

Computer programming and programming languages

1 / 12

Theory for WORK 7 onwards

Using logical units (files)

Input (reads) and output (writes) instructions are performed through logical units. The default logical unit
(marked with the value * in statements that require specification) is the console, i.e. the assembly
consisting of the keyboard and display (monitor screen) – for inputs the keyboard is considered, and for
outputs the display. The logical units that must be explicitly specified are files, respectively peripherals
(printer, magnetic tape drive, etc.), with an integer value assigned to them. The indication of the logical unit
to which an input / output instruction refers is done by this numerical value. Some values also have
predefined logical units in older Fortran, such as 1, 2, 3 and 4 for files named FOR00n.DAT (where the
corresponding digit from 1 to 4 will appear instead of the character n in the file name), or 5 for input
devices (card reader, keyboard, etc.) and 6 for output devices (printer, display, etc.). Allocating these
references (numbers) to logical units can be done explicitly by the OPEN statement. The syntax of this
executable statement is as follows:
 OPEN(parameter[,parameter]…)
 where parameter can be a keyword, or of the form keyword=value (each parameter may be
specified only once within the list in parentheses).

Table of parameters in the OPEN statement – the blue ones are not accepted by the G95 compiler (in
alphabetical order, without the Intel Fortran QuickWIN specific ones):

keyword value Explanations Implicit value
ACCESS= ”SEQUENTIAL”

”DIRECT”

”APPEND”

”KEYED”

Setting how to access the
logical unit:
- sequential,
- direct,
- addition,
- using key-fields.

”SEQUENTIAL”
(row by row).

ACTION=

MODE=
”READ”

”WRITE”

”READWRITE”

How to use the logical unit:
- only to read from it,
- only to write in it,
- reading and writing.

”READWRITE”
(read and write)

ASYNCHRONOUS= ”NO”

”YES”
Allows specification of
asynchronous I/O mode.

”NO” (synchronous
I/O operations).

ASSOCIATEVARIABLE= number The number of the next
record in case of direct
access (number being a
positive integer).

There is no implicit
value.

BLANK= ”NULL”

”ZERO”

Interpretation of blanks:
- spaces (no conversion),
- 0 (conversion to digits for
numbers).

”NULL” (no
conversion).

BLOCKSIZE= number Size of a block in the I/O
buffer (number being a
positive integer).

Value set by the
operating system.

BUFFERCOUNT= number Number of input/output
buffers (number being a
positive integer).

Value set by the
operating system.

BUFFERED= ”NO”

”YES”

It allows specifying the
behavior of run-time
libraries after write
operations performed on the
logical unit:

”NO” (directly
without using a
supplemental
buffer). Caution, the
operating system

Computer programming and programming languages

2 / 12

- no additional buffer used,
- use of additional buffer
memory.

will use buffer
memory for write
operations!

CARRIAGECONTROL= ”FORTRAN”

”LIST”

”NONE”

Controlling (interpreting) the
carriage return (the
character generated when
the <Enter> key is pressed):
- Fortran (the first character
will be interpreted and
"consumed"),
- list (the carriage return is
the last character),
- none.

”FORTRAN” in the
case of the
”FORMATTED”
form, and ”NONE”
in the case of the
”UNFORMATTED”
form.

CONVERT= ”NATIVE”

”SWAP”

”LITTLE_ENDIAN”

”BIG_ENDIAN”

”CRAY”

”FDX”

”FGX”

”IBM”

”VAXD”

”VAXG”

Allows specifying a numeric
format (for conversion /
interpretation) for
unformatted data:
- native (no conversion),
- switch (between
LITTLE_ENDIAN and
BIG_ENDIAN),
- various other formats…

”NATIVE” (no
conversion).

DEFAULTFILE= expresie_caracter Setting a default file
specification.

None.

DELIM= “NONE”
“APOSTROPHE”
“QUOTE”

Specifying the delimiter

character (for CHARACTER
type constants) for I/O
operations:
- without delimiter,
- the apostrophe character,
- the quotation mark
character.

”NONE” (no
delimiter).

DISPOSE=

DISP=

”SAVE”

”KEEP”

”PRINT”

”DELETE”

The state of the logical unit
(usually the file) when
closing:
- save,
- keep (temporary),
- print,
- delete.

”SAVE” (the
content is saved).

ERR= label Instruction label to jump to
in case of error when
opening the logical unit.

Not implicit, no
jump by default.

EXTENDSIZE= number Size of the storage space
allocated for the file (number
being a positive integer).

Given by the
operating system or
by the volume
(partition).

FILE=

NAME=
character_string Specify the file to be used as

the logical unit. The file
specifier is considered a
string, so it is delimited by
apostrophe or quotation
marks if quoted, and if
contained by aCHARACTER,

It depends on the
logical unit and the
operating system.

Computer programming and programming languages

3 / 12

entity, the name of that
entity may be specified.

FORM= ”FORMATTED”

”UNFORMATTED”

”BINARY”

Format of the logical unit
(file) accessed:
- formatted,
- unformatted,
- binary.

Depends on the
value of the
ACCESS keyword.
If it is ”DIRECT” or
”KEYED” then it
will be considered
”FORMATTED”,
otherwise it will be
considered
”UNFORMATTED”.

INITIALSIZE= number The initial memory size
allocated to the file (number
being a positive integer).

Not allocated

IOSTAT= variable Returns a scalar INTEGER
value in the variable,
indicating the success (or
failure) of accessing the
logical drive. If the logical
unit is opened successfully,
the value of the variable is 0.

Not implicit.

KEY= (key1[,key2]...) The key fields (in order of
their priority) for the
indexed file.

Not implicit.

MAXREC= number The maximum number of
records that can be
transferred in direct access
(number being a positive
integer).

No maximum.

NOSPANBLOCKS Records do not span over
memory blocks.

Records may span
over memory blocks.

ORGANIZATION= “SEQUENTIAL”

“RELATIVE”
“INDEXED”

Structure (organization) of
the logical unit (file):
- sequential,
- relative,
- indexed.

“SEQUENTIAL”.

PAD= ”YES”

”NO”
Specifies whether a record is
filled with spaces (blank
characters) when the format
requires more positions than
the value entered, or not
filled.

”YES” (blanks are
used when
necessary).

POSITION= ”ASIS”

”REWIND”

”APPEND”

Specifies the positioning in a
file:
- as is,
- back to the beginning,
- add to end.

”ASIS” (currrent
position).

READONLY Write protection (if
specified, the file cannot be
deleted when closing).

Unprotected when
writing

RECL=

RECORDSIZE=
number Record length in the logical

unit in the case of direct
Depends on the
value specified in

Computer programming and programming languages

4 / 12

access, or maximum length
in the case of sequential
access (number is a positive
integer).

the keywords:
STATUS,
ORGANIZATION

and RECORDTYPE.
RECORDTYPE= ”FIXED”

”VARIABLE”

”SEGMENTED”

”STREAM”

”STREAM_LF”

”STREAM_CR”

Recording structure:
- fixed (all records will be of
identical length),
- variable,
- segmented,
- stream,
- stream with line feed,
- stream with carriage
return.

Depends on
keyword values:

ACCESS, FORM.

SHARE= ”COMPAT”

”DENYNONE”

”DENYWR”

”DENYRD”

”DENYRW”

Controls how other
processes can access the
logical unit simultaneously
on a network:
- compatible,
- without restrictions,
- no writing,
- no reading,
- no read and write.

”DENYNONE” (no
restrictions).

SHARED Shared access to the logical
unit (to the file).

Not shared.

STATUS=

TYPE=

”OLD”

”NEW”

”REPLACE”

”SCRATCH”

”UNKNOWN”

State of the logical unit (of
the file) when opened:
- existing (if it does not exist,
an error is obtained),
- new (if already exists,
generate error),
- overwriting a file,
- temporary (deleted after
closing),
- unknown (opened if exists,
created if does not).

”UNKNOWN”
(opened if exists,
created if does not).

UNIT= number The logical unit number
(associated with the desired
file or device) being accessed
(number is a positive
integer).

Not implicit (the
logical unit number
can be specified

without the UNIT=
keyword if it is the
first parameter in
the parentheses).

USEROPEN= name Option for a user program. No option.

Disconnection of the logical unit (in the case of files it means closing them) can be specified by the CLOSE
executable instruction, the syntax of whichis as follows:

 CLOSE(parameter[,parameter]…)
 where parameter is of the form keyword=value (each parameter can be specified only once within
the list in parentheses).
The CLOSE statement will also cause the <EOF> (end-of-file) to be recorded (written) when the unit is
disconnected (file is closed).

Table of parameters in the CLOSE statement (in alphabetical order, the blue ones are not accepted by the
G95 compiler):

Computer programming and programming languages

5 / 12

keyword value Explanation Implicit value
DISPOSE=

DISP=

STATUS=

”SAVE”

”KEEP”

”PRINT”

”DELETE”

”PRINT/DELETE”

”SUBMIT”

”SUBMIT/DELETE”

The state of the logical drive
(usually the file) on close:
- save,
- keep,
- print,
- delete,
- print and then delete,
- invokes a process to execute
the file,
- invokes a process to execute
and then delete the file.

”SAVE” (saving the
contents of the logical
unit).

ERR= label The label of the instruction to
jump to in case of an error
when disconnecting the logical
unit (label is a positive
integer).

Not implicit, no default
jump.

IOMSG= variable Returns the contents of the
variable (which is a
CHARACTER scalar) in a
message.

Not implicit.

IOSTAT= variable Returns a scalar INTEGER
value in the variable, which
indicates the success (or
failure) of closing the logical
unit. If the logical unit was
successfully closed, the value
of the variable is 0.

Not implicit.

UNIT= number The logical unit number
(associated with the desired
file or device) to disconnect
(number is a positive integer).

Not implicit (the logical
unit number can be
specified without the
UNIT= keyword if it is
the first parameter in
the parentheses).

Caution: A file opened with the ”SCRATCH” specification cannot be saved, printed (displayed) or sent to a

process (”SUBMIT”), such an attempt will generate an error at runtime, and if ”READONLY” was
specified when opening, the file cannot be deleted on disconnection (close). A read-only file does not
necessarily need to be closed, but a file whose contents have been changed (written to) must be closed
using the CLOSE statement, otherwise it may be stuck with inaccessible contents when the program

finishes. Writing through a buffer, if it has not been explicitly emptied (by the effect of the CLOSE
statement), then it is not certain that all records have been transferred, and at the end of the program run
there will be no one to manage the contents of the buffer (resulting in the computer's memory being filled
with unnecessary data).

Example: Explanations:
OPEN(3,FILE=”TEST.DAT”,STATUS=”OLD”)

READ(3,*)n,m

CLOSE(3)

Open the existing TEST.DAT file associated with
logical unit number 3, then read the values of
variables N and M from this file and disconnect
the logical unit (close the file).

 DIMENSION A(10,10)

 CHARACTER(12) name

 PRINT *,”data file name: ”

Declare an array of 10x10=100 positions and the
NAME entity with 12 positions (characters). Note
CHARACTER, the letter C in the first column

Computer programming and programming languages

6 / 12

marks comment!
3 READ(*,”(A)”)name

OPEN(1,FILE=name,STATUS=”OLD”,ERR=9)

! get the number of rows for A

 READ(1,*) nl

! get the number of columns for A

 READ(1,*) nc

! read the elements, one row at a time

 DO i=1,nl

 READ(1,*)(A(i,j),j=1,nc)

 ENDDO

…

OPEN(2,FILE=”R.DAT”,STATUS=”UNKNOWN”)

Read the file name into the NAME variable.
Open the (existing) file associated with logical
unit 1, from which the data will be read (see the
comments in the adjacent column marked with
an exclamation mark). If the file does not exist, it
jumps to the instruction labelled 9.

Use an implicit loop (J=1,NC) inside an explicit
loop (I=1,NL) to read elements from an array.

Opening the R.DAT file associated with logical
unit 2 (if the file does not exist, it is created, and
if it exists, it is opened and its contents are
overwritten).

! Write the title to the R.DAT file

 WRITE(2,*)”Array A:”

! Write the elements, line by line:

 DO i=1,nl

 WRITE(2,*)(A(i,j),” ”,j=1,nc)

 ENDDO

Write the elements of the array A, line by line,
with a blank (” ”) after each element.

CLOSE(2)

…

Close the R.DAT file (disconnect logical unit
number 2). Logical unit number 1 has not been
modified and will be automatically disconnected
when the program ends.

9 PRINT *,”file not found!”

GOTO 3

…

If the data file is not found, after displaying the
specified message, an attempt will be made to
read its name again (jumping to the instruction
labelled 3).

There are other additional instructions for handling files (coloured ones not recognised by the G95
compiler), such as:

Instruction syntax: Explanations:

UNLOCK([UNIT=]u[,ERR=label])
 or
UNLOCK u

Unlock a file (after associating it with a logical unit

through the OPEN statement), where u is the
number of the logical unit.

REWIND([UNIT=]u[,ERR=label])
 or
REWIND u

Repositioning to the beginning of the file associated

(previously by the OPEN statement) with logical unit
number u.

REWRITE([UNIT=]u[,[FMT=]f][,ERR=label]) list Rewrite a record to the current position in the file
associated with logical unit number u (via a previous
OPEN statement), with format specification f (if
specified).

ENDFILE([UNIT=]u[,ERR=label])
 or
ENDFILE u

Write the end of file marker to the file associated
with logical unit number u (accessed via a previous
OPEN statement).

Computer programming and programming languages

7 / 12

Format descriptors

Format descriptors are like templates applied to input or output data. They are usually used through the
format specification, which has the following syntax:
 label FORMAT(descriptor_list)
however, descriptors can also appear in quoted form within read or write statements.

There are two categories of descriptors: for data editing and for controlling formatting. They will be
presented below in separate tables, with examples, using the following notations:

n – number of pieces;
w – descriptor length (total number of positions in the respective field);
m – minimum number of positions requested (of the total number), has effect on output only;
d – number of positions for the decimal part (of the total number);
e – number of positions for the exponent (of the total number);
c – character, respectively [c...] other optional characters;
□ – space (blank character) in examples.

Table of descriptors used for data editing (in alphabetical order):

Syntax: Destination: Examples and comments:

[n]A[w] Alphanumeric data
(CHARACTER)

Input:
ABC_D

ABC_D

ABC_D

Format:
A5

A5

A5

Entity type: Value:
CHARACTER(1): D

CHARACTER(3): C_D
CHARACTER(6): ABC_D□

Value:
ABC
ABCDE
ABCDEFG

Format:
A5

A5

A5

Output (5 positions):
□□ABC

ABCDE

ABCDE

[n]Bw[.m] Binary numeric data Input:
1001

1001

1001

Format:
B4

B2

2B2

Value (in decimal form):
9 (all 4 positions read)
2 (only the first 2 positions read)
2 și 1 (2 distinct values)

Value:
13
0
0

Format:
B5

B2

B2.2

Output:
□1101

□0

00

If w=0, as many positions as required to display the value will be
used at the output (w=0 is not allowed at the input).

[n]Dw.d Numerical data in
double precision:

REAL(8) i.e. DOUBLE
PRECISION, or
COMPLEX(8), i.e.
DOUBLE COMPLEX

Input:
123.456E3

12345678

123.45678

Format:
D9.3

D6.2

D7.3

Value (double precision):
123456.0D+0
1234.56D+0
123.456D+0

As can be observed, w positions are read from the input, of which
d positions for the decimal part (from the decimal separator to the
right – if there is no decimal separator at the input, then the
decimal part will result considering d positions at the end of the w
read). The ”D+0” mark at the end only indicates that the values
will be obtained in double precision.

Value:
123456.789
0.0363
-0.5555

Format:
D11.2

D10.3

D10.3

Output:
□□□0.12D+06

□0.363D-01

-0.556D+00

The display will result in w positions, of which d positions for the
decimal part, but it should be noticed that 1 position will be

Computer programming and programming languages

8 / 12

consumed for the sign of the value, 1 more for the decimal
separator (dot), 1 position for the letter of the descriptor (D), the
last 3 positions for the sign and value of the exponent.
If we consider that the first significant digit will be the first decimal

place, it follows that it is advisable that w-d > 6. If this condition is
not met, format overflow will occur (asterisks will be displayed on
the w positions).

[n]Ew.d[Ee] Numeric data in
exponential format
(REAL or COMPLEX)

Input:
□□123.45□□

123456789

123.456D3

Format:
E10.2

E9.3

E9.3

Value:
123.45
123456.789
123456.0 (simple precision!)

As with the previous descriptor, w positions are read from the
input, of which d positions for the decimal part (from the decimal
separator to the right – if there is no decimal separator at the
input, the decimal part will result considering d positions at the
end of the w read). In case of reading double precision values with

this descriptor (or with other usable descriptors except D), a value
converted to single precision will be obtained.

Value:
123456.789
-0.5555
0.0363

Format:
E11.5

E12.3E3

E5.2

Output:
0.12345E+06

□-0.556E+000

***** (format overflow!)

The display will result in w positions, of which d positions for the
decimal part, but it should be noticed that 1 position will be
consumed for the sign of the value, 1 more for the decimal

separator (dot), 1 position for the letter of the descriptor (E), the
last 3 positions for the sign and value of the exponent.
If we consider that the first significant digit will be the first decimal,
it turns out that w-d > 6 [+(e-2)] (where e is the number of digits
of the exponent). If this condition is not met, format overflow will
occur (asterisks will be displayed on the w positions).

[n]ENw.d[Ee] Numeric data in
exponential
”engineering” format

(REAL or COMPLEX)

Input:
123.45E+03

-12345678

123.456D3

Format:
EN10.2

EN9.3

EN9.3

Value:
12345.0
-12345.678
123456.0 (simple precision!)

Value:
123456.789
-0.5555
0.0363

Format:
EN11.2

EN7.1

EN12.3

Output:
□123.46E+03

******* (format overflow!)
□363.000E-04

When displayed, the decimal point will be after the first 3 digits.

[n]ESw.d[Ee] Numeric data in
exponential
”scientific” format
(REAL or COMPLEX)

Input:
□□□1.234E+03

-10.234E-03

Format:
ES12.3

ES11.3

Value:
1234.0
-0.010234

Value:
123456.789
-0.5555
0.0363

Format:
ES11.2

ES10.3

ES12.3

Output:
□□□1.23E+05

-5.555E-01

□□□3.630E-02

On display the decimal point will be after the first significant digit.

[n]Fw.d Numeric data
(REAL, F stands for
”Float”)

Input:
12345678

-12345678

24.77E+2

Format:
F8.5

F8.2

F8.2

Value:
123.45678
-1234.56
2477.0

Computer programming and programming languages

9 / 12

Value:
2.3547188
325.03
-0.2

Format:
F8.5

F5.2

F5.2

Output:
□2.35472

***** (format overflow!)
-0.20

[n]Gw.d[Ee] Intrinsic type data (G
stands for ”Generic”)

Input:
-0.05566

123456

123456.789

Format:
G10.3

G10.3

G10.3

Value:
-0.05566
123.456
123456.79

Value:
-45.66
123456
123456.78

Format:
G11.3

G10.3

G10.3

Output:
□-4.566E+01

□□□□123456

□0.123E+06

Remarks: Descriptor G can be used for any of the intrinsic type

values. If 0 is specified for w, the actual value of w will be chosen
by the processor (in such cases only G0 or G0.d may be specified).
If w is different from 0, then the value for d must also be specified.

In the case of INTEGER, CHARACTER and LOGICAL values the
value specified by d will be ignored, the descriptor will behave as
the one corresponding to these values (I, A and L).

wHc[c...] Hollerith constants

(CHARACTER)

Input: It is not recommended to use, because the content of the
constant can be modified (the G95 compiler will give an error
message!)

Format:
10H#’-’abc”3
21H ”Hollerith” constant

Output:
#’-’abc”3

□”Hollerith”□constant

Remark: Although these constants were originally defined to
contain up to 2000 characters, the number of characters can be
between 1 and 32767 (215

-1) on 32-bit platforms, or between 1

and 2147483647 (231
-1) on 64-bit platforms.

[n]Iw[.m] Integer numeric data

(INTEGER)

Input:
-1234

□□□123

1234.6

Format:
I4

I6

I6

Value:
-123
123
Error! (not INTEGER)

Value:
0
0
1
-123
1.2

Format:
I3

I3.0

I3.2

I3

I4

Output:
□□0

□□□

□01

*** (format overflow!)

Error! (not INTEGER)

[n]Lw Logical data Input – logical values written in the following forms are accepted,
including lowercase (not just uppercase):
.TRUE. or .T or T or if the first characters in the input are.T
or T (for true), or .FALSE. or .F or F or if the first characters
in the input are .F or F or the content is from space/ blanks (for
false).

Value:
.TRUE.
.FALSE.
□□□

Format:
L7

L1

L3

Output:
□□□□□□T

F

□□F

Only 1 character (T or F) will be output regardless of the length w
specified.

[n]Ow[.m] Integer octal numeric
data (with base in 8)

Input:
1111

Format:
O2

Value (decimal):
9

Computer programming and programming languages

10 / 12

1111

□11□

191

12

O4

O4

O3

O0

585
9
Error! (9 is not octal)
Error! (w must be positive)

Value (decimal):
11
-11
-11
1.5
81

Format:
O6.4

O6

O12

O11

O0

Output:
□□0013

****** (format overflow!)
□37777777765

□7760000000

121

If w=0, as many positions as required to display the value will be
used at the output (w=0 is not allowed at the input).

[n]Zw[.m] Integer hexadecimal
numeric data (with
base in 16)

Input:
A2F

-A2F□

3.A2F

Format:
Z3

Z5

Z5

Value (decimal):
2607
-2607
Error! (invalid decimal point)

Value (decimal):
3033
16
-10
1.1
2.5

Format:
Z5

Z5.4

Z8

Z8

Z0

Output:
□□BD9

□0010

FFFFFFF6

3F8CCCCD

40200000

If w=0, as many positions as required to display the value will be
used at the output (w=0 is not allowed at the input).

’c[c...]’ or
”c[c...]”

Quoted alphanumeric
constants
(CHARACTER)

Input: not applicable (cannot be used for entries).

Format:
’aBc’’DD:’ (apostrophe doubled
inside)
’aBc”DD:’ (contained quotation mark)
”abcD’#”

”ab’cD’#” (quote within quote!)

Output:
aBc’DD:

aBc”DD:

abcD’#

Error!

Table of control descriptors:

Syntax: Meaning: Examples and comments:
BN

BZ

BLANK NULL

BLANK ZERO

BN will have the effect of ignoring the spaces in the number fields.
BZ will have the effect of ”replacing” the spaces in the numeric
fields with 0 digits.
Input: Format: Value:
□1□□ BN,I4 1

□1□□ BZ,I4 100

1□23 BZ,I4 1023

kP Power
k is a scaling factor,
with value in the range
[-128, +127]

Allows the interpretation of numeric values with decimals, using the
scale factor k for descriptors D, E, F and G when these values do not
explicitly contain an exponent. On inputs, a positive k value will
have the effect of moving the decimal separator to the left, and a
negative value to the right (on outputs, the effect will be the
reverse). The descriptor P need not necessarily be separated by a
comma from the descriptor to which it refers, but must precede it.
For example, the following specifications will have the same effect,
the scale factor being associated with the first real number
descriptor following it in the list (E10.3):
 (2P,I4,E10.3,F8.2)

 (I4,2P,E10.3,F8.2)

Computer programming and programming languages

11 / 12

 (I4,2PE10.3,F8.2)

Input: Format: Value:
□□□37.614□ 3PE10.5 0.037614

□□□37.614□ -3PE10.5 37614.0
123.45 2PF8.3 1.2345
123.45 -2P,F8.3 12345.0
Value: Format: Output:
-170.139 1P,E10.3 -1.701E+02
-170.139 -1PE10.3 □-0.02E+04

Q Quantity Returns the number of characters (positions) left unprocessed from
the input (although this is usually supported for compatibility
reasons, it is not part of newer versions of Fortran and the G95
compiler will report it as an error).

Source code:
 READ(*,’(Q)’)nr

 PRINT 2,nr

 READ(*,’(Q)’)nr

 PRINT 2,nr

 2 FORMAT(’Buc: ’,I2)

 END

Input:
abcdefg

Display:
Buc: 7

Input:
55aa

Display:
Buc: 4

S

SP

SS

Sign
Sign Positive
Sign Suppress

SP will cause the + sign to be displayed in front of positive values
and SS will inhibit it. S acts as a switch between SP and SS.

Tn

TLn
TRn

Tab
Tab Left
Tab Right
n – tab position

With descriptor T, the position n in a line is indicated, from which
reading (or to which writing) is desired.
Assuming that the following string will be entered from the
keyboard:
123456789ABC

to be read with the sequence:
 CHARACTER(3) C1,C2

 READ(*,5) NR,C1,C2

 5 FORMAT(T7,I3,T1,A3,T10,A3)

the values will result: NR=789; C1=”123” și C2=”ABC”.
TRn allows specifying the nth position to the right from the current

position and TLn to the left (n being a positive number). When
using TL, if n is greater than or equal to the current position, then
positioning will be done on the first character in the row.

[n]X Determine the jump
over n positions in the
current line

On input it will cause n positions to be ignored, and on output it will
have the effect of printing n spaces (if it appears at the end of the
descriptor list, then it has no effect. In the example the effect is
highlighted by marking □ on display):

Source code:
 PRINT 4

 READ 3,nr

 PRINT 4,nr

 3 FORMAT(2X,I2)

 4 FORMAT(”number:”,1X,I2)

Display:
number:

Input:
1234

Display:
number:□34

$

\
Suppress the jump to a
new line (suppress
<LF>).

It will cause the cursor to remain at the last current position (<LF> is
short for Line_Feed).
The $ variant is newer, but not part of the standard, and the \
variant is the ”classic” one (the G95 compiler supports both).
Whichever variant is used, the descriptor must be the last in the list
to which it belongs.

Computer programming and programming languages

12 / 12

 Source code:
 PRINT 5,”nr:”

 READ *,nr

 PRINT 4,nr

 5 FORMAT(A,$)

 4 FORMAT(”number:”,1X,I2)

Display+Input (12):

nr:12
Display:
number:□12

[n]/ Induces n new line
jumps (induces n
pieces of <LF>)

It can also be used without n, e.g. (3/) is equivalent to (///),
without the need for separating commas. In the following example
it will insert a new line feed before displaying ”number”, then insert
2 more new line feeds:

Source code:
 PRINT 5,”nr:”

 READ *,nr

 PRINT 4,nr

5 FORMAT(A,$)

4 FORMAT(/”number:”,2/,3X,I2)

Display+Input (12):
nr:12
Display:
□

number:

□

□□□12

: Ends descriptor control
in the absence of
input/output list items

In the following example, in the absence of items to display, the
descriptor will cause the ”j2” part to be ignored:

Source code:
 PRINT 1,3

 PRINT 2,14

1 FORMAT(”i”,I2,1X,”i2”,I2)

2 FORMAT(”j”,I2,:,1X,”j2”,I2)

Display:
i□3i2□□

j14

The format specification may also be composed of string (character) expressions. The following example

shows how it might apply for N pairs of descriptors of the form (I2,1X), assuming 1< N <9:

Example: Explanations:
CHARACTER fm(10)

INTEGER j(9)

Declare the FM string with 10 positions (to be used as format
specification).
The variable J will have 9 positions (will be a vector) and will
contain the values to be displayed with descriptors of type
I2.

PRINT *,”nr. (1-9): ”

READ(*,*)n

The quoted string is displayed and on reading the number
entered (of desired pieces) is stored in variable N.

k=48+n

The character table position number of the digit
corresponding to the number of pieces (in variable N) is
composed, obtaining the digit character representing that
value.

fm=”(”//ACHAR(k)//”(i2,1x))” By concatenation and using the intrinsic function ACHAR
(which returns the character at position K in the character
table) an alphanumeric string is composed and assigned to
the variable FM, which will be the format descriptor with N

pairs of fields of type I2 (integer two positions) and 1X (one
space) for the N values.

PRINT *,”the ”,n,” values: ”

READ *,(j(i),i=1,n)

The quoted string (including the value of N) is displayed, then
the values corresponding to the N positions of the vector J are
read (by implicit loop).

WRITE(*,fm)(j(i),i=1,n)

END

The N positions of the vector J are displayed (also by implicit
loop) using the format specification stored in the FM variable
as an alphanumeric string.

