
STATICS – 1   RELATIONS BETWEEN FORCES 

DIFFERENTIAL REALTIONS BETWEEN LOADS AND STRESSES 
 
By any planar curved beam, regardless of the shape of its curvature, a segment with an almost 
negligible length (ds) may be considered. With such a small length, its curvature can be considered 
circular in shape (having R radius), while the load on the segment 
can be considered as a portion of a uniformly distributed force 
(having the p intensity and a certain orientation). The intensity of 
this evenly distributed load can be decomposed into a pt tangential 
component and a pn normal component relative to the direction of 
the axis of the beamr segment. As a result of this load, at the ends 
of the segment the stress state will be different. In order to 
determine the difference between the stress states at the two ends 
of the segment, the conditions of static equilibrium can be 
expressed (by equations of projections and bending moment) as: 

𝑁 + 𝑑𝑁 = 𝑁 ∙ cos 𝑑𝜑 + 𝑇 ∙ sin 𝑑𝜑 − 𝑝𝑡 ∙ 𝑑𝑠 ∙ cos
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𝑇 + 𝑑𝑇 = 𝑇 ∙ cos 𝑑𝜑 − 𝑁 ∙ sin 𝑑𝜑 + 𝑝𝑡 ∙ 𝑑𝑠 ∙ sin
𝑑𝜑
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𝑀 + 𝑑𝑀 = 𝑀 + 𝑇 ∙ 𝑑𝑠 ∙ cos 𝑑𝜑 − 𝑁 ∙ 𝑑𝑠 ∙ sin 𝑑𝜑 + 𝑝𝑡 ∙ 𝑑𝑠 ∙
𝑑𝑠
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Given that the ds length of the segment and the df angle are wery small, we can consider 

sin
𝑑𝜑

2
≅ 0  and  

𝑑𝑠

2
≅ 0, respectively  cos

𝑑𝜑

2
= 1  and  cos 𝑑𝜑 ≅ 1. Consequently, neglecting 

almost zero values, from the above equations will result:  𝑑𝑁 = −𝑝𝑡 ∙ 𝑑𝑠 + 𝑇 ∙ sin 𝑑𝜑 

  𝑑𝑇 = −𝑝𝑛 ∙ ds − 𝑁 ∙ sin 𝑑𝜑 

  𝑑𝑀 = 𝑇 ∙ 𝑑𝑠 

Considering sin 𝑑𝜑 ≅ 𝑑𝜑  and  𝑑𝜑 =
𝑑𝑠

𝑅
  we obtain: 𝑑𝑁 = −𝑝𝑡 ∙ 𝑑𝑠 + 𝑇 ∙

𝑑𝑠

𝑅
 

  𝑑𝑇 = −𝑝𝑛 ∙ 𝑑𝑠 − 𝑁 ∙
𝑑𝑠

𝑅
 

  𝑑𝑀 = 𝑇 ∙ 𝑑𝑠 

Hence the following differential relations: 
𝑑𝑁

𝑑𝑠
= −𝑝𝑡 +

𝑇

𝑅
 

  
𝑑𝑇

𝑑𝑠
= −𝑝𝑛 −

𝑁

𝑅
 

  
𝑑𝑀

𝑑𝑠
= 𝑇 

It can be noticed that it was not specified if it is a statically determined or statically indeterminate 
structure from which the small ds length curved beam segment was considered, so the above 
relations are valid for all planar structure types. 
In the case of a straight segment (R → ∞) with a small dx length, the above relations will look like 
this: 

 
𝑑𝑁

𝑑𝑥
= −𝑝𝑡 

  
𝑑𝑇

𝑑𝑥
= −𝑝𝑛 

  
𝑑𝑀

𝑑𝑥
= 𝑇 
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In other words, the variation of the tangent of the axial stress diagram depends on the tangential 
component of the load, the variation of the tangent of the shear force diagram depends on the 
normal component of the load, and the variation of the tangent of the bending moment diagram 
depends on the shear force.  
In the case of a normal load on the beam axis, without a tangential component (pt = 0), the 

previous relations will look as:  
𝑑𝑁

𝑑𝑥
= 0 

  
𝑑𝑇

𝑑𝑥
= −𝑝 

  
𝑑𝑀

𝑑𝑥
= 𝑇 

Here are some examples of the differential relationships between loads and stresses, illustrated by 
shear force and bending moment diagrams: 

 
Under concentrated forces (point loads) perpendicular to the axis of the bar, there is a jump in the 
shear force diagram and a peak (sudden change of the tangent’s direction) in the bending moment 
diagram. An evenly distributed perpendicular load will lead to a linear variation of the shear force 
and a parabolic variation of the bending moment diagram (with a horizontal tangent at the point 
where the shear force passes through the reference line). A distributed perpendicular load with a 
linearly variable intensity will lead to a parabolic variation (of 2nd degree) in the shear force 
diagram and to a 3rd degree variation in the bending moment diagram. The load with concentrated 
bending moments (as point loads) will not affect the shear force diagram, but will cause jumps in 
the bending moment diagram (the tangent of the bending moment diagram being constant, in 
accordance with the shape of the shear force diagram).  
 

RECCURENCE RELATIONSHIPS FOR STRESSES 
 
Consider a straight beam segment with a perpendicular load variably distributed on its axis, the 
load having the intensity p = f(x), as shown in the figure below. Noting that from the differential 

relations discussed above, in the case of a straight beam 
with an evenly distributed normal force load the change 
in values of shear force and bending moment at the ends 
of a segment can be expressed as dT = –p·dx and dM = 

T·dx, in section 2 these efforts may be expressed in 
terms of their values in section 1, as follows: 

𝑇2 = 𝑇1 − ∫ 𝑝 ∙ 𝑑𝑥
2

1
   și    𝑀2 = 𝑀1 + ∫ 𝑇 ∙ 𝑑𝑥

2

1
 

The integral on the interval 1–2 represents the area of 
the of the p load diagram, respectively the area of the T 
diagram between the two sections, which leads us to the 
expression of the stresses in section 2 as: 
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𝑇2 = 𝑇1 − 𝑃12   și    𝑀2 = 𝑀1 + 𝑇12 

On the other hand, isolating segment 1–2, from the condition of static 
equilibrium the bending moment in section 2 can also be expressed as: 

𝑀2 = 𝑀1 + 𝑇1 ∙ 𝑙12 − 𝑃12 ∙ 𝑑2 

where P12 is the resultant of the p = f(x) load on segment 1–2, and d2 is 
the distance from section 2 of this resultant. Using this relation to 
express the value of the shear force in section 1, we obtain:  

𝑇1 =
𝑀2 −𝑀1

𝑙12
+ 𝑃12 ∙

𝑑2
𝑙12

 

Considering another section i on segment 1–2, the value of the bending 
moment in this point can be written similarly, expressing the static 
equilibrium:  

𝑀𝑖 = 𝑀1 + 𝑇1 ∙ 𝑥𝑖 − 𝑃1𝑖 ∙ 𝑑𝑖  

where P1i is the resultant of the p = f(x) load on segment 1–i, and di is 
the distance from section i of this resultant. By replacing T1 in this 
expression with the previous relation, we obtain: 

𝑀𝑖 = 𝑀1 + (
𝑀2 −𝑀1

𝑙12
+ 𝑃12 ∙

𝑑2
𝑙12
) ∙ 𝑥𝑖 − 𝑃1𝑖 ∙ 𝑑𝑖 = 

= 𝑀1 + (𝑀2 −𝑀1) ∙
𝑥𝑖
𝑙12

+ 𝑃12 ∙
𝑑2
𝑙12

∙ 𝑥𝑖 − 𝑃1𝑖 ∙ 𝑑𝑖  

On the other hand, the expression of the value of this bending moment can also be expressed 
geometrically (from the surface of the bending moment diagram corresponding to the segment 1-
2), dividing the surface into two triangles (1-1'-2, 1-2'-2) and a third surface with a curved face 

(below the 1'-2' line). Thus, the bending moment in section i will be:  

𝑀𝑖 = 𝑀𝑖
𝑠 +𝑀𝑖

𝑚 +𝑀𝑖
𝑖 =

(𝑙12 − 𝑥𝑖)

𝑙12
∙ 𝑀1 +

𝑥𝑖
𝑙12

∙ 𝑀2 +𝑀𝑖
𝑖 = 

= 𝑀1 −
𝑥𝑖
𝑙12

∙ 𝑀1 +
𝑥𝑖
𝑙12

∙ 𝑀2 +𝑀𝑖
𝑖 = 𝑀1 + (𝑀2 −𝑀1) ∙

𝑥𝑖
𝑙12

+𝑀𝑖
𝑖  

Comparing this relationship with the previous one written for Mi, it results: 

𝑀𝑖
𝑖 = 𝑃12 ∙

𝑑2
𝑙12

∙ 𝑥𝑖 − 𝑃1𝑖 ∙ 𝑑𝑖 

In case of a simple supported beam with l12 length, loaded with p = f(x), the bending moment in a 
section i (located at xi distance from the left end, marked 1) would result from the condition static 

equilibrium as: 

𝑀𝑖
𝑔𝑠𝑟

= 𝑉1 ∙ 𝑥𝑖 − 𝑃1𝑖 ∙ 𝑑𝑖  

Where the reaction at end 1 would have the expression:  

𝑉1 = 𝑃12 ∙
𝑑2
𝑙12

 

In conclusion, the lower segment of 𝑀𝑖  (marked as 𝑀𝑖
𝑖) is in fact 

the value of the bending moment in the point corresponding to 
section i of segment 1–2, located on a simple supported beam 
with a span equal to l12, loaded with p = f(x) (identically with the 
loading on segment 1-2). In other words, if two triangles are 
extracted from a bending moment diagram as in the example 
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shown, the remaining portion coincides with the bending moment diagram from a simply 
supported beam with the same load.  

 
Consequently, any portion of the straight beam can be extracted from a structure (with the loads 
corresponding to the portion) and treated as a simple supported beam which, in addition to the 
related loads, will also be actuated by the M1 and M2 bending moments at its ends.  
 
 


