

Computer programming and programming languages

1 / 8

Theory for WORK 4 onwards

Arrays

The declaration of arrays can be done by the type specification, or by the specifying DIMENSION, COMMON
(eliminated starting with Fortran 90), ALLOCATABLE, respectively POINTER or TARGET (starting only
from Fortran 95, while in Fortran 90 there is the possibility to define them as "derived" type).

The characteristics of any array are:

- Type (any intrinsic or derived type),
- Rank (the number of "dimensions", e.g. a vector has rank 1, a matrix has rank 2, etc. – the

maximum rank is 7 in Fortran),
- Extents (”lower” and ”upper” limits for each "dimension" separately, the "lower" means the initial

value of the respective indices, and the "upper" means the final value of the respective indices),
- Size (results from the total number of elements),
- Shape (results from rank and extents).

Arrays of identical shape are "conformable" (meaning that certain operations can be performed on their
elements, without explicitly specifying each element's positional indices). A scalar conforms to any array,
regardless of the array’s shape.
The syntax for declaring an array by the DIMENSION attribute (static memory allocation):

 [Type,] DIMENSION(extents)[,attribute] :: array_list
or

 Type[,attribute] :: array_name(extents)[,array_name(extents)…]
The syntax for declaring an array by the ALLOCATABLE statement (dynamic memory allocation):

 [Type,] ALLOCATABLE(:[,:]…)[,attribute] :: array_list

Note: for each rank, a position marked by the ":" character in the round bracket after the ALLOCATABLE
keyword is reserved. For dynamic memory allocation the POINTER or TARGET attributes can also be

used, the syntax of the declaration by POINTER or TARGET being similar to the syntax for
ALLOCATABLE, only the keyword used differs (POINTER or TARGET will be written instead of

ALLOCATABLE).

When using dynamic memory allocation via ALLOCATABLE, POINTER or TARGET, the ALLOCATE
function will be used in the source file to actually allocate the required space to the arrays:
 ALLOCATE(array_name(extents)[,array_name(extents)…])

In the case of dynamic memory allocation, it must be taken into account that at the end of the program
run, the control over the memory blocks allocated for arrays (within the program) will also end, so that
successive runs can lead to a situation where the working memory is completely occupied by areas
allocated to arrays that can no longer be controlled. To avoid these situations, memory allocated
dynamically within a program must be freed within the same program (before losing control of the memory
area) using the function:

DEALLOCATE(array_list)

It may also be necessary to free allocated memory blocks in order to allocate different memory blocks (of
different sizes) to the same arrays within a program. The allocation status can be tested using the
ALLOCATED(array_list) function, e.g. within a simple logical IF (the syntax is shown in the control
statements) used to free up the memory allocated to specific arrays:

IF(ALLOCATED(array_list)) DEALLOCATE(array_list)

Examples: Explanations:
DIMENSION A(10,2,3),L(8) The array named A has rank 3 (3 "dimensions", in total

10x2x3=60 positions for elements) and will be implicitly of type

Computer programming and programming languages

2 / 8

REAL. The array named L has rank 1 (8 positions) and implicitly
of type INTEGER (due to the first letter of the name).

ALLOCATABLE X12(:,:),B(:) The array named X12 has rank 2 (the reservation of each
"dimension" is marked with the : character), and the array B
will be a vector, having rank 1. Both arrays will be of type REAL
by default. The actual number of positions in each array will be
specified later.

POINTER C(:,:,:) The array named C has rank 3 (the reservation of each
"dimension" is marked with a : character) and will be of type
REAL, POINTER by default. The actual number of positions
(the extents) in the array will be specified later.

REAL,DIMENSION (3,3) :: D,E Arrays D and E will be of type REAL with rank 2 and conform to
each other (having identical shape).

INTEGER MAT(2:11,3) The MAT array is of type INTEGER, with rank 2, having a total
of 30 element positions. At the first rank the lower limit is 2
and the upper limit is 11 (position indices being incremented
from 2 to 11), and at the second rank the lower limit is 1
(default) and the upper limit is 3.

Storing arrays in memory is done by positioning the elements in a row, incrementing the position indices
successively in their order. Here is an example for array D (mentioned above, with rank 2 and size 3x3=9
positions):

D
(1,1) (2,1) (3,1) (1,2) (2,2) (3,2) (1,3) (2,3) (3,3)

As can be seen, the indice on the first position is incremented (from the initial value, which is the lower
limit, to the upper limit), then the next index, and so on...

Exemplifying with a matrix like:

a11 a12 … a1n
a21 a22 … a2n
… … … …
am1 am2 … amn

, we could say that the storage of elements in
memory is done according to the columns.

Initializing the elements of an array by using the DATA specification:

Examples: Explanations:
DIMENSION A10(10,10)

Declaring an array named A10 (default type
REAL), having a total of 10x10=100 element
positions.

DATA A10/100*1.0/ Initialization by name: all 100 elements in array
A10 will be given the value 1.0.

DATA A(1,1),A(10,2),A(5,5)/2*3.3,2.0/ Initialisation by elements: the elements at
positions (1,1) and (10,2) are given the value 3.3,
and the element at position (5,5) is given the
value 2.0.

DATA ((A(i,j),i=1,5,2),j=1,3)/9*3.5/ Initialisation by cycle: the elements in positions
(1,1), (3,1), (5,1), (1,2), (3,2), (5,2), (1,3), (3,3) and
(5,3) are each given a value of 3.5. The indice i
starts with a value of 1 and reaches a final value
of 5 with increments of 2.

Note: the DATA specification is a declarative statement, so it must be passed before any executable
statement. The following are some examples of executable statements (attribution statement).

Examples: Explanations:
L=10

! Equivalent to:

L is the 8-position array, and the number 10 is a
scalar value. Since a scalar conforms to any array,

Computer programming and programming languages

3 / 8

L(1)=10;L(2)=10;L(3)=10;L(4)=10

L(5)=10;L(6)=10;L(7)=10;L(8)=10

all 8 positions in the array L will be given the
value 10.

L=L*2

! Equivalent to:

L(1)=L(1)*2;L(2)=L(2)*2;L(3)=L(3)*2

L(4)=L(4)*2;L(5)=L(5)*2;L(6)=L(6)*2

L(7)=L(7)*2;L(8)=L(8)*2

All 8 elements in the array L will have the value
multiplied by 2 (since the scalar 2 is "conform" to
the array L).

D=-1.2

E=-2.*D

Each element in array D will be assigned the
value -1.2. Arrays D and E are conform (they have
the identical 2x3 shape), therefore each element
in array E will receive the value 2.4 (resulting
from multiplying -1.2 by -2).

String sections

The syntax for referencing a subset (part of an array with rank 1, i.e. of a string):

 array_name([start]:[stop][:increment])

Examples: Explanations:
REAL,DIMENSION(6) :: VA

INTEGER,DIMENSION(0:5) :: VB

VA(3:5)=1.0

VB(1:5:2)=1

The VA and VB arrays declared with 6 positions each
– the position indice in the case of the VA array can
take values from 1 to 6 inclusive, with an increment
of +1, and in the case of the VB array from 0 to 5
(also 6 positions).
The elements at positions 3, 4, and 5 of the VA
vector are given a value of 1.0.
The elements at positions 1, 3, and 5 (the indice
starts at 1 and goes up to 5 with step 2) of the VB
vector are given a value of 1.

CHARACTER(LEN=8) :: TIT=”ALanDALa”

the string named TIT will have 8 positions and will
be initialized with the quoted characters (1
character per 1 position).

The following references to sections of the entity named TIT (from the previous example) mean the
(quoted) characters in the right column::
 TIT(2:4)

 TIT(5:5)

 TIT(:5)

 TIT(5:)

 TIT(:)

 TIT(10:)

 TIT(5:10)

”Lan” - the characters in positions 2-4 (including),
”D” - the character at position 5,
”ALanD” - characters up to position 5,
”DALa” - characters from the 5th position,
”ALanDALa” - equivalent to the reference of TIT,
String of null length characters (no characters from position 10),

The last position in the string is 7 (LEN=7), and 10 > LEN. Such a reference is not
allowed, it will generate error!

Intrinsic functions for character strings:
LEN(string) - returns the length (number of characters) of the specified string.

INDEX(substring,string) - returns the (start of) position of the substring in the string, or 0 if not.
TRIM(string) - returns the string without the trailing blank characters.

Computer programming and programming languages

4 / 8

Flow control statements

Some of these instructions have already been presented in previous lab-works, being repeated to have a
grouping of all control instructions in a single subsection.

Instructions for stopping execution
STOP [stop_code] Terminates execution, stopping the program from running. If stop_code is

specified, then it will be displayed (stop_code can be an integer, or a quoted
string, it is used in case of more than one stop possibility, to identify the
branch being run).

PAUSE [pause_code] It can be used up to Fortran 90, since Fortran 95 it has been removed (it can
be replaced by a display statement followed by a read). Temporarily suspends
the running of the program, displaying (if specified) also the pause_code (can
be an integer, or a quoted string). The <Enter> key must be pressed to
continue running. In all cases it will cause the message to be displayed:
PAUSE statement executed. Hit Return to continue.

If a pause_code has also been specified, it will be displayed between the
words "PAUSE" and "statement" in the above message.

Jump instructions

There are 3 variants of jump instructions (all use the keywords GO TO or GOTO), with the following syntax:

GOTO label This is the unconditional jump, label is where to jump to when this

statement is executed. The label must be "carried" by an executable
instruction (it must be written in front of the instruction to be jumped
to during execution).

GOTO (label_list)[,]expression This is the computed jump. Evaluating the expression will give the
position of the label in the label_list that will be used to perform the
jump. Obviously, the resulting value of the expression must be a strictly
positive integer. If this number is negative, zero or greater than the
number of elements in the label_list, the jump will not be performed.

GOTO var[[,](label_list)] This is the assigned jump, where var is the name of an INTEGER entity
to which the value of the desired label must first be assigned (ASSIGN
e TO var). In newer versions of Fortran, the value of the label can be
attributed or read instead of assignment.
The jump will only be performed if the value of var exists in the
label_list (so by specifying labels in the label_list you can condition the
jump to be performed or not).
If the label_list is not specified (GOTO var), the statement works like
the unconditional jump.

Conditional statements
There are several types, some of which also have structured variants (introduced with Fortran 90), their
syntax being as follows.

IF(arithmetic_expression)e1,e2,e3 Arithmetic decision (arithmetic IF) involves testing the value of
the result of arithmetic_expression against zero, specifying 3
labels (not necessarily different). If the result from
arithmetic_expression is strictly negative, a jump will be made to
label e1, if the result is null (the value 0) to label e2, and in case of
a strictly positive result to label e3.

Computer programming and programming languages

5 / 8

IF(logical_expression) instruction Unstructured logical decision (simple logical IF), with empty
branch, allows a single instruction to be specified. This statement
will only be executed if logical_expression evaluates to true (with
the value .TRUE.). Otherwise (resulting in .FALSE. for
logical_expression) the statement will be ignored.

IF(logical_expression_1) THEN
instructions_1

[ELSE IF(logical_expression_i) THEN
instructions_i]
[ELSE
instructions_x]
ENDIF

The structured logical decision (structured logical IF) can be
empty-branched (the variant in which only the IF, THEN and
ENDIF keywords appear), or not. The ELSE IF keywords can
also be written together as ELSEIF in some variants of the
Fortran language. If several ELSE IF sequences are specified,
the logical_expression_i must be distinct for each sequence,
without the possibility of simultaneous fulfillment of several
expressed conditions (the mention is also valid for
logical_expression_1).

If logical_expression_1 results with the value .TRUE., those
specified in the instructions_1 block will be executed. Otherwise,
if logical_expression_1 returns .FALSE., the first
logical_expression_i (if specified) that returns the value .TRUE.
will be considered, leading to the execution of what is specified
in the corresponding instructions_i block. Only if all preceding
logical expressions returned .FALSE. those specified in the
instructions_x block will be executed.

SELECT CASE(expression)

[CASE(criteria_ set_i)
instructions_i]
[CASE DEFAULT
instructions_x]
END SELECT

The generalized condition testing allows the value of any
expression to be tested. Care must be taken that each criteria_
set_i specified is clear, and without overlaps between them! The
CASE DEFAULT branch will only be considered (performing
instructions_x) if the conditions specified in all previous criteria_
set_i are not met.

Structured variants can contain other structured statements (structures), but without intersecting them.
The contained structured statements must begin and end within the same block (marked in the preceding
syntaxes with instructions_1, instructions_i, and instructions_x).

Examples: Explanations:
 CHARACTER r

 …

1 WRITE(*,*)’Enter the values: ’

 …

 WRITE(*,*)’Restart? (Y/N): ’

 READ(*,*)r

 IF(r.EQ.’y’.OR.r.EQ.’Y’) GOTO 1

…

Declare an entity of type character (1 position)
An executable instruction with label 1

Reading a character and storing it in R, then
testing the value by a simple logical IF and
perhaps an unconditional jump to the instruction
with label 1.

 CHARACTER r

 …

1 WRITE(*,*)’Enter the values: ’

 …

 WRITE(*,*)’Restart? (Y/N): ’

 READ(*,*)r

 IF(r==’y’.OR.r==’Y’) THEN

The previous example, using a structured logical

IF (without the ELSE branch) instead of a simple
logical IF, and .EQ. replaced by ==.

Computer programming and programming languages

6 / 8

 GOTO 1

 ENDIF

 IF(x+1)3,1,6

3 WRITE(*,*)”negative result”

 GOTO 2

1 WRITE(*,*)”null result”

 GOTO 2

6 WRITE(*,*)”positive result”

2 CONTINUE

Test the result of the numerical expression x+1,
using an arithmetic IF, and depending on the
result, display whether it is negative, zero or
positive.

IF(x+1<0) THEN

 WRITE(*,*)”negative result”

 ELSE IF(x+1==0) THEN

 WRITE(*,*)”null result”

 ELSE

 WRITE(*,*)”positive result”

ENDIF

The previous example, using a structured logical
IF instead of an arithmetic IF.

 IF(x/2)3,3,6

3 WRITE(*,*)”result <=0”

 GOTO 2

6 WRITE(*,*)”result >0”

2 CONTINUE

Testing the value resulting from the evaluation of

the numerical expression x/2, with an arithmetic
IF, then display it depending on the result, if it is
less than or equal to zero or strictly positive.

SELECT CASE(x/2)

 CASE(:0)

 WRITE(*,*)”result <=0”

 CASE DEFAULT

 WRITE(*,*)”result >0”

END SELECT

The previous example, but using a SELECT CASE
structure with an arithmetic expression instead of
an arithmetic IF. The criteria specified by (:0)
means all numeric values up to and including zero.

SELECT CASE(x/2<=0)

 CASE(.TRUE.)

 WRITE(*,*)”result <=0”

 CASE(.FALSE.)

 WRITE(*,*)”result >0”

END SELECT

The previous example, using a SELECT CASE
structure with a logical expression. The value
following the evaluation of a logical expression can
be .TRUE. or .FALSE. (only one of the two logical
values).

Instructions for loop cycles (repetitions)
The instructions for making loops are structured (those where the end of the structure is marked instead of
the label with END_name being introduced with Fortran 90). Being structured instructions (structures),
they can contain other structures (for example, loop within loop, or structured decision within loop, or loop
within decision structure, etc.), but they cannot be intersected. Structured statements must begin and end
within the same (statement-marked) block in the syntaxes below.

DO label [[,]loop_control]
instructions
label last_executable_statement

It would correspond to a post-conditional loop, with the caveat that if
loop_control was specified, it would be evaluated first (as noted
below). With this structured statement, if other loops are included in
the loop having the same body, it is allowed to use a single label to
mark the end of the structures (no intersection is considered).
If the last specification in the loop body is not an executable
statement (like an ENDIF tag, or something similar), the neutral
CONTINUE statement (shown below) can be used.

DO [loop_control] The difference from the previous variant consists in the end marking

Computer programming and programming languages

7 / 8

instructions
ENDDO

ENDDO (some variants of Fortran also accept END DO).

The syntax for loop_control is as follows:
 loop_counter=initial_value,end_value[,increment_step]
Interpreting this is done by assigning initial_value to the loop_counter and checking if it is below end_value
(if it is not, the loop will be ignored without executing any instruction from the body of the loop). After a
first step through the instructions in the loop body, the loop_counter is changed by the value specified at
increment_step. If increment_step is not specified, it will be taken as +1 by default. It checks that the value
in the loop_counter has not exceeded the end_value, in order to resume the execution of the instructions in
the body of the loop again. The exit from the loop will be made when the loop_counter will get a value
above the end_value. Explicit modification (by statements) in the loop body of any loop_control component
is not allowed.
If loop_control is not specified, the exit can be done with the EXIT statement or an "infinite" loop can be
made (it can be stopped by pressing the <Ctrl> and <C> keys simultaneously, causing the program to be
exited by forced interruption).

DO label [,] WHILE(logical_expression)
instructions
label last_executable_statement

It would correspond to a preconditioned loop. The instructions
in the loop body will be executed only if logical_expression
evaluates to .TRUE. (and the loop will only run as long as this
value exists). When logical_expression becomes .FALSE., the
loop will be exited.
If the last specification in the loop body is not an executable
statement (like an ENDIF tag, or something similar), the
neutral CONTINUE statement (shown in an example) can be
used.

DO WHILE (logical_expression)
instructions
ENDDO

The difference from the previous variant consists in the end
marking ENDDO (some variants of Fortran also accept END DO).

In addition to these statements, there are also some control statements that can be used to repeat or exit
the above described loops.
CYCLE Causes execution of previous instructions in a loop to resume,

without going through all the statements in the loop body.

EXIT Allows leaving the body of a loop (loop exit).

[label] CONTINUE It is an executable statement with no effect. The meaning of
use is only to wear the label.

Examples: Explanations:
 DO i=1,10

 WRITE(*,*)i

 ENDDO

 WRITE(*,*)i

! Equivalent to:

 DO 8 i=1,10

8 WRITE(*,*)i

 WRITE(*,*)i

Cycle for displaying the loop_counter value (i), in the

version with ENDDO,

or,

using the label 8 to mark the end of the loop body.

DO i=1,n

 DO j=i+1,n

 REZ(i,j)=1.0/(i+j)

 ENDDO

ENDDO

Loop inside a loop, in the variant with ENDDO (the first
ENDDO is for the loop with counter j, considered
internal) and in the variant of using a label (20) to mark
the end of the loop body. It can be observed that in the

Computer programming and programming languages

8 / 8

! Equivalent to:

DO 20 i=1,n

DO 20 j=i+1,n

20 REZ(i,j)=1.0/(i+j)

! Equivalent to:

DO 11 i=1,n

DO 20 j=i+1,n

20 REZ(i,j)=1.0/(i+j)

11 CONTINUE

second variant only one label was used (it is not
considered a structure intersection in such situations).
It can also be observed that the use of the value of the
loop_counters is allowed, but without their explicit
modification. Of course, the CONTINUE statement
(mentioned above) can also be used in such situations.
The inner loop will be the one with label 20 (the last
open structure must be the first closed one).

DO

 READ *,N

 IF(N==0) EXIT

ENDDO

A loop variant without control will exit the cycle due to

the EXIT statement (if a null value has been entered
for N).

DO i=1,4

 PRINT *,i

 IF(i > 2) CYCLE

 PRINT *,i

ENDDO

PRINT *,’finished...’

The following will be displayed on the screen:
1

1

2

2

3

4

finished...
The CYCLE statement will cause the loop to resume
(without executing the statements that follow it) from
the moment the value of i exceeds 2.

CHARACTER*132 LINE

READ (’A’),LINE

i=1

DO WHILE (LINE(i:i)==” ”)

 i=i+1

ENDDO

A character string (named LINE) is defined with 132
positions (the old Fortran 77 syntax was used) and the
characters are read in a single instruction (using the
descriptor for alphanumeric values).
As long as spaces (blank characters) are encountered
starting from the beginning of the string, the i value will
be incremented, which is also used to specify the
position of the characters in the string (see substrings).
Finally, i will contain the position of the first non-blank
character in the LINE string (total number of blanks +1).

For input/output operations, implicit cycles can be used (similar to the examples for the DATA
specification), as shown below:

Examples: Explanations:
DIMENSION A(10,10)

READ *,”no. of lines in matrix A: ”,nl

READ *,” no. of columns in matrix A: ”,nc

DO i=1,nl

PRINT *,”elements on line ”,nl,” :”

READ *,(A(i,j),j=1,nc)

ENDDO

PRINT *,”matrix A:”

PRINT *, ((A(i,j),”, ”, j=1,nc), i=1,nl)

Declaration of an array with 10x10=100
positions

Using an implicit loop to read elements
from a row in an array. Interpretation:
read A(i,j) while the position indice j starts
from the value 1 and reaches
(incremented at each step by +1) the value
of nc.

Display the elements of array A, one by
one, followed by the characters ”, ”.
Attention, in this case the display will be
continuous (without line separation).
The loop with counter j is inside the loop
with counter i.

