

Computer programming and programming languages

1 / 9

Theory for Lab-work 2 onwards

A brief history of Fortran

The first version of this programming language was created by a team from IBM under the leadership of
John W. Backus, being released in 1957 under the name "IBM Mathematical Formula Translating System"
(in short: FORTRAN, from the combination of FORmula TRANslation parts), this being the first high-level
programming language (close to natural language). In 1958 IBM published a revised version, called
FORTRAN II, which provided support for procedural programming by introducing specifications for
subroutines and functions. Because of its popularity, IBM decided to remove the features that limited the
use of the language on IBM systems, and in 1964 released a variant called FORTRAN IV that could run on
any computer. The FORTRAN 66 version appeared in 1966, as a result of the standardization carried out by
the American Standards Association (ASA, the precursor of ANSI), being the first programming language
defined by a standard. The “ANSI FORTRAN” committee (known as "X3J3") began developing a new version
in 1969, and as a result, FORTRAN 77 appeared, the most widely used version of the language.
The next version was aspected to be released in the 1980s (Fortran 8X), but it was released only in 1991
introducing the free format and became known as Fortran 90, opening a path for HPF (High Performance
Fortran). In 1997, the standard for Fortran 95, the first object-oriented version, was published.
This document mainly refers to this version (Fortran 95) of the language, presenting only notions for
beginners and aiming to provide the necessary information for the practical work of Civil Engineering
students during "Computer programming and programming languages".
Compared to C++ (an object-oriented language that supports polymorphism and inheritance), Fortran has
introduced some similar features (through modules and derived types), but has no automatic inheritance.
On the other hand, Fortran is easier to learn and use for scientific computing than C++, having native
support for complex values, multidimensional arrays, etc., which C++ lacks. Fortran 2003 represents a
significant turn in object-oriented features, also ensuring interoperability with C/C++, and in 2010 Fortran
2008 was released with new provisions (sub-modules, co-arrays, the contiguous attribute, etc.) and having
implemented parallel processing with distributed memory. After Fortran 2018, which was a revision of the
previous version with additional support for parallel processing, Fortran 2023 is the latest standardized
version with even more features.
Here is a quoted fragment (from the web-page accesible at https://fortran-lang.org/) for those interested
in the use of this language: ”Fortran is mostly used in domains that adopted computation early–science and
engineering. These include numerical weather and ocean prediction, computational fluid dynamics, applied
math, statistics, and finance. Fortran is the dominant language of High Performance Computing and is used
to benchmark the fastest supercomputers in the world.”
A significant part of the following is based on the adapted contents of the Romanian book "Inițiere în
programare și în limbajul Fortran" (F.-Zs. Gobesz, C. Bacoțiu, UTPres Publisher, Cluj-Napoca, 2003, ISBN
973-662-005-0).

Source file structure

A source file can contain one or more program units (these will be presented later), or fragments of them
(in the form of sections). The source file can be created with any text editor, provided that it results in a
character content (ASCII file).
The character set usable in the Fortran language contains the alphanumeric characters (the 26 upper and
lower case letters of the English alphabet: a–z, A–Z, and the digits: 0–9), plus 4 symbols for arithmetic
operations (+, -, *, /) and a set of special characters (blank or space, horizontal tab, comma, period,
apostrophe, open and closed parentheses, equal sign, dollar sign, ampersand). The Fortran 90 language
extended this list with the following allowed special characters: _, !, :, ;, ", %, <, >, ?, ^ and #. The
comma has the role of separating elements within a list, while the dot is the decimal separator.

Symbolic names are used to name variables, different program parts, and to identify functions. If the
conventions of older versions of the language allowed the use of only 8 characters (consisting of

https://fortran-lang.org/

Computer programming and programming languages

2 / 9

alphanumeric characters and the special character $), Fortran 95 allows the use of 31 characters (consisting
of alphanumeric characters, the special character $ and the special character _). The first character must
always be a letter. Program unit and section names are considered global and must be unique throughout
the source, and entity names must be unique within the same program unit. The Fortran language is not
case sensitive for symbolic names.

The editing mode of the source file can be in fixed form (Fortran 77), tabular form or free form (the latter
being introduced by Fortran 90 and allowed by following versions of the language).

The fixed form respects the editing structure based on punched cards and old template sheets (like the one
in the image), considering 80 characters as the maximum length of a line (record), having the following
structure (below the image of the template sheet, the relevant column numbers and the content allowed
for each field are marked):

The labels are integers of at most 5 digits, with a reference role within the program section, marking the
instructions before which they appear (in the respective line). Their use is optional and subject to some
restrictions (only lines with executable statements can be labeled and labels cannot exceed the range of

columns 1–5). For a label to be valid, its value must be in the range 1–99999. If a line should be marked as

a comment, the letter C or the character * (respectively ! starting with Fortran 90) should be written in the
first column. In this case the structure and content of the line will be ignored during compilation. Some
compilers also allow the use of the character D to mark the current line in the first column as a comment,
thus allowing the optional compilation (interpretation) of these lines in case of debugging the source.
In Fortran 77 only one statement was written on a line, but since Fortran 90 it is allowed to write more than
one statement on a line, in this case the character ; is used as separator between them.
If the statement is longer than the space between columns 7 and 72, it can be continued on the following
lines by marking in column 6 (with a number or one of the symbols: +, -, *) that the fragments are the
continuation of the previous ones. From Fortran 90 onwards, any character other than the digit 0 can be
used for this continuation mark. The number of continuation lines allowed also depends on the compiler
chosen. Fortran 77 allowed 99 fragments (1 initial line and 98 continuation lines), but the Fortran 90
standard allows only 19 fragments in fixed form and 39 fragments in free form. Fortran 95 allows up to 90
continuation lines in fixed form and only 31 continuation lines in free form.
Some compilers allow the line interpretation range to be extended up to column 80 (even 132, starting
with Fortran 90), but as standard any content in the range of columns 72-80 is considered comment by
default and as such is ignored by the compiler.

The free form does not have the restrictions illustrated above, the statements are not limited to any
particular fitting on the line columns, each line can contain up to 132 characters. Instead, spaces are
significant, and in some cases act as separators (for names, constants, keywords, or as spacers between
labels and instructions). This form has only been introduced since Fortran 90 (but Fortran 90 also supports
fixed and tabular formats). In the free form, the comment is indicated by the character ! (starting from any

Statements (1 declaration or 1
instruction or one fragment per line)

Continuation mark (in case of fragmented statements 1–9, +, -, *)

Labels (1–99999)

Comment mark (C, *, !) or for debugging (D)

Comment (implicit)

1 … 5 6 7 … 72 73 … 80

Computer programming and programming languages

3 / 9

column) or by the letter C written in the first column (beware of names starting with this letter, do not
write them from the first column), while the & character marks the break of a statement (at the end) which
will be continued on the next line. It is allowed to write more than one statement on a line if they are

separated by the ; character (which is ignored at the end of a line, of course).

Tabular form is actually a variant of both fixed and free form, and is so called because of the use of the
horizontal tab character at the beginning of lines. If this <Tab> character is the first on a line, then the line
contains a statement (declaration or instruction, or maybe a marker). If this first character is followed by a
non-zero digit, the digit marks a continuation fragment of the previous line and must be followed by a
space to separate it from the continuation content. The <Tab> character may be preceded only by a
comment mark or a label. Line lengths must not exceed column 72 for fixed form and column 132 for free
form.

Regardless of the horizontal structure (fixed, free or tabular form), the vertical structure of a source file
must respect the following sequence of specifications: declarations (concerning the program unit, the
entities used), body (containing the statements to executed at runtime) and final marker. If the source file
contains only a segment of a program unit, any of the three parts (declarations, body, final marker) may be
missing, but the order must be respected. In such cases, the contents of such a source file shall be included
(using the INCLUDE specification) in another source file before compilation.

Notice: In the following chapters, syntax (writing rules) and examples are given where other characters
are used. The square brackets are not part of the syntax, but mark the optionality of the
included content, and the consecutive dots (...) mark repeatable elements. Italic sequences
mark elements that replace content in the positions in which they appear.

Entity types

In Fortran, every entity has a type, either implicit, or explicitly declared. There are intrinsic types and
derived types (defined by the programmer using intrinsic types or previously defined derived types).
Intrinsic types are INTEGER (integer numbers), REAL (real numbers, with a decimal part), COMPLEX
(complex numbers, viewed as pairs of numbers with a decimal part), LOGICAL (logical values, there are

only two, the constants .TRUE. and .FALSE. constants), CHARACTER (character or string), and BYTE
(8-bit value, used in older versions of the language).

Explicit type declaration of entities can be done according to syntax:

type[(kind)][[,attribute]... ::] entity_list
The keywords for type are INTEGER, REAL, COMPLEX, LOGICAL and CHARACTER (in some versions of
Fortran there is also BYTE), or TYPE(name), where name refers to a type previously defined by the
programmer. The kind specifies the number of bytes used for storage (optionally preceded by the keyword
KIND=, or LEN= in the case of CHARACTER type). This value depends on the type of entities, but there

are also compiler dependent default values (usually 4 bytes for REAL type entities and 2 or 4 bytes for
INTEGER type entities). Explicit values can be: 1, 2 or 4, eventually 8 for the INTEGER and LOGICAL

types; 4 or 8, (eventually 16) for the REAL and COMPLEX types. Single characters and BYTE type entities
are stored on 1 byte, so their storage length cannot be changed explicitly (if the kind is specified for
CHARACTER type, it defaults to the number of characters in the string). INTEGER(1) and LOGICAL(1)
type entities will also be stored on 1 byte.

The following can be specified as an attribute:
- ALLOCATABLE for arrays with dynamically allocated memory or DIMENSION(limits) for arrays

with statically allocated memory (will be presented later),
- EXTERNAL for entities redefined by the programmer or INTRINSIC for entities predefined in

Fortran,
- INTENT(direction) for input/output purpose (where direction can be IN for input, OUT for

output, default INOUT),

Computer programming and programming languages

4 / 9

- PARAMETER for constant values,
- PUBLIC for visible entities, PRIVATE for local entities (only accessible in the current program

unit),

- POINTER for indicators or TARGET for targets,
- OPTIONAL for temporary entities, SAVE for stored entities.

If no attribute is specified, the :: separator can be omitted (it only serves to delimit the list of keywords on
the left, from the entity_list on the right of the specification).

For numeric entities there is an implicit rule regarding their type, which (of course) can be changed or
canceled with the following syntax of the IMPLICIT statement:

IMPLICIT type(c[,c]…)[,type(c[,c]…)]…
where type must be an intrinsic type specifier (or previously defined derived type) and c stands for a letter
or range of letters in alphabetical order. To cancel any implicit rule, write:

IMPLICIT NONE

When canceling the implicit rule, the types of all entities must be explicitly declared. According to the
predefined implicit rule in Fortran, entities whose name starts with one of the letters I, J, K, L, M, or N will

be of type INTEGER, and the rest will be of type REAL. Consequently, unless this rule is changed or
canceled, type declarations can be omitted while respecting the rule.

The definition of a derived type is done according to the syntax:

TYPE name
specifications
END TYPE [name]

Once defined, such derived types can be used to specify the type of entities by replacing the type keyword

with TYPE(name) in the explicit type declaration. Reference to a component in such a derived type can
be made using the % selector, in the form parent%component[%subcomponent...], as will be illustrated in
an example below.

When the entity type is explicitly declared, initial values can also be attributed. The attribution can be done
within the entity_list or separately, through the DATA statement. The syntax of this statement is as follows:

DATA variable_list/value_list/[[,]variable_list/value_list/ …]
where for each entity in the variable_list there must correspond a value from the value_list (the list
delimited with / characters), in order of succession from left to right.

Examples: Explanations:
REAL(KIND=8) Di,e33

! Equivalent to:

REAL(8) dI,E33

The entities (variables) named DI and E33 are of type

REAL and are stored on 8 bytes each (in older versions of
Fortran, the type DOUBLE PRECISION was used in such
a case). As you can see, it doesn't matter if the names of
the entities are in lower case or upper case.

COMPLEX(KIND=8) xC,Y1

! Equivalent to:

COMPLEX(8) Xc,y1

The entities (variables) named XC and Y1 are of type
COMPLEX and are stored on 8 bytes each (in older
versions of Fortran, the DOUBLE COMPLEX type was used
in such a case). Since we are dealing with complex values
consisting of pairs of values (the "real" part and the
"imaginary" part), 16 bytes are actually be used for each
entity.

INTEGER(2),INTENT(IN) :: Q The Q entity is of type INTEGER, stored on 2 bytes and
used only for input values. Since an attribute (INTENT) is
also specified, it is mandatory to use the :: characters to
separate the left list from the one right list, even if there is
only one element on the right.

REAL,PARAMETER :: pi=3.14159 The entity named PI is of type REAL and with a constant

Computer programming and programming languages

5 / 9

(unchangeable) value of 3.14159.
EXTERNAL :: SIN The entity named SIN is declared as a variable with the

default type REAL (because the name starts with the
letter S). In this situation the SIN name will not be usable
for the intrinsic trigonometric function in Fortran.

REAL,POINTER,PRIVATE :: p,Q1 The entities named P and Q1 will be pointers of type
REAL, accessible only in the current program unit.

IMPLICIT INTEGER(B,f-H,k) All entities whose name begins with one of the letters B, F,
G, H or K will be of type INTEGER (regardless of whether
they are written in uppercase or lowercase).

IMPLICIT REAL(n),COMPLEX(A-C) All entities whose name begins with the letter N will be of
type REAL, and those whose name begins with one of the
letters A, B, or C will be of type COMPLEX.

IMPLICIT NONE

INTEGER I,j,K

REAL X,Y

The implicit rule has been canceled and the types of all
entities must be explicitly defined. The one named I, J and
K will be of type INTEGER, and the ones named X and Y
will be of type REAL. As no attributes were specified, the

:: separator was omitted (only the right is list).
TYPE comp

 CHARACTER(LEN=24) name

 INTEGER day

 CHARACTER(3) month

 INTEGER :: year=2023

END TYPE

 ...

The derived type named COMP is defined as consisting of
two character strings (NAME having 24 positions and
MONTH 3) and two integers (DAY and YEAR, the latter
being also initialized with value 2023). Note the optionality
of the LEN= keyword, as it is not used for the MONTH
string.

TYPE(comp) r23,r24 Entities named R23 and R24 will have the type defined
above.

CHARACTER at,stars*3

INTEGER m1,m2,m3

Declaration of CHARACTER type entities: AT will contain 1
character and STARS will contain 3 characters (an old
syntax was used instead of LEN=3), followed by the
declaration of INTEGER type entities M1, M2 and M3.

DATA at,m1,m2/”@”,2*1/,m3/5/

DATA stars/”***”/

DATA r24%year,r24%day/2024,12/

DATA r24%month/”AUG”/

The variable named AT gets the @ character, the variables
M1 and M2 get the value 1 (2 pieces, for the 2 entities),
and M3 gets the value 5, after which the STARS string is

also initialised with the *** characters. The YEAR, DAY
and MONTH components of entity R24 will be given the
values 2024, 12 and AUG.

Expressions

Expressions can be arithmetic (numeric), string (character), logical, or initialisation and specification (from
Fortran 90), and consist of operators, operands, and parentheses. An operand is a value represented by a
constant, variable, array or array element, or resulting from the evaluation of a function. Operators can be
intrinsic (implicitly recognised by the compiler and of global in nature, so always available to all sequences
of code) or user-defined (when an operator is explicitly described as a function by the programmer).
Depending on how they work, we can talk about unary operators (acting on a single operand) and binary
operators (acting on a pair of operands). Unary operators take precedence over binary operators.
Evaluating an expression always produces a single result, which can be used for attribution or as a
reference. The type of value resulting from the evaluation of a numeric expression depends on the type of
operands and their rank. If the operands within the expression have different ranks, the resulting value will
be of the type of the operand with the highest rank (unless an operation involves a complex value and one
in double precision, the result in such situations being of double complex type). When checking the
correctness of a combined numerical expression, it is recommended to take into account the type of partial
values resulting during the evaluation.

Computer programming and programming languages

6 / 9

Arithmetic expressions, as their name suggests, represent numerical calculations, made up of arithmetic
operators and operands, giving a numerical result that must be defined mathematically (division by zero,
raising a base of zero value to a zero or negative power, or raising a base of negative value to a real power
are invalid operations). The term numeric operand can also include logical values, since they can be treated
as integers in a numerical context (the logical value.FALSE. corresponds to the integer value 0). The
numeric operators are: ** (exponentiation), * (multiplication), / (division), + (addition), - (subtraction). In
an arithmetic expression with several operators, the parts enclosed in parentheses (from the inside to the
outside) and the functions are always evaluated first, with the evaluation priority of the intrinsic operators
being as follows: exponentiation, multiplication and division, unary plus and minus, addition and
subtraction. Operators with the same priority are evaluated from left to right. By local effect, unary
operators can affect this rule, generating exceptions in the case of compilers that accept such expressions.

Expression Formula Expression Formula

(3*X**2+1)/(2*Y)-1

(3*X**2+1)/2/Y-1

3𝑥2 + 1

2𝑦
− 1

(3*X**2+1)/2*Y-1

3𝑥2 + 1

2
𝑦 − 1

X/(-5)*Y
𝑥

−5
𝑦 X/(-5*Y)

X/(-5)/Y

𝑥

−5𝑦

X**(–Y)*3 𝑥−𝑦3 X**(–Y*3) 𝑥−𝑦3

Character (string) expressions can be composed using the // concatenation operator (in older versions of

Fortran using the + intrinsic operator) or using programmer-defined functions, applied to CHARACTER
type constants or variables. Evaluating such an expression produces a single string value. Concatenation is
performed by joining the character contents from left to right, without parentheses affecting the result.
Blanks (spaces) contained in the operands are also included in the result.

Logical expressions consists of logical or numerical operands combined with logical and/or relational
operators. The result of a logical expression is normally a logical value (equivalent to one of the logical
literal constants .TRUE. or .FALSE.), but logical operations applied to integer numeric values will still
result in integer values, being performed bit by bit in order corresponding to the internal representation of

those values. Logical operations cannot be performed directly on values of type of REAL, COMPLEX or
CHARACTER, but these types of values can be handled using relational operands within logical
expressions. The relational and logical operators are as follows:

The relational operators have equal priority (they are executed from left to right, but before the logical and
after the numerical), and the logical operators are executed in the order of their evaluation priority.

Relational operators

Syntax Meaning
Older

syntax*
< Less Then .LT.

<= Less or Equal to .LE.

== Equal .EQ.

/= Not Equal .NE.

> Greather Than .GT.

>= Greather or
Equal to

.GE.

* Older versions (marked with dots in
the last column) are also allowed to be
used.

Logical operators

Syntax Meaning

.NOT. Logical negation, returns true if the operand has the
value false and false if the operand has the value
true.

.AND. Logical conjunction, returns true only if both
operands have the true value, otherwise returns
false.

.OR. Logical disjunction, returns true if one of the
operands has the true value, otherwise returns false.

.EQV. Logical equivalence, results true if both operands
have the same value, if they have different values
then results false.

.NEQV. Logical inequality, returns true if the operands are
different, and false if they are the same.

.XOR. Exclusive logical disjunction (eXclusive OR), similar
effect to logical inequality.

Computer programming and programming languages

7 / 9

Relational operators are binary (they act on two operands), as are logical operators, except for the logical

negation operator (.NOT.), which is unary.

Initialisation and specification expressions can be considered as those that contain intrinsic operations and
constant parts, or a whole scalar expression. As their name suggests, they are used to initialise values (for
example, the index to control an implicit cycle) or to specify properties (for example, to declare array
bounds or string lengths).

There are homogeneous expressions (where the operators and operands are of the same type) and non-
homogeneous expressions (where the operators and operands are of several types). The evaluation priority
of operators within non-homogeneous expressions is as follows (in descending order):

- defined unary operators and functions;
- numeric operators (in the following order: **, * or /, + or –);
- concatenation operator for strings (characters);
- relational operators (with equal priority);
- logical operators (in order: .NOT., .AND., .OR., .XOR. or .EQV.or .NEQV.).

Operands can be variables (only named entities can have variable values) or constant values. Constant
values are specified according to their type, as shown in the following table:

Constant type Examples: Explanations:

Character string ”Bla 3-1a”

”anii ’80”

’anii ’’80’

Printable characters are quoted. If there are apostrophes
or quotation marks within a character string, either the
inner apostrophe can be doubled (see the third string), or
the other character is used for as a delimiter.

Decimal number 231

50.66

-.13

256.

The decimal separator is the point, negative values are
indicated by the minus sign. Non significant digits can be
omitted (the first value is an integer and the last three
values are real).

Binary number B”1001”

b”1011”

B’1100’

When quoting the value after the B mark, only the digits 0
or 1 are allowed (max. 256 positions).

The minus sign before the B mark has no effect and is not
accepted in the quoted content (there are no such
negative values). Quotations can be made either with
quotation marks or with apostrophes (without combining
them).

Octal number O”152”

O’223’

o”107”

Only the digits 0 to 7 can be used (max. 86 positions) in

the value that is quoted after the O mark. As before, the
minus sign in front has no effect and is not allowed inside.

Hex number Z”15F” X”15f”

Z’1B0’ x’1B0’

z”A28” x”a28”

The digits 0 to 9 and letters A to F can be used (max. 64
positions) by quoting the value after the Z or X mark. As
before, the minus sign in front has no effect and is not
accepted inside.

Hollerith 1H&

3H123

12Hla ”Taverna”

12Hab”1 x’+#.%@

They are constants that can contain any printable

character. Their syntax is: nHstring, where n is the number
of characters (positions in the string), H is the Hollerith
mark and string stands for the content.
Although these constants were originally defined to
contain up to 2000 characters, the number of characters
can be between 1 and 32767 (215

-1) on 32-bit platforms,

or between 1 and 2147483647 (231
-1) on 64-bit platforms.

Computer programming and programming languages

8 / 9

Intrinsic functions

Intrinsic functions are specific to the libraries used, and have predefined (reserved) symbolic names. Some
of them are not part of the standard kit of the programming environment, since they are not found in all
variants of the Fortran language. The fact that the names of these functions are reserved means that there
should be no entities with names that coincide with those of the intrinsic functions. Also, the names of
these functions are not recommended to appear in a list of an EXTERNAL statement, which leads to the
cancellation of their intrinsic definition. In such cases, by including their names in lists of the INTRINSIC
statement, they can be used in procedures defined as program units (user-defined subroutines or
functions). The general syntax of functions is as follows:

function_name(a,[a]…)
where function_name is the symbolic name of the function and a represents the argument(s).

Some intrinsic functions, in alphabetical order of their role:

Role: Function: Result:

|x| ABS(x) The absolute value (modulus) of the specified X argument.

arccos(x) ACOS(x) The arccosine of the X argument expressed in radians.

arcsin(x) ASIN(x) The arcsine of the X argument expressed in radians.

arctg(x) ATAN(x) The arctangent of the X argument expressed in radians.

character ACHAR(x) Returns the character at position X in the code table.

complex-i AIMAG(x) The imaginary part of a complex number X.

complex-r REAL(x) The real part of a complex number X.

cos(x) COS(x) The cosine value of the X argument expressed in radians.

cosh(x) COSH(x) The hyperbolic cosine of the X argument.

ex EXP(x) The exponential value of the Euler constant (e=2.71828...).

ln(x) LOG(x) The value of the natural logarithm of the X argument.

log(x) LOG10(x) The logarithm with base 10 of the X argument.

length LEN(string) The number of characters in the STRING considered argument.

max(x,y,...) MAX(value_list) The maximum value among the items contained in the argument list.

min(x,y,...) MIN(value_list) The minimum value among the items contained in the argument list.

random RAN(x) Returns a pseudorandom number between 0 and 1.

rest of div. MOD(x1,x2) The remainder of the argument division (X1/X2, with the sign of X1).

round NINT(x) The value of the X argument rounded to the nearest integer.
 ANINT(x) The rounded value of the X argument to zero decimal places.

sin(x) SIN(x) The value of the sine of the X argument expressed in radians.

sinh(x) SINH(x) The hyperbolic sine of the X argument.

√𝑥 SQRT(x) The square root (radical) of the X argument.

substring INDEX(string,ss) The starting position of the SS substring in the first argument STRING.

tg(x) TAN(x) The tangent of the X argument expressed in radians.

tgh(x) TANH(x) The hyperbolic tangent of the X argument.

truncate INT(x) The truncated value of the argument X to the nearest integer.
 AINT(x) Truncated value of argument X with zero decimals.

Input and output (I/O) statements

Read operations are called inputs (I) and write or display operations are called outputs (O). For sequential
inputs, the READ statement can be used, with the following syntax variants:

READ f[,input_list]
when reading from the default logical unit (usually the console, so the keyboard), where f is the format
specifier (shown later), or

READ([UNIT=]u[,[FMT=]f][,ERR=e1][,END=e2][,IOSTAT=var])[input_list]

Computer programming and programming languages

9 / 9

where the UNIT= keyword can be omitted if it is the first parameter and u is the logical unit number (the
value is * for the default logical unit, i.e. console), the FMT= keyword can be omitted if it is the second
parameter or if it is not desired to use a format specifier f (the case of reading without format), e1 is the

label of an executable instruction to jump to if the end of file (EOF) is encountered or if there are no values
to read, e2 is the label of an executable instruction to jump to if a read error is encountered, and var is the
name of an INTEGER variable in which the success / failure of the read operation would be recorded
(successful reads result in 0, unsuccessful reads result in higher values marking error codes). The entities in
which the read values are to be stored form the input_list, If there is no input_list, the only effect of the
instruction is to temporarily stop the execution of the program (until the <Enter> key is pressed).
There are also other variants, such as internal reading (to convert characters into integers corresponding to
the positions in the character table), direct reading (to jump to the position number of a record in a fixed
formatted logical unit), or keyed reading (in the case of indexed files).

The following statements can be used for sequential output operations:
PRINT f[,output_list]

when writing to the default logical unit (usually the console, hence the monitor display), where f is the
format specifier, or

WRITE([UNIT=]u[,[FMT=]f][,ERR=e1][,IOSTAT=var])[output_list]

where the notation is the same as for reading (without END=e2, as it makes no sense for writing). The
entities whose values are to be written make up the output_list. If output_list is missing, an empty line is
written (similar to the effect of the <LF> character, which means line feed).
There are also other variants, such as internal writing (to convert integers to characters, according to the
positions in the character table), direct writing (jumping to the position number of a record in a fixed
formatted logical unit), or rewriting a record. Writing to indexed files uses sequential writing with format
specifier, where key fields are among the entities in output_list.

When * is used as a format specifier (i.e. default format), the value type in the entity list is usually taken
into account. For so-called long values, such as REAL(8) or DOUBLE PRECISION, REAL(16),

COMPLEX(8) or DOUBLE COMPLEX, COMPLEX(16), the default format cannot be used, so a format
specification appropriate to the type must be used.

Examples: Explanations:
READ *

! Equivalent to:

READ(*,*)

Apparent reading (no input). Waiting for the <Enter> (carriage
return) key to be pressed to continue.

READ *,I,j

! Equivalent to:

READ(*,*)i,J

Two numerical values (of type INTEGER) entered from the
keyboard are read and stored in variables I and J respectively.
The two values can be entered separately (the program will
continue only after both values have been entered) or on the
same line, separated by a comma (or a blank).

PRINT *

! Equivalent to:

WRITE(*,*)

A blank line will be displayed on the screen (similar to the
effect of the <LF> character).

PRINT *,”n= ”

! Equivalent to:

WRITE(*,*)”n= ”

The quoted string will be displayed (without the quotation
marks).

PRINT *,”Max= ”,max

! Equivalent to:

WRITE(*,*)”Max= ”,MAX

The quoted string will be displayed, followed by the contents
(value) of the MAX variable.

