], and proved certain
semantic properties. Also, in [5], [6] we applied continu-
ation semantics for concurrency [15], [7] in designing a
denotational semantics for a multiset rewriting concurrent
language. The language described in [5], [6] is a strict subset
of the language LMB that we investigate in this paper.

To the best of our knowledge, this is the first paper
that presents a denotational semantics for a language where
computations are specified by rules for parallel rewriting of
multisets, and rules are distributed to membrane-delimited
regions. These are core concepts of the membrane com-
puting paradigm [11]. The dynamic structure of membrane
delimited compartments was not investigated in our previous
work [5], [6]. Our denotational model is designed with
metric spaces and continuations. We show that continua-
tions for concurrency can be used to describe in a purely
compositional manner the behavior of dynamic hierarchical
systems. We think that continuations can also be used
to describe compositionally (all) other concepts that are
studied in the membrane computing literature, including
parallel communication and parallel dissolving [12], [4]. To
model parallel dissolving one can use a variant of failure
continuations as in [16].

II. MATHEMATICAL PRELIMINARIES

The notation (x ∈)X introduces the set X with typical
element x ranging over X . A multiset is a generalization of a
set. Intuitively, a multiset is a collection in which an element
may occur more than once. One can represent the concept
of a multiset of elements of type X by using functions from
X → N, or partial functions from X → N+, where N+ =
N \ {0} (N+ is the set of natural numbers without 0).

Let (x ∈)X be a countable set. We use the notation:

[X]
not.
=
⋃
A∈Pfinite(X){m | m ∈ (A→ N+)}

where Pfinite(X) is the power set of all finite subsets of
X . As X is countable, Pfinite(X) is also countable. An
element m ∈ [X] is a (finite) multiset of elements of type
X , a function m : A→ N+, for some finite subset A ⊆ X ,
such that ∀x ∈ A : m(x) > 0. m(x) is called the multiplicity
(number of occurrences) of x in m. [X] is the set of all finite
multisets of elements of type X .

One can represent a multiset m ∈ [X] by enumerating its
elements between parentheses ’[’ and ’]’. The elements in
a multiset are not ordered; to give yet another intuition, a
multiset is an unordered list of elements. For example, [] is
the empty multiset, i.e. the function with empty graph. As
another example [x1, x1, x2] = [x1, x2, x1] = [x2, x1, x1] is
the multiset with two occurences of x1 and one occurence
of x2, i.e. the function m : {x1, x2} → N+,m(x1) =
2,m(x2) = 1.

One can define various operations on multisets m1,m2 ∈
[X]. Below, dom(·) is the domain of function ’·’.
• Multiset sum: m1]m2 (] : ([X]× [X])→ [X])

dom(m1]m2) = dom(m1) ∪ dom(m2)
(m1]m2)(x) = m1(x) +m2(x) if x ∈ dom(m1) ∩ dom(m2)

m1(x) if x ∈ dom(m1) \ dom(m2)
m2(x) if x ∈ dom(m2) \ dom(m1)

• Multiset difference: m1 \m2 (\ : ([X]× [X])→ [X])
dom(m1 \m2) = (dom(m1) \ dom(m2))∪

{x | x ∈ dom(m1) ∩ dom(m2) ,
m1(x) > m2(x)}

(m1 \m2)(x) = m1(x) if x ∈ dom(m1) \ dom(m2)
m1(x)−m2(x) if x ∈ dom(m1) ∩ dom(m2)

m1(x) > m2(x)
• Submultiset: m1 ⊆ m2 (⊆: ([X]× [X])→ Bool)

m1 ⊆ m2 =
(dom(m1) ⊆ dom(m2)) ∧
(∀x ∈ dom(m1) : m1(x) ≤ m2(x))

We write m1 = m2 to express that the multisets m1 and
m2 are equal. m1 = m2 iff dom(m1) = dom(m2) and
∀x ∈ dom(m1) : m1(x) = m2(x).

If f : X→X and f(x) = x we call x a fixed point of f .
When this fixed point is unique (see Theorem 2.1) we write
x = fix(f).

The denotational semantics given in this paper is built
within the mathematical framework of 1-bounded complete
metric spaces. We work with the following notions which we
assume known: metric and ultrametric space, isometry (dis-
tance preserving bijection between metric spaces, denoted
by ’∼=’), complete metric space, and compact set. For details
the reader may consult, e.g., the monograph [3].

We recall that if (X, dX), (Y, dY) are metric spaces, a
function f :X→Y is a contraction if ∃c ∈ R, 0 ≤ c < 1,
∀x1, x2 ∈ X : dY (f(x1), f(x2))≤c · dX(x1, x2). In metric
semantics it is customary to attach a contracting factor of
c = 1

2 to each computation step. When c = 1 the function f

is called non-expansive. In what follows we denote the set
of all nonexpansive functions from X to Y by X

1

→Y . The
following theorem is at the core of metric semantics.

Theorem 2.1 (Banach): Let (X, dX) be a complete met-
ric space. Each contraction f : X→X has a unique fixed
point.

If (x, y ∈)X is any nonempty set, one can define the
discrete metric on X (d : X × X → [0, 1]) as follows:
d(x, y) = 0 if x = y, and d(x, y) = 1 otherwise. (X, d)
is a complete ultrametric space. Other composed metric
spaces can be built up using the composite metrics given
in Definition 2.2.

Definition 2.2: Let (X, dX), (Y, dY) be (ultra) metric
spaces. On (x ∈)X , (f∈)X→Y (the function space),
(x, y)∈X×Y (the Cartesian product), u, v∈X + Y (the
disjoint union of X and Y , which can be defined by:
X + Y = ({1} × X) ∪ ({2} × Y)), and U, V ∈P(X) (the
power set of X) one can define the following metrics:

(a) d 1
2 ·X

:X ×X→[0, 1]

d 1
2 ·X

(x1, x2) = 1
2 · dX(x1, x2)

(b) dX→Y : (X→Y)× (X→Y)→[0, 1]
dX→Y (f1, f2) = supx∈X dY (f1(x), f2(x))

(c) dX×Y : (X × Y)× (X × Y)→[0, 1]
dX×Y ((x1, y1), (x2, y2)) =
max{dX(x1, x2), dY (y1, y2)}

(d) dX+Y : (X + Y)× (X + Y)→[0, 1]
dX+Y (u, v) =

if (u, v ∈ X) then dX(u, v)
else if (u, v∈Y) then dY (u, v) else 1

(e) dH : P(X)× P(X)→[0, 1]:
dH(U, V) = max{supu∈U d(u, V), supv∈V d(v, U)}

where d(u,W)= infw∈W d(u,w) and by convention
sup ∅=0, inf ∅=1 (dH is the Hausdorff metric).

We use the abbreviation Pnco(·) to denote the power set
of non-empty and compact subsets of ’·’. Also, we often
suppress the metrics part in domain definitions, and write,
e.g., 1

2 · X instead of (X, d 1
2 ·X

).
Remark 2.3: Let (X, dX), (Y, dY), d 1

2 ·X
, dX→Y , dX×Y ,

dX+Y and dH be as in Definition 2.2. In case dX , dY are
ultrametrics, so are d 1

2 ·X
, dX→Y , dX×Y , dX+Y and dH .

Moreover, if (X, dX), (Y, dY) are complete then 1
2 · X ,

X→Y , X
1

→Y , X × Y ,X + Y , and Pnco(X) (with the
metrics defined above) are also complete metric spaces [3].

We also use the abbreviation Pfinite(·) to denote the
power sets of finite subsets of ’·’. In general, the construction
Pfinite(·) does not give rise to a complete space. When
necessary, we use it to define structures that we endow with
the discrete metric. Any set endowed with the discrete metric
is a complete ultrametric space.

III. SYNTAX OF LMR AND INFORMAL EXPLANATION

Let (o ∈)O be an alphabet of objects. We assume that O
is a (finite or a) countable set. Let (w ∈)W = [O] be the

set of all finite multisets of O objects; the construction [·]
was defined in Section II. Let also (M ∈)Mname be a set
of membrane names. The abstract syntax of LMB is given
in Definition 3.1.

Definition 3.1: (Syntax of LMB)
(a) (Statements) x(∈ X) ::= o | new(M,x) | x‖x
(b) (Rules) r(∈ R) ::= rε | w ⇒ x; r
(c) (Membrane declarations)

d(∈MD) ::= membrane M {r}
D(∈MDs) ::= d | d;D

(d) (Programs) ρ(∈ LMB) ::= D;x

An LMB statement may be either an object, or a mem-
brane creation statement of the form new(M,x), where M
is a membrane name and x is a statement, or a parallel
composition of two LMB statements of the form x1 ‖ x2.

An LMB program D;x consists of a list D ∈ MDs of
membrane declarations and a statement x ∈ X . A membrane
declaration introduces a type of membranes, which can
be instantiated. In LMB we speak of membrane types,
and membrane instances. Each membrane instance has a
(unique) label; the set of labels and the set of membranes
will be defined in the next Section. The execution of the
program D;x starts with the creation of an instance of
the first membrane type in the declarations list D, which
becomes a skin membrane; the skin membrane starts the
execution of the program by executing the statement x.

A membrane declaration membrane M {r} indicates the
name M ∈Mname of the membrane (type) and a (possibly
empty) list of rules r ∈ R, which specify the behavior of
objects inside any instance of a membrane of the type M . A
rule w ⇒ x is composed of two elements: a multiset w ∈W
and a statement x ∈ X . An LMB statement is a concurrent
composition of objects, which behave as a multiset. In this
interpretation w ⇒ x is a multiset rewriting rule, specifying
that w is rewritten as x.

Intuitively, a rule w ⇒ x is like a ’procedure’ definition,
with ’name’ w and ’body’ x. The objects o1, · · · , on in the
multiset w = [o1 · · · on] are ’fragments’ of the procedure
name. This intuition is based on the Join calculus [9], where
procedure names are also composed of several fragments.
Only when all the ’fragments’ of such a ’procedure name’
are prepared for interaction a rewriting rules is applied,
which replaces the ’name of the procedure’ with its ’body’.
The ’body’ (the right hand side) of a rule is a statement.

If we compare LMB with an object oriented language a
rule w ⇒ x corresponds to an OO method declaration, the
multiset w is the name of the ’method’, and the statement
x is the body of the ’method’. A membrane declaration
membrane M {r} corresponds to an OO class declaration,
and a statement new(M,x) a creates a new instance of a
membrane of the type M to execute statement x.

Remarks 3.2:
(a) If we consider the analogy with object oriented pro-

gramming, we must state clearly that in LMB an object

o ∈ O is not an instance of a membrane. In LMB an
object is just an elementary statement, a symbol taken
from the alphabet O.

(b) The reader may wonder why we use the semantic
notion of a multiset in the syntax definition of LMB . It
would be easy to make a complete separation between
syntax and semantics. For example, in definition 3.1
we could use rules of the form j ⇒ x, where
j ::= o | j& j is the set of ’procedure names’ or
’method names’ (this syntax is also inspired by the
Join calculus [9]). But we use multisets (as ’method
names’) because the order in which fragments occur
in such a ’method name’ is irrelevant.

In Section I-A we have presented a simple LMB program,
and we described its beaviour informally, using an ad-hoc
notation. In the next Section we present a denotational se-
mantics for LMB designed with continuations and a power-
domain construction [14]. The behavior of an LMB program
is described by a collection of execution traces. Each trace is
a sequence of membrane configurations, showing the effect
of the parallel rewriting steps. Our continuation semantics
describes in a compositional manner the behavior of an LMB
program as a dynamic hierarchical system. For example, we
model the semantics of the program presented in Section
I-A by a collection of two execution traces; see Example
4.7.

IV. DENOTATIONAL SEMANTICS

In this section we introduce the metric domains that
we need to express the behaviour of LMB programs and
we design a continuation-based denotational semantics for
LMB . The final yield of the denotational semantics is an
element of a linear time domain [3].

A. Final semantic domain

We assume given a (countably) infinite set (l ∈)L of mem-
brane labels, together with a function ν : Pfinite(L) → L,
such that ν(I) /∈ I , for any I ∈ Pfinite(L). We obtain a
possible example of such a set L and function ν by putting
L = N, and ν(I) = 1 +max{n | n ∈ I}.

Following [2] we define the set (µ ∈)Mb of membranes
inductively.
• If M ∈Mname is a membrane name, l ∈ L is a label

and w ∈ W = [O] is a multiset of O objects then
〈M, l | w; 〉 ∈ Mb; 〈M, l | w; 〉 is called a (simple or)
elementary membrane.

• If M ∈ Mname is a membrane name, l ∈ L is
a label, w ∈ W is a multiset of O objects, and
µ1, . . . , µn ∈ Mb then 〈M, l | w;µ1, . . . , µn〉 ∈ Mb;
〈M, l | w;µ1, . . . , µn〉 is called a composite membrane.

Remark 4.1: The inner membranes µ1, . . . , µn ∈ Mb of
a membrane 〈M, l | w;µ1, . . . , µn〉 are not ordered. The
membranes of the same level can float around [12]. We
could represent this behavior by using the concept of (a

multiset or) a set of sibling membranes indexed with unique
labels. Alternatively, we could represent a membrane by
its structure together with the multisets of objects and the
rules associated with the membrane structure [12], [4]. In
this paper we do not consider in detail these alternative
options, which can all be easily handled within the basic
set theory. We consider a particular representation of the
set of membranes Mb. In the present metric setting Mb
is essentially a set endowed with the discrete metric (see
below).

We design a continuation-based denotational semantics
for LMB . The domain of continuations is introduced in
Section IV-B. The final yield of our denotational semantics
is an element of the linear time domain P.

(p ∈)P = Pnco(Q)

(q ∈)Q ∼= {ε}+ (Mb× 1

2
· Q)

In this domain equation the set Mb is endowed with the
discrete metric, which is an ultrametric. The composed
metric spaces are built up using the composite metrics given
in Definition 2.2. As explained in [3], the above domain
equation has a unique solution (up to isomorphism). The
solution is a complete ultrametric space.

An element of the type P is a non-empty and compact
collection of Q sequences. Q is a domain of finite and
infinite sequences over Mb. ε models the empty sequence.
Instead of (µ1, (µ2, . . . (µn, ε) . . .)) and (µ1, (µ2, . . .)), we
write µ1µ2 . . . µn and µ1µ2 . . ., respectively.

Also, we use the following notations: µ · q = (µ, q) and
µ · p = {µ · q | q ∈ p}, for any µ ∈Mb, q ∈ Q, p ∈ P.

B. Semantics of LMB statements

We define the domain D of computations (denotations)
and the domain F of continuations by:

(ϕ ∈)D = Mb→ F
1

→P

(f ∈)F = Mb→ P

In the above domain definitions the set Mb (of membranes)
is endowed with the discrete metric.

Nondeterministic behaviour in LMB is defined by using
the operator + : (P×P)→ P

p1 + p2 = {q | q ∈ p1 ∪ p2, q 6= ε} ∪ {ε | ε ∈ p1 ∩ p2}

It is easy to check that + is well-defined, non-expansive,
associative and commutative [3].

Definition 4.2: (Semantics of parallel composition)

(a) We define ‖: (D×D)
1

→D as follows:

ϕ1 ‖ ϕ2 = λµ . λf. ((ϕ1 bϕ2)(µ)(f)+(ϕ2 bϕ1)(µ)(f))

where b : (D×D)
1

→D is given by

(ϕ1 bϕ2) = λµ . λf. ϕ1(µ)(λµ1.ϕ2(µ1)(f))

(b) For any n ∈ N we define ‖n (·) : Dn → D
(Dn = D× · · · ×D - n times, n ≥ 1) by:
‖1 (ϕ)=ϕ
‖n+1 (ϕ1, . . . , ϕn+1)=ϕ1 ‖ (‖n (ϕ2, . . . , ϕn+1))

For easier readability, instead of ‖n (ϕ1, . . . , ϕn) we
write ϕ1 ‖ · · · ‖ ϕn, for any n ∈ N.

The semantics of parallel composition is modeled in con-
tinuation semantics as a non-deterministic choice between
two alternative computations: one starting from the first
statement and another starting from the second [7], [16].

One can check that the operator for parallel composition
‖ is well-defined and non-expansive in the both arguments.
Also, the definition of ϕ1 ‖ ϕ2 is symmetric and +
is commutative, hence ‖ is commutative. However, other
properties, e.g., the associativity of ‖, are more difficult to
establish. A formal proof of the fact that ‖ is associative
could employ the technique introduced in [7]. In [7], [8]
each (nontrivial) semantic property is proved by identifying
a corresponding invariant of the computation, as a rela-
tion between continuation structures. The identication of
semantic properties from the invariants of the computation is
common in bisimulation semantics [10]. In [7], [8] this idea
is adapted to a denotational framework, by using arguments
of the kind ε ≤ 1

2 · ε⇒ ε = 0, which are standard in metric
semantics [3]. ε is the distance between two behaviorally
equivalent continuations, before and after a computation
step, respectively. The effect of each computation step is
given by the 1

2 · -contracting factor. Hence ε = 0 and the
desired property follows.

In order to define the semantics of LMB statements we
need some auxiliary operators on membranes. Each mem-
brane determines a compartment, also called a region [11].
Membranes produce a demarcation between regions. For
each membrane there is a unique associated region. Because
of this one-to-one correspondence we sometimes use the
term membrane instead of region. Also, the membranes
(and the corresponding regions) are labelled in a one-to-
one manner with labels from the given set L. We define
operators to generate new (fresh) membrane labels, to add
objects to membranes, and to create new nested membranes.

The operator newL : Mb → L takes as parameter a
membrane µ and generates a new label that is not contained
in µ. It uses the mapping ν introduced in Section IV-A and
an auxiliary mapping labels : Mb → Pfinite(L), which
computes the finite set of labels contained in a membrane.

newL(µ) = ν(labels(µ))
labels(〈M, l | w; 〉) = {l}
labels(〈M, l | w;µ1, . . . , µn〉) =
{l} ∪ labels(µ1) ∪ · · · ∪ labels(µn)

Given a membrane µ, add(o, l′, µ) adds the object o to the
multiset stored in the membrane region indicated by label
l′. newM (Mnew, lnew, l

′, µ) creates a new membrane region
with label lnew of the type Mnew as an inner membrane (a

child) of the membrane region with label l′. The operators
are defined by induction on the structure of membranes,
considering the fact that membranes are labeled in a one-
to-one manner with labels from the given set L. We only
provide the definitions for elementary membranes, leaving
the case of composite membranes to the reader. The Haskell
implementation of these operators is available from [17].
In the definition of add,] is the multiset sum operation,
presented in Section II.

add : (O × L×Mb)→Mb
add(o, l′, 〈M, l | w; 〉) ={

〈M, l | [o]] w; 〉 if l′ = l
〈M, l | w; 〉 if l′ 6= l

newM : (Mname× L× L×Mb)→Mb
newM (Mnew, lnew, l

′, 〈M, l | w; 〉) ={
〈M, l | w; 〈Mnew, lnew | []; 〉〉 if l′ = l
〈M, l | w; 〉 if l′ 6= l

Definition 4.3: (Denotational semantics [[·]] of LMB state-
ments) We define [[·]] : X → L→ D by:

[[o]](l) = λµ . λf . f(add(o, l, µ))
[[new(M ′, x)]](l) = λµ . λf . [[x]](l′)(newM (M ′, l′, l, µ))(f)

where l′ = newL(µ)
[[x1 ‖ x2]](l) = [[x1]](l) ‖ [[x2]](l)

The denotational mapping [[x]](l) takes as parameter a
statement x ∈ X and a label l ∈ L. The parameter l
is the membrane label where the statement x is (to be)
executed. If x = o, where o ∈ O is an object, then o is
simply added to the membrane µ in the region with label
l and the control is transmitted to the continuation (f). If
x = new(M ′, x), for some M ′ ∈ Mname and x ∈ X ,
then a new membrane region with label l′ is created, as an
inner element of the membrane with label l. The statement
x is executed in this newly created membrane region. The
semantics of parallel composition is defined based on the
semantic operator ‖ introduced in Definition 4.2. We assume
that function application binds stronger than the operator
for parallel composition ‖. The expression [[x1]](l) ‖ [[x2]](l)
reads as follows: ([[x1]](l)) ‖ ([[xn]](l)).

C. Some auxiliary operators

The mapping appRules(r, w′) computes a (finite) set of
pairs, where each pair consists of a multiset of rewriting
rules applicable to w′ and an irreducible (sub)multiset (of
w′). It may be defined as follows:

appRules : (R×W)→ Pfinite(R×W)
appRules(r, w) =

if aux(r, w) = ∅ then {(rε, w)}
else {(w ⇒ x2 r′, w′′)

| ((w, x), w′) ∈ aux(r, w)
(r′, w′′) ∈ appRules(r, w′)}

aux : (R×W)→ Pfinite((W ×X)×W)
aux(rε, w) = ∅

aux(w′ ⇒ x′2 r, w) =
if (w′ ⊆ w) then {((w′, x′), w \ w′)} ∪ aux(r, w)
else aux(r, w)

The definitions of mappings appRules(r, w) and aux(r, w)
can be justified by an easy induction (on the number of
elements in the multiset w, respectively by induction on
the length of list r). In the definition of aux, ⊆ and \ are
the operations for multiset inclusion and multiset difference,
respectively, introduced in Section II.

Let also rules : (MDs×Mname)→ R be given by:

rules(membrane M ′ {r},M) =

{
r if M ′ = M
rε if M ′ 6= M

rules(membrane M ′ {r};D,M) ={
r if M ′ = M
rules(D,M) if M ′ 6= M

We define a scheduler mapping sched : (Mb×MDs)→
Pfinite(D×Mb). The function sched(µ,D) takes as argu-
ments a membrane µ and a list of membrane declarations
D. It yields a finite set of pairs, each pair consisting of a
computation (denotation) and a corresponding membrane.
sched(µ,D) is defined by induction on the structure of
membrane µ. It uses appRules to compute the applicable
rules for each membrane region. In Section IV-D we use the
mapping sched in a fixed point construction, which we need
to define the semantics of parallel rewriting of multisets in
a compositional manner.
sched(〈M, l | w; 〉, D) =
{([[x1]](l) ‖ · · · ‖ [[xn]](l) ‖ [[o1]](l) ‖ · · · ‖ [[om]](l),
〈M, l | []; 〉)
| (r′, w′) ∈ appRules(rules(D,M), w),
r′ = w1 ⇒ x1; . . . ;wn ⇒ xn; rε,
w′ = [o1, . . . , om]}

sched(〈M, l | w;µ1, . . . , µk〉, D) =
{([[x1]](l) ‖ · · · ‖ [[xn]](l) ‖ [[o1]](l) ‖ · · · ‖ [[om]](l) ‖
ϕ1 ‖ · · · ‖ ϕk, 〈M, l | [];µ′1, . . . , µ′k〉)
| (r′, w′) ∈ appRules(rules(D,M), w),
r′ = w1 ⇒ x1; . . . ;wn ⇒ xn; rε,
w′ = [o1, . . . , om],
(ϕ1, µ

′
1) ∈ sched(µ1, D), . . . ,

(ϕk, µ
′
k) ∈ sched(µk, D)}

We also define a mapping haltMb : (Mb ×MDs) →
Bool, which (given list of membrane declarations) decides
whether the membrane system has reached a halting con-
figuration. haltMb is defined with the aid of an auxiliary
mapping haltM : (Mname×MDs×W)→ Bool, based
on the mapping appRules.

haltMb(〈M, l | w; 〉, D) = haltM(M,D,w)
haltMb(〈M, l | w;µ1, . . . , µn〉, D) =
haltM(M,D,w)∧
haltMb(µ1, D) ∧ · · · ∧ haltMb(µn, D)

haltM(M,D,w) =
(appRules(rules(D,M), w) = {(rε, w)})

D. Semantics of LMB programs

In order to define the semantics of an LMB program ρ
we must take into account the information about membrane
declarations and the rewriting rules contained in ρ. We
define the semantics of LMB programs based on a fixed
point construction, which is needed to handle the semantics
parallel rewriting of multisets in a compositional manner.

Definition 4.4: Let Ψ : MDs→ F→ F be given by:
Ψ(D)(f)(µ) =
µ · { if (haltMb(µ,D)) then {ε}

else + {ϕ(µ′)(f) | (ϕ, µ′) ∈ sched(µ,D)}
For any D ∈MDs, we define the initial continuation f0 ∈
F, by f0 = fix(Ψ(D)).
Definition 4.4 is justified by Lemma 4.5, which states that
Ψ(D) is 1

2 contractive, for any D ∈MDs. Hence, according
to Banach’s Theorem 2.1, Ψ(D) has a unique fixed point,
for any D ∈MDs.

Lemma 4.5: Ψ(D) ∈ F
1
2→F, for any D ∈MDs, i.e.

d(Ψ(D)(f1)(µ),Ψ(D)(f2)(µ)) ≤ 1
2 · d(f1, f2)

for any D ∈MDs, µ ∈Mb, f1, f2 ∈ F.
Proof: If haltMb(µ,D) = true then
d(Ψ(D)(f1)(µ),Ψ(D)(f2)(µ)) = d({ε}, {ε}) = 0

Otherwise, if haltMb(µ,D) = false, we have
d(Ψ(D)(f1)(µ),Ψ(D)(f2)(µ))
= 1

2 · d(+{ϕ(µ′)(f1) | (ϕ, µ′) ∈ sched(µ,D)}
+{ϕ(µ′)(f2) | (ϕ, µ′) ∈ sched(µ,D)})

[+ is non-expansive]
≤ 1

2 · max{d(ϕ(µ′)(f1), ϕ(µ′)(f2))
| (ϕ, µ′) ∈ sched(µ,D)} [ϕ ∈ D]

≤ 1
2 · d(f1, f2)

Definition 4.6: (Semantics of LMB programs) We define
D[[·]] : LMB → P by:

D[[D;x]] = [[x]](l0)(µ0)(f0)

where D = membrane M0 {r0}; · · · ; membrane Mm {rm},
f0 = fix(Ψ(D)), l0 = ν(∅) and µ0 = 〈M0, l0 | []; 〉.

The function D[[ρ]] defines the semantics of an LMB
program ρ = D;x, where D ∈ MDs and x ∈ X . The
execution of an LMB program begins with the creation
of the skin membrane, which is an instance of the first
membrane type in the declaration list D. The label of the
skin membrane is ν(∅). The statement x is executed in
the skin membrane. The initial continuation f0 contains the
information about the multiset rewriting rules that define
the behavior of each membrane compartment, based on the
membrane declarations. Intuitively, a rewriting rule is treated
as a procedure or method declaration, and the execution of
a rewriting rule is treated as a procedure or method call. In
the spirit of denotational semantics, f0 ∈ F is defined (see
Definition 4.4) as fixed point of an appropriate higher-order
mapping Ψ.

Example 4.7: We consider again the LMB program
ρ = D;x given in Section I-A, where D is:

membrane M0 {
[o1, o3]⇒ o2 ‖ o4;
[o2]⇒ o5 ‖ new(M1, o1 ‖ o5);
[o2]⇒ o4;
[o5]⇒ o4

};
membrane M1 {

[o1]⇒ o2;
[o2]⇒ o3

}
and x = o1 ‖ o3.

Let µ1, µ2, µ3, µ4, µ5, µ6 ∈Mb

µ1 = 〈M0, l0 | [o1, o3]; 〉
µ2 = 〈M0, l0 | [o2, o4]; 〉
µ3 = 〈M0, l0 | [o4, o4]; 〉
µ4 = 〈M0, l0 | [o5, o4]; 〈M1, l1 | [o1, o5]; 〉〉
µ5 = 〈M0, l0 | [o4, o4]; 〈M1, l1 | [o2, o5]; 〉〉
µ6 = 〈M0, l0 | [o4, o4]; 〈M1, l1 | [o3, o5]; 〉〉

One can check that D[[ρ]] = {µ1µ2µ3, µ1µ2µ4µ5µ6}. The
calculations involved are somewhat laborious. In order to
compute automatically the meaning of LMB programs one
can use the semantic interpreter available from [17], which
is a Haskell implementation of the denotational mapping
given in this paper. A couple of LMB example programs
(including the LMB example discussed above) are provided
and can be tested by using the semantic interpreter available
from [17].

V. CONCLUDING REMARKS AND FUTURE RESEARCH

We present a denotational semantics for a simple abstract
concurrent language LMB , embodying a representative set of
features encountered in membrane computing [11]. In LMB
computations are specified by means of multiset rewriting
rules distributed into membrane-delimited compartments.
The parallel composition operator is interpreted based on
the concept of maximal parallelism and computations are
specified by means of multiset rewriting rules. In the seman-
tic design we employ continuations for concurrency and the
mathematical methodology of metric semantics [3].

In the near future we plan to further develop the semantic
model given in this paper in order to obtain metric deno-
tational descriptions for the various computing phenomena
encountered in the full model of membrane computing [11].

REFERENCES

[1] P. America, J.J.M.M. Rutten, ”Solving Reflexive Domain
Equations in a Category of Complete Metric Spaces,” J. of
Comput. System Sci., vol. 39, pp. 343–375, 1989.

[2] O. Andrei, G. Ciobanu and D. Lucanu, ”A Rewriting Logic
Framework for Operational Semantics of Membrane Systems,”
Theoretical Computer Science, vol. 373, pp. 163–181, 2007.

[3] J.W. de Bakker, E.P. de Vink, Control Flow Semantics, MIT
Press, 1996.

[4] G. Ciobanu, ”Semantics of P Systems,” Handbook of
Membrane Computing, Oxford University Press, pp. 413-436,
2009.

[5] G. Ciobanu, E.N. Todoran, ”Metric Denotational Semantics
for Parallel Rewriting of Multisets,” Proceedings of 13th
International Symposium on Symbolic and Numeric Algorithms
for Scientific Computing (SYNASC 2011), pp. 276–283, IEEE
Computer Press, 2011.

[6] G. Ciobanu, E.N. Todoran, ”Relating Two Metric Semantics
for Parallel Rewriting of Multisets,” Proceedings of 14th
International Symposium on Symbolic and Numeric Algorithms
for Scientific Computing (SYNASC 2012), pp. 273–280, IEEE
Computer Press, 2012.

[7] G. Ciobanu, E.N. Todoran, ”Continuation Semantics for
Asynchronous Concurrency,” Fundamenta Informaticae, vol.
131(3-4), pp. 373–388, 2014.

[8] G. Ciobanu, E.N. Todoran, ”Continuation Semantics for Con-
currency with Multiple Channels Communication,” Proceed-
ings of 17th International Conference on Formal Engineering
Methods (ICFEM 2015), Lecture Notes in Computer Science,
vol. 9407, pp. 400–416, Springer, 2015.

[9] C. Fournet, G. Gonthier, ”The Join Calculus: a Language for
Distributed Mobile Programming,” Lecture Notes in Computer
Science, vol. 25, pp. 68–96, 2002.

[10] R. Milner, Communicationg and mobile systems: the π
calculus, Cambridge University Press, 1999.

[11] Gh. Păun, Membrane Computing. An Introduction. Springer,
2002.

[12] Gh. Păun, ”Introduction to Membrane Computing,” G.
Ciobanu, M.J. Perez-Jimenez, Gh. Paun, Editors, Applications
of Membrane Computing, Springer, 2006.

[13] S. Peyton Jones, J. Hughes (Eds.), Report on the
Programming Language Haskell 98: a Non-Strict
Purely Functional Language, 1999. Available at
http://www.haskell.org/.

[14] G.D. Plotkin, ”A Powerdomain Construction,” SIAM Journal
of Computing, vol.5, pp. 452–487, 1976.

[15] E.N. Todoran, ”Metric semantics for synchronous and
asynchronous communication: a continuation-based approach,”
Electronic Notes in Theoretical Computer Science, vol.28, pp.
119–146, Elsevier, 2000.

[16] E.N. Todoran, N. Papaspyrou, ”Continuations for parallel
logic programming,” Proceedings of the 2nd ACM SIGPLAN
Conference on Principles and Practice of Declarative Pro-
gramming (PPDP 2000), pp. 257–267, 2000.

[17] http://ftp.utcluj.ro/pub/users/gc/synasc2015

