

Computer programming and programming languages

1 / 13

Theory for WORK 8 onwards

Program units

All programs written in the Fortran language can be organized into program units. A program unit is
considered a sequence of specifications and instructions that can be written to a separate source file and
compiled. Of course, several program units can also be written to a source file, and the order in which they
are written is not important, except for modules (modules must be compiled before the program units that
use them, so they must appear before them in the source file, so that by the time the unit that uses the
module is compiled, the module is already compiled).
Usually each program unit starts with a definition and ends with the END mark followed by the specification
of the corresponding program unit type. Program unit names must be unique and must comply with the
criteria for symbolic names (cannot contain spaces or non-permitted characters, must start with a letter
and cannot be longer than 32 characters, and for older versions of Fortran it is recommended to limit it to 6
characters).
No all program units may contain executable instructions, there are program units that may only contain
specifications relating to entities used by other program units. There are 4 types of program units in
Fortran:

- Main program (required in any application and may contain executable instructions),
- External procedures (subroutines, functions – may contain executable instructions),
- Modules (may not contain executable instructions, only possibly in embedded module procedures)
- Data blocks (cannot contain executable instructions, only specifications).

Each application created using Fortran must contain a single main program (this will be launched at the
start of the run). External procedures are subroutines and functions that are defined separately. There are
several types of procedures, but only external ones are considered program units. Modules are pre-
compiled units (must be compiled before the program units that use them), usually containing only entity
specifications. Data blocks contain specifications about entities and may also contain data initializations.
The difference between data blocks and data files is the content of the specifications that require
compilation (data files contain only values, no specifications in Fortran, so do not require compilation). The
main program and procedures can contain executable statements, data blocks and modules can only
contain entity specifications (with the exception that modules can also contain executable statements if
these statements are part of module procedures).

Main program

Cannot be missing from any application and no application can contain more than 1 main program. This is
the only program unit where specifying the type of program unit is optional. A main program cannot self-
reference (directly or indirectly). The syntax of a main program is as follows (with comments):

[PROGRAM name] If the keyword PROGRAM is used, then the name must also be specified
(which must be unique and will be considered global - meaning it will be
"seen" from all program units). Without the keyword PROGRAM no name
can be specified, in such cases the default MAIN name for the program
will be considered. Any program unit that starts with specifications or
comments (or compilation directives via the OPTIONS keyword) will be
considered main program.

[specifications] The keywords INTENT, OPTIONAL, PUBLIC and PRIVATE may not
be used in specifications. The entity specifications in all program units
must precede the executable instructions.

[executable statements] ENTRY and RETURN keywords may not be used.
[CONTAINS
internal procedures]

Several internal procedures (subroutines and functions) may be defined
successively..

END [PROGRAM [name]] The final marking must be at least the END keyword. It may also be
followed by the keyword PROGRAM, but the name may only be specified

Computer programming and programming languages

2 / 13

if explicitly defined at the beginning of the program unit.

Example: Explanations:

END

Main program with default name MAIN, without content.

PRINT *,”Hello!”

END PROGRAM

Main program that will only display the text Hello! on the
monitor.

PROGRAM test

INTEGER C, D

 …

CALL sub1

 …

CONTAINS

 SUBROUTINE sub1

 …

 PRINT *, func(X,Y)

 …

 END SUBROUTINE sub1

 FUNCTION func(X,Y)

 …

 END FUNCTION func

END PROGRAM test

Main program named TEST, that will call subroutine SUB1
(contained as an internal procedure, along with the FUNC function).
Call subroutine named SUB1.

Marking the contained procedures.
Defining subroutine SUB1 as an internal procedure.

Printing the result of the FUNC function for the current values of
arguments X and Y.
End marking for internal procedure SUB1.
Defining the FUNC function as an internal procedure.

End marking for internal procedure FUNC.
End mark for main program TEST with name indication (although

END was sufficient).

Procedures

May be subroutines or functions, but only those defined as external procedures are program units.
Procedures can be self-referencing (directly or indirectly) and have implicit interfaces (but interfaces can
also be explicitly specified, via interface blocks). The types of procedures existing in Fortran are as follows:

- External procedures (subroutines and functions that are not part of another program unit);
- Internal procedures (subroutines and functions that are part of a main program or another

procedure);
- Module procedures (procedures defined within modules);
- Intrinsic procedures (subroutines and functions predefined in the Fortran language);
- Dummy procedures (usually a dummy argument specified as a procedure, or listed as a procedure

reference);
- Statement function (a computational procedure defined by a single statement, which may be

referred to by its symbolic name).
All procedures have an interface, which is usually defined by default. A procedure interface refers to the
properties of a procedure with which it interacts, or to the calling program unit. The interface may also be
explicitly defined, through interface blocks. With the exception of data blocks, all program units may
contain interface blocks.

External procedures may contain internal procedures, but internal and module procedures cannot contain
internal procedures. Internal procedures are in the section preceded by the CONTAINS keyword and have
access to all entities in the containing program unit (HOST). Their name cannot be used as an argument to
another procedure (there are variants of Fortran that allow this, e.g. Intel Visual Fortran) and they cannot
contain separate entry points (via the ENTRY specification).
Subroutines are invoked by the CALL statement or by a defined assigned statement. Subroutines do not
return a value directly, but values may be transferred by known arguments or variables between the calling
program unit and the subroutine. The return from a subroutine to the calling program unit is done by the
RETURN statement, whose syntax is as follows:

RETURN [number] The RETURN keyword may be followed by a number or numeric expression

Computer programming and programming languages

3 / 13

whose value must be of type INTEGER (signifying the reserved position in the
list of arguments by which the calling program unit will be returned).

Functions are invoked by name or by a defined operator. Normally they return a single result value
(through the function name) after evaluation. The return from a function will default to the program unit in
which the function reference was used, but the RETURN statement (shown above) can also be used to
specify different return points from the function endpoint.

Entrance to a procedure (by CALL instruction in the case of subroutines, by name invocation in the case of
a function) can also be made at a position other than the start of the procedure, by using the ENTRY
specification, whose syntax is:

ENTRY name [(arguments)] The statement may be specified in the content of external procedures
(it cannot be used in internal procedures), being part of the body of
the procedure, and the name is the name of the entry point in the
procedure (different from the name of the procedure) by which that
part of the procedure will be invoked. In such cases the statements

preceding the ENTRY specification in the procedure definition will be
ignored when the procedure is activated (execution of the statements
in the procedure will start from the first statement following the
specified entry point).

It is generally recommended to avoid the use of entry points in procedures, for clarity of source files.
Arguments that are specified when defining a procedure (or an entry point in an external procedure) are
considered notional, in the sense that at the time of procedure definition their values are not known, only
their type. Arguments that are specified when invoking a procedure are considered effective, because in
addition to knowing their type, their actual values are usually known. The order and type of the actual
arguments (used at the call) must coincide with the order and type of the notional arguments (used when
defining the procedure), but the name of the notional arguments may differ from the name of the effective
arguments.

When defining procedures, in front of the keyword specifying the type of procedure, some characteristics
can also be specified, such as::

ELEMENTAL Where it is desired that the procedure be applied to only one element in an array at a time.
PURE To avoid possible side-effects (on the value of the entities used). In the case of functions

declared PURE, the INTENT options for arguments and function names will not be used (in

subroutines there is no such restriction). In addition, a procedure declared PURE will only
be able to use other PURE procedures.

RECURSIVE As mentioned, direct or indirect recursion (self-reference) is allowed for functions and
subroutines. If this feature is specified, when defining the procedure, the line declaring the
type of the procedure (after the list of dummy arguments) may be completed with
RESULT(name_r) to specify a different name (name_r) from the original name of the
procedure, this different name being used for recursion.

MODULE To specify a module procedure (can only be used within modules).

Subroutines:
In addition to the intrinsic subroutines existing in the Fortran language, other subroutines may be defined
as needed. The syntax for defining a subroutine is as follows:

SUBROUTINE name [(arguments)] Before the SUBROUTINE keyword, a procedure characteristic
(ELEMENTAL, PURE, RECURSIVE) can be specified and the
arguments are optional (they are only specified if value transfer
between the calling program unit and the subprogram is desired).
Arguments are considered notional in the sense that at the time of
subprogram definition their values are not known, only their type.
Reserved placeholders can also be used as arguments (see

RETURN examples below).

Computer programming and programming languages

4 / 13

[specifications] In all program units, entity specifications must precede executable
instructions.

[executable statements] They may contain ENTRY specifications (for defining entry points)

and RETURN instructions (for returning to the program unit from
which the subroutine was called).

[CONTAINS
Internal_procedures]

Several internal procedures (subroutines and functions) can be
defined in succession, but only in the case of a subroutine defined
as an external procedure.
For internal procedures this section cannot appear.

END [SUBROUTINE [name]] The final marking must be at least the END keyword for
subroutines defined as an external procedure. It may also be
followed by the keyword SUBROUTINE, possibly also by name.
In the case of internal procedures the end marker must contain at

least both keywords END SUBROUTINE.

Calling a subroutine is done by the CALL statement, whose syntax is as follows:

CALL name [(arguments)] Arguments are specified if they exist in the subroutine definition.
On call these arguments are considered effective, in the sense that
at the time the subroutine is called, along with their type and their
values, they are usually known. The order of the effective
arguments (from the subprogram call) must match the order of
the notional arguments (from the subroutine definition) as type,
but different names may be used.

Examples: Explanations:
! main program

CALL hi

END PROGRAM

! subroutine

SUBROUTINE hi

 PRINT *,”Hello!”

END SUBROUTINE salut

Main program that will only call the HI subroutine
defined as an external procedure, and the subroutine
will only display the text Hello! on the monitor.
In the example below the run will stop in the
subprogram.
It can also be seen that at the end of the main

program mark (END PROGRAM) it was not possible to
specify the name of the main program as it was not
defined.

! main program

CALL hi

END

! subroutine

SUBROUTINE hi

 PRINT *,”Hello!”

 RETURN

END

The previous example modified by inserting the

RETURN statement in the definition of the subroutine
HI. In this case, after calling the subroutine and
displaying the text Hello! on the monitor, it will
return to the main program and the run will stop at
the end of the main program.
It can also be seen that the END marking for the
subroutine defined as an external procedure is
sufficient.

! subroutine with entry point

SUBROUTINE sign

 PRINT *,”positive value”

 RETURN

ENTRY negative

 PRINT *,”strictly negative value”

 RETURN

END

! calling program unit

Example with an entry point named NEGATIVE in the
subprogram named SIGN.
If the value of scalar N is negative, then NEGATIVE is
called, which is not a subroutine, but an entry point in
the subroutine SIGN. As an effect, the executable
instructions preceding the specification of the
NEGATIVE entry point in the SIGN subroutine shall be
ignored and the message strictly negative
value shall be printed on the display, after which it

Computer programming and programming languages

5 / 13

…

IF(N < 0) THEN

 CALL negative

ELSE

 CALL sign

ENDIF

…

END

shall return to the calling program unit.
If the value of scalar N is not negative, then the SEMN
subroutine is called and the instructions are executed
until the first RETURN is encountered (the message
positive value is displayed and then the calling
program unit is returned).
Of course, the specification of an entry point only
conditions the start from which the instructions are

executed, not the end (if RETURN had not been
specified before the NEGATIVE entry point, when
calling the SIGN subroutine after the positive
value message was displayed, the strictly
negative value message would also be
displayed).

! calling program unit

 …

 CALL verif(A,B,*10,*20,C)

 PRINT *,”negative value”

 GOTO 30

10 PRINT *,”null value”

 GOTO 30

20 PRINT *,”positive value”

30 CONTINUE

 …

 END

! subroutine as external procedure

 SUBROUTINE verif(X,Y,*,*,Z)

 …

 IF(X*Y-Z) 50,54,55

50 RETURN

54 RETURN 1

55 RETURN 2

 END

In the program unit from which the VERIF subroutine
is called, in the list of effective arguments appear the

scalar entities of type REAL (due to the implicit rule)
A, B, the reserved positions (by the * mark) with
labels 10 and 20, respectively the scalar entity C (also
of type REAL due to the implicit rule). These
arguments correspond in order (and type) to the
notional arguments that were specified when defining

the subroutine: X and Y (of type REAL by default),
then 2 reserved positions (each marked by *) and Z
(of type REAL by default).
When the VERIF subroutine is called, the value from A
will be transferred to X, the value from B to Y, and the
value from C to Z in the subroutine. When the
subroutine comes to test the value resulting from the
arithmetic expression, the appropriate label is chosen
from the list (in the case of a strictly negative result it
jumps to label 50, in the case of a null result to label
54, and in the case of a strictly positive result to label
55). If jumping to the instruction with label 50, the
return to the calling unit will be made to the actual
arguments of the CALL instruction (the value in A will
be updated from the value of X, B from Y, and C from
Z) and the first instruction that follows will be
executed (displaying the negative value text)
and then jumping to the instruction with label 30. So
the value transfer will also be from the subroutine to
the calling program unit (no other options being
specified by INTENT) and RETURN means ”normal”
return.
If the arithmetic condition in the subroutine results in
jumping to the instruction with label 54, the return to
the calling unit will be done by activating the first
reserved position in the list of notional arguments,
which in the list of actual arguments corresponds to

*10, consequently the first instruction executed after
the return will be the one with label 10 (the text
null value will be displayed after which it will
jump to the instruction with label 30). So RETURN 1

Computer programming and programming languages

6 / 13

means return through the first reserved position.
If the arithmetic condition in the subroutine results in
jumping to the instruction with label 55, the return to
the calling unit will be done by activating the second
reserved position (due to the value 2 specified in
RETURN) in the list of notional arguments, which in

the list of actual arguments corresponds to *20,
consequently the first instruction executed after the
return will be the one with label 20 (the text
positive value will be displayed after which the
instruction with label 30 will continue). So RETURN 2
means return through the second reserved position.

Functions:
n addition to the intrinsic functions existing in the Fortran language, it is possible to define different
functions. There are several categories of functions: defined as external procedures (program units),
defined as internal or module procedures (contained by other program units), defined as an statement (in a
single specification expression). The use of functions is done by specifying the name and arguments (if a
function has no arguments, then the name will be followed by empty brackets) within instructions. You can
pass values to functions via arguments (as with subroutines, except that unlike subroutines, with functions
the parentheses enclosing the arguments are mandatory, even if they are not arguments), but functions
will return a result via their name, not their arguments! With this in mind, an expression calculating the
result of the function must be mandatory in the definition of a function.

When defining a function, in addition to keywords specifying characteristics (ELEMENTAL, PURE,
RECURSIVE, MODULE), the type of the function can also be specified (in the case of those defined as
external procedures, only intrinsic types can be used). The syntax for defining a function as a procedure is
as follows:

[type] FUNCTION name([arguments]) Before the FUNCTION keyword, a function characteristic
(ELEMENTAL, PURE, RECURSIVE) and a type (INTEGER,
REAL, COMPLEX, LOGICAL, CHARACTER, BYTE) can be
specified, and the arguments are optional (they are specified
only if value transfer between the calling program unit and the
function is desired), but the argument delimiting parentheses are
mandatory. Arguments are considered notional in the sense that
at the time of function definition their actual values are not
known, only their type.
In the case of self-reference (RECURSIVE), the definition must

be completed at the end of this line with RESULT(name_r).
[specifications] In all program units, entity specifications must precede

executable instructions.
[executable statements] They may contain ENTRY specifications (for defining entry

points) and RETURN instructions (for returning to the program
unit from which the function was called).
It must also contain an expression to obtain the result of the
function!

[CONTAINS
Internal procedures]

Several internal procedures (subroutines and functions) can be
defined in succession, but only in the case of a function defined
as an external procedure.
For internal procedures this section cannot appear.

END [FUNCTION [name]] The final marking must be at least the END keyword for functions
defined as an external procedure. It may also be followed by the
keyword FUNCTION, possibly also by name.

Computer programming and programming languages

7 / 13

In the case of internal procedures the end marker must contain

at least both keywords END FUNCTION.

Invoking a function is done by using the name and actual arguments (if any) in a statement, in the form:

 … name([arguments]) Arguments are specified if they exist in the function definition (if
they do not, then the parentheses will be empty). On call these
arguments are considered effective, in the sense that at the time
the function is invoked, along with their type and values, they are
usually known. The order of the effective arguments (at function
invoking) must match the order of the notional arguments (from
function definition) as type, but different names may be used.

Examples: Explanations:
! main program

 INTEGER on2

10 PRINT *,”numar: ”

 READ *,i

 IF(i==0) STOP

 PRINT *,on2(i)

 GOTO 10

END

! on2 function definition

INTEGER FUNCTION on2(nr)

on2=nr/2

END

Main program that will invoke the ON2 function
defined as an external procedure, and display the
result of this function for the value of the effective
argument I (on the monitor). The program will stop
only if the value read for I is null.
When the function is invoked (to print the result) it
will transfer the value of I to NR (from the function
definition), and the returned result will be obtained
by the name of the ON2 function.
It can also be seen that the END marking for the
function defined as an external procedure is
sufficient.

! main program

 INTEGER on2

10 PRINT *,”numar: ”

 READ *,i

 IF(i == 0) STOP

 PRINT *,on2(i)

 GOTO 10

CONTAINS

! on2 function definition

FUNCTION on2(nr)

INTEGER on2

on2=nr/2

END FUNCTION on2

END

Previous example modified by making the function
definition an internal procedure. Although it was
possible to define the function by specifying the type
INTEGER as in the previous case, it was chosen to
specify the type separately.
In this case the function end marking must also

contain the keyword FUNCTION (next to END), the
mention of the function name is optional there.

! main program

 INTEGER on2,nr

! on2 function definition

on2(nr)=nr/2

! executabile statements

10 PRINT *,”numar: ”

 READ *, i

 IF(i==0) STOP

 PRINT *,on2(i)

 GOTO 10

END PROGRAM

The previous example modified by transforming the
function definition into a statement. It can be seen
that in this variant the function name is followed by
the notional argument in the definition line. The
statement function definition is not an executable
instruction, so it must appear in the specification
area.

PROGRAM factorial

INTEGER f,i

PRINT *,”i: ”

READ *,i

PRINT *,”factorial of ”,i,”:”,f(i)

A ”classic” example of a function defined as a self-
referring (recursive) procedure for calculating the
factorial value of a number.

Computer programming and programming languages

8 / 13

END

! recursive function definition

RECURSIVE FUNCTION f(i) RESULT(fa)

INTEGER f,fa

IF(i==1) THEN

 fa=1

ELSE

 fa=i*f(i-1)

ENDIF

END

Note that in this case, since RECURSIVE is specified,
the specification RESULT(name_r) is also
mandatory, name_r being the name of the function
used for self-referencing (recursion) in the
description. Although the function is named F, the
name FA (the one specified for RESULT) is used for
the calculation of the result of the function in its
definition.

PROGRAM array_function

PRINT *,'a,b,c: '

READ *,a,b,c

PRINT *,func(a,b,c)

CONTAINS

! internal procedure

 FUNCTION func(x1,x2,x3)

 DIMENSION func(3)

 func(1)=x1

 func(2)=x2

 func(3)=x3

 END FUNCTION

END

A quick example of a function defined as an internal
procedure and as an array. Although a function
normally returns a single result (a single scalar value),
in the case of defining it as an internal procedure, you
can also create an array function (which will return a
result as an array).
When the function is called, the arguments are
passed in the specified order (X1 corresponds to the
value in A, X2 corresponds to B, X3 corresponds to C)
and the result is obtained by the name of the function
(in this case, 3 different values). For each position in
the function FUNC - array with 3 positions: FUNC(1),
FUNC(2) AND FUNC(3) - the results are calculated. The
first item in the FUNC array will take the value from
X1, the second will take the value from X2 and the
third will take the value from X3. Thus, when the
result of FUNC(A,B,C) is printed, 3 consecutive
different values will be displayed on the monitor.

Modules

These are program units that usually contain specifications and definitions that can be made accessible to
other program units. They may also contain explicit interfaces (via interface blocks) to an external

procedure or DUMMY procedure. The syntax of a module definition is as follows:

MODULE name It is obligatory to give a name, it is global and it is unique!!
[specifications] Cannot contain: AUTOMATIC, ENTRY, FORMAT, INTENT, OPTIONAL

and no defined or intrinsic functions.

[CONTAINS
Module procedures]

Executable statements can only occur within module (internal)
procedures.

END [MODULE [name]] It is sufficient to specify only the END keyword (if the module has not been
named, there is no name to specify).

A module can only be used after compilation by specifying its use in the target program unit with the:

 USE name (where name is the name by which the module was defined).

Exemple: Explicații:
MODULE prim

 INTEGER,PARAMETER :: A,B

 REAL E22(5,5)

END

! using it in program units

SUBROUTINE P21

 USE prim

 …

A module defined as PRIM that contains only a few data
specifications.

If it is written in the same source file as the program unit
that will use it (e.g. subroutine P21 and function FU33),
the module must be placed before the program unit, so

Computer programming and programming languages

9 / 13

END

FUNCTION FU33(A,X)

 USE prim

 …

END

that when the contents of the source file are compiled, by
the time USE PRIM is reached, the module has already
been compiled!

MODULE cal_M

TYPE element

 PRIVATE

 INTEGER C,D

END TYPE

 …

INTERFACE

 FUNCTION calculate(R)

 REAL :: calculate

 REAL,INTENT(IN) :: R(:)

 END FUCTION

END INTERFACE

END MODULE cal_M

A module called CAL_M, in which a derived type called
ELEMENT (default PUBLIC, so visible from all program
units) has been defined, with the C and D components

declared PRIVATE (visible only from the module).

After specifying the derived type, there follows an
interface block for the CALCULATE function, where the
argument R is a vector used only for input (passing values
to the CALCULATE function), both the CALCULATE function
(the value resulting from the expression specified
elsewhere in the function definition) and R being of type

REAL.

An older and more complex example (from https://www.star.le.ac.uk/~cgp/f90course/f90.html#tth_sEc6)
with a module that could be used to simulate the operation of a console window (VT100 or X-TERM
window) controlled by ESC (ASCII) sequences, similar to ANSI.SYS in DOS, also containing module
procedures:

MODULE vt_mod

 IMPLICIT NONE

! specifying the code for <ESC> as a constant value named ESC

 CHARACTER(1),PARAMETER :: esc=ACHAR(27)

! initialising variables for 80 columns and 24 rows on the screen

 INTEGER,SAVE :: nr_c=80,nr_r=24

 CONTAINS

! clear the display and move the cursor to the top left

 SUBROUTINE clear_disp

 CALL write_str(esc//”[H”//esc//”[2J”)

 END SUBROUTINE clear_disp

! set the new width to 80 or 132 columns

 SUBROUTINE set_w(col)

 INTEGER, INTENT(IN) :: col

 IF (col>80) THEN

 ! switch to 132 columns

 CALL write_str(esc//”[?3h”)

 nr_c=132

 ELSE

 ! switch to 80 columns

 CALL write_str(esc//”[?3l”)

 nr_c=80

 ENDIF

 END SUBROUTINE set_w

! get the actual width

 SUBROUTINE get_w(col)

 INTEGER,INTENT(OUT) :: col

 col=nr_c

 END SUBROUTINE get_w

! for internal use only

 SUBROUTINE write_str(string)

 CHARACTER,INTENT(IN) :: string

https://www.star.le.ac.uk/~cgp/f90course/f90.html#tth_sEc6

Computer programming and programming languages

10 / 13

 WRITE(*,”(1X,A)”,ADVANCE=”NO”)string

 END SUBROUTINE write_str

END MODULE vt_mod

This module can be used with the following specification variants (examples):
USE vt_mod Use the entire contents of the module.
USE vt_mod,ONLY:clear_disp Use only the module procedure CLEAR_DISP from

procedures.
USE vt_mod,wide=>get_w Use the whole module, but temporarily replacing the

name of the module procedure GET_W with the new
name WIDE.

Block Data units

These program units are intended to provide the possibility of initialising entities in common blocks (shared
memory areas), but are considered obsolete because the COMMON specification has been removed since
the Fortran 90 standard (but the G95 compiler supports it and in the absence of this specification will issue
a warning message). Blocks contain entity specifications, possibly with initialization of some data (not in the

case of POINTER and TARGET), but cannot contain executable instructions. The syntax of a data block
definition is as follows:

BLOCK DATA [name] Giving a name is optional, mostly for the clarity of the source files. If
more than one block is defined, only one can be unnamed.

[specifications] May contain: COMMON (depending on the compiler), INTRINSIC,

STATIC, USE (only for named constants), DATA (for data
initialisations), PARAMETER (for constants), TARGET and POINTER

(but no initialisations), DIMENSION (for arrays), type (keywords for
intrinsic data types), TYPE (with user-defined type names and
definitions), RECORD and STRUCTURE (for records), EQUIVALENCE,

IMPLICIT, SAVE.
END [BLOCK DATA [name]] It is sufficient to specify only the END keyword (if the data block has not

been named, then there is no name to specify).

Example: Explanations:
! main program

 CHARACTER(6) Actor

 COMMON /zona1/a,b,c,d,Actor

 INTEGER :: s1=2

 PRINT *,"s1:",s1

 PRINT *, a,b,c,d

 PRINT 2,Actor

 …

2 format("Actor: ",A)

 …

END

! data block for initialisation

BLOCK DATA

 DIMENSION x(4)

 COMMON /zona1/x,name

 DATA x/3*1.,5/

 CHARACTER(6) :: name="Adrian"

END

The COMMON specification is used to designate by
name and composition a common memory area,
addressable from any program unit (by specifying
the common block name). The syntax for specifying
a common block is:
 COMMON /name/entity_list[[,]…]

Definition of a data block specifying and initialising
some data. Due to the COMMON specification, the
entities X (4-digit vector) and NAME, which are part
of the common block called ZONE1, will occupy the
same memory area as A, B, C, D and ACTOR

(containing the string Adrian), provided that the
storage size of the corresponding entities is
identical.

Computer programming and programming languages

11 / 13

Dynamically allocated memory

As described in the section on arrays, they can be declared by specifying a type or by specifying

DIMENSION, COMMON (depending on the compiler), ALLOCATABLE, also POINTER or TARGET (only
since Fortran 95). A known (and unchangeable during the execution of the program) size in computer
memory is allocated to an array by the type specification alone, or by using DIMENSION with the bounds
set corresponding to each extent (rank) of an array. This size is a maximum size and need not be used in full
(fewer positions in the table can be used). If memory usage is to be optimised (less space means fewer
addresses, resulting in higher speed), then it would be desirable not to allocate unused space. This can be
achieved by dynamically allocating memory at runtime, specifying only the size of the tables that are really
needed. Thus, when the program is written, only the number of extents (or rank) of the array is reserved
into memory (creating the possibility of generating addresses for possible locations), and the actual
allocation of memory space to the array takes place only when the statements that require this have been
reached. Of course, the programmer has to bear in mind that in this way it is not the operating system that
manages the memory allocated to the array, but the program, so the release of this memory must also be
controlled by statements. If this aspect is ignored, then after each execution of the program, areas of
memory will remain occupied and uncontrolled (this phenomenon is called ”memory leakage”), which,
after repeated executions, can lead to the working memory being filled up, making it difficult or even
blocking the operation of the computer.

Dynamically allocated memory can be achieved in one of three ways:

- Allocatable arrays (using the ALLOCATABLE specification),
- Pointer or target arrays (via the POINTER or TARGET specification – since Fortran 95),
- Automatically allocated arrays (by passing data to procedures).

Allocatable arrays:
When using the ALLOCATABLE specification, the rank (number of extents) of the array must be reserved
accordingly, and the lower and upper bounds (limits) of the array can be set at any time within the program
(if they have not already been set). The ALLOCATABLE specification cannot be combined with the

COMMON, DATA, EQUIVALENCE or NAMELIST specifications.
Allocatable arrays can only be used between procedures if memory has been allocated for them
beforehand (limits have been set for each rank), but to avoid ”memory leaks” the space allocated for them
must be freed (deallocated) before the end of the procedure in which memory has been allocated. Multiple
allocations to an array are not allowed (to test the allocation status, the intrinsic ALLOCATED function can

be used, which returns the logical value .TRUE. if the array already has allocated space). The DEALLOCATE
intrinsic function can be used to free the allocated memory of an array, and the ALLOCATE intrinsic
function can be used to allocate memory.

Example: Explanations:
REAL,ALLOCATABLE :: v(:),m(:,:)

 …

ALLOCATE(v(10),m(0:9,-2:7))

 …

Two allocatable arrays have been declared, the vector
V with rank 1 (reserved by the : character) and the
matrix M with rank 2 (i.e. 2 dimensions).
10 positions have been allocated for the vector V and
10x10=100 positions for the matrix M (from 0 to 9
inclusive for the first extent and from -2 to 7 inclusive
for the second extent). Remember to close the brackets
for the ALLOCATE function!

DEALLOCATE(v,m)

 …

IF (ALLOCATED(m)) THEN

 DEALLOCATE(m)

ENDIF

 …

Free the memory allocated to the previous 2 arrays.

Use a logical expression to check the state of array M to
avoid double allocation (not allowed). The memory

space is released (by DEALLOCATE) only if the intrinsic
function ALLOCATED indicates (by returning the

Computer programming and programming languages

12 / 13

logical value .TRUE.) that there is already previously
allocated memory space. If the intrinsic function

ALLOCATED returns the logical value .FALSE., it
means that no memory space is allocated to the
specified array and therefore there is no need to
release the memory (the intrinsic function

DEALLOCATE is ignored).
ALLOCATE(m(3,3))

 …

Allocate a new size of memory to the M array, this time
3x3=9 positions.

DEALLOCATE(m)

 …

Release the memory allocated to the M array before
the end of the programme unit.

Pointer/Target arrays:
A POINTER does not contain data, but points to a scalar or array where data can be stored. The scalar or
array to which a POINTER points must have the TARGET attribute. Unlike allocatable arrays, a POINTER
(or TARGET) array can be passed to a procedure without prior allocation of memory space. The memory
for such an array is not actually allocated until the program is executed. The syntax for specifying these
arrays is similar to that of allocatable arrays, with the exception that POINTER arrays usually require an
explicit interface (for internal procedures, the interface is known). Since the specification of POINTER (and
TARGET) arrays is only possible from Fortran 95 (similar to the use of the ALLOCATABLE specification
already presented), in the case of Fortran 90 variants such arrays can be created by the derived type
specification (which will be exemplified in the following).

Example: Explanations:
TYPE p_array

 REAL,DIMENSION(:),POINTER :: tp

END TYPE

 …

TYPE(p_array),ALLOCATABLE :: vp(:)

 …

A derived type named P_ARRAY has been declared,

containing a component of type REAL with the
attribute POINTER as a vector (array of rank 1)
named TP.
This derived type P_ARRAY is used to declare
another allocatable array called VP, also in vector
form (array of rank 1). This means that each
element of VP will have in its composition an array
of type REAL with the attribute POINTER in the
form of a vector (array of rank 1) called TP.

READ(*,*) n,m

 …

ALLOCATE(vp(n))

DO i=1,n

 ALLOCATE(vp%tp(m))

ENDDO

 …

Assuming that the values of the scalar entities of
type INTEGER N and M are known (in the adjacent
example by reading), the desired storage space (in
the adjacent example N positions) for the array VP,
respectively the desired storage space (in the
adjacent example M positions) for each component
of type TP in VP. Thus, each element of the
POINTER VP array will have M positions, which
means that the VP array will have a total of NxM
positions.

DEALLOCATE(vp) Release of the allocated space, as in the case of
allocatable arrays.

Automatically allocated arrays:
Automatically allocated arrays are variables allowed only within procedures (subroutines and functions),
and the lower and upper bounds for each pre-reserved extent (reserved rank) are set at the time of the
procedure call. These arrays cannot be initialised (their elements cannot contain initial values) and values
cannot be passed through such arrays between procedures.

Computer programming and programming languages

13 / 13

Example: Explanations:
SUBROUTINE points(nr,pos)

INTEGER,INTENT(IN) :: nr

REAL,INTENT(OUT) :: pos

REAL :: zone(nr),zone_2(2*nr)

 …

A subroutine named POINTS has been specified with
arguments NR and POS (whose value is known at the time
the subroutine is entered). The argument NR is of type
INTEGER and is only used as a value to pass to the POINTS
subroutine. POS is of type REAL and is only used to pass a
value from the POINTS subroutine to the program unit
calling the subroutine.
At the time of activation of the POINTS subroutine (when
the known NR value is passed to the subroutine), the REAL
arrays named ZONE and ZONE_2 are automatically allocated
memory space (defined size).

PROGRAM array_function

ALLOCATABLE X(:)

PRINT *,”n: ”

READ *,n

ALLOCATE(X(n))

PRINT *,”the ”,n,” values: ”

READ *,(X(i),i=1,n)

PRINT *,func(n,X)

DEALLOCATE(X)

CONTAINS

 FUNCTION func(k,X)

 DIMENSION func(k),X(k)

 DO i=1,k

 func(i)=X(i)

 ENDDO

 END FUNCTION

END

A more complex example with a function defined as an
internal procedure and as an automatic array (extending an
earlier example from the function walkthrough). The array X
passed to the FUNC function (along with the size of N)
benefits from dynamic memory allocation. The memory
allocated to the array X is freed before the program ends.
When the function is called, the arguments are passed and
the result is obtained by the function name (in this case, N
different values).
The function (array) will automatically have K positions
(corresponding to the N values passed at the time of the
call). Each element in the FUNC array receives the value of
the corresponding position in the X array.

