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Abstract—first a new mathematical approach is presented to 

evaluate the electric and magnetic field of the lightning, via 

engineering model with variable shape return stroke channel; 

next, an inverse procedure is exposed for the reconstruction of 

both spatial and temporal waveforms of the lightning return 

stroke current, throughout a numerical field synthesis procedure, 

based on regularization of ill-posed problems. The approach uses 

as input data the acquisition of time domain recordings of electric 

and/or magnetic field generated by the lightning current, at 

various locations on the ground and transforms these signals into 

harmonics, by Fourier decomposition. This combination, between 

the proposed solving procedures and harmonic filtering, yields 

numerical results that are in good agreement with the testing 

functions. 

Keywords-lightning, return stroke current, variable channel, ill 

posed, inverse problem, harmonic reconstruction, field synthesis. 

I.  INSIGHTS AND CONCEPTS REGARDING LIGHTNING 

Lightning return stroke modeling is of interest for a various 
range of reasons, as part of evaluations into the physics of 
lightning, as an instrument by which return stroke currents at 
ground can be identified from nearby or far away measured 
electromagnetic fields, and hence by which currents of 
individual lightning strikes or statistical distributions of the 
stroke currents can be evaluated [1], [2], [3], [4], [5], [6]. 

In this paper it is presented the mathematical modeling of a 
direct and then inverse remote sensing procedure in order to 
identify and reconstruct the spatial and time domain waveform 
of the lightning return stroke current. It is based on the 
acquisition of the electric and/or magnetic field generated by 
the discharge channel, at various locations on the ground and at 
various frequencies. This may be a mechanism for calculating 
realistic fields, next to be used in coupling calculations, such as 
to determine the lightning-induced voltages appearing on 
power grids or telecommunication lines, when lightning occurs 
near those lines. 

After the identification of a mathematical model of the 
return stroke current, it becomes possible to evaluate the 
electric and magnetic field values in any interest area, and 
subsequently using the transmission line method, to estimate 

any induced potential in nearby power grids. For this study 
there must be used Sommerfeld integrals [7], [8]. Some authors 
consider that a convenient wave solution for both current 
distribution along the lightning channel and associated 
electromagnetic fields, can be achieved only when using 
electromagnetic models. On the other hand, it is well known 
that engineering models for the return stroke current and fields, 
consist in both spatial and temporal variation as separated 
variables. 

The theoretical estimation of return stroke currents from 
remote electromagnetic fields depends on the adopted return 
stroke model. Expressions relating radiated fields and return 
stroke channel base currents have been derived for various 
engineering return stroke models. Engineering return-stroke 
models have been reviewed in many papers [1], [9]. The 
problem of determination of the return stroke current from 
remotely measured electric and/or magnetic fields considerably 
facilitates the collection of data on the lightning return stroke 
current without having to instrument towers or trigger the 
lightning artificially and without the inherent relative in-
efficiency of these methods. This is especially true now 
because of the widespread use of lightning location systems, 
LLS [4]. 

II. EXISTING ALTERNATIVE RECONSTRUCTION TECHNIQUES 

Several authors have studied the ability of the engineering 
models to predict the electromagnetic field radiated by return 
strokes; recently in [9] there are mentioned two primary 
approaches of evaluation: The first approach involves using a 
typical channel-base current waveform and a typical return 
stroke propagation speed as model inputs and then comparing 
the model-predicted electromagnetic fields with typical 
observed fields; The second approach involves using the 
channel-base current waveform and the propagation speed 
measured for the same individual event and comparing 
computed fields with measured fields for that same lightning. 

The second approach is able to provide a more definitive 
answer regarding model validity, but it is feasible only in the 
case of triggered-lightning return strokes or when natural 
lightning strikes to tall towers where channel-base current can 
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be measured. When trying to reconstruct the return stroke 
current, if the measured and the calculated field do not agree, 
the channel current spatial and temporal parameters are 
changed. The procedure is repeated until the matching becomes 
satisfactorily good. Some previous researches that were 
identified [9], [10], [11], [12], propose different versions of 
trial and error procedures for the reconstruction of the return 
current, using the measured field values, during lightning 
occurrence. Another alternative is to directly solve the integral 
equations with the help of the collocation method, using 
Cebasev or Geigenbauer base functions [13], [14], [15]. 

Our proposed procedure implies the following: apply 
Fourier series to the time domain signal of the electric or 
magnetic field, and extract some N components from it - 
amplitudes and phases; if available, apply Fourier series to the 
time domain signal of the channel base current, and extract 
some N components from it - amplitudes and phases; at this 
moment a correlation can be performed between the frequency 
domain of the electric/magnetic recorded fields and of the 
return stroke current waveform; to each current harmonic will 
correspond an electric/magnetic field harmonic, linked by the 
first kind Fredholm integral equation; this approach has a 
physical meaning also and it relies on the superposition 
method; pass then from the analytical integral equation to a 
linear system of equations, through numerical meshing of the 
spatial variable - channel height on one side, and range of 
horizontal sensors on the other side; this numerical system of 
equations has a severely ill-posed solution, a fact expressed by 
its condition number. 

The modular algorithms on the present approach can be 
successfully applied for lightning return stroke current 
reconstruction, next to be used in power engineering electro-
magnetic compatibility problems, in the research of the 
radiated lightning electromagnetic pulse and its coupling with 
the overhead lines and other metallic structures. 

III. MATHEMATICAL APPROACH OF THE RETURN STROKE 

There is a wide range of electric or magnetic field 

synthesis applications, that have to be modeled with Fredholm 

integral equations of the first kind, as ill-posed inverse 

problems. It is the case of: magnetic resonance imaging coils, 

for uniform fields; position identification of ships from their 

gravitational magnetization; underwater determination of 

corrosion for ocean platforms [16]; lightning return stroke 

current identification from field measurements [10], etc. 

For the engineering models, the cause and effect relations 

between the spatial-temporal expression of the ascendant 

leader and the electric and magnetic generated field may be 

modeled through Fredholm integral equations of the first kind. 

The modeling may also assume that the return stroke current 

distribution can be summed up by the individual contributions 

of the impulse currents which propagate upward with different 

speeds. 

If some adopts as modeling hypothesis the fact that the soil 

has a flat shape, of homogeneous material and with perfect 

conductivity, then the kernels of the Fredholm integral 

equations of the first kind are expressed by rational functions, 

weighted by decaying exponentials. If it is admitted a close to 

reality hypothesis, that of nonhomogeneous and finite 

resistivity soil, the expression of the kernels depends on 

Bessel functions [17].  

Here are some of the hypothesis that are used in the 

modelization of the lightning: the lightning channel is 

represented as being 3D variable, along which current 

propagates as a moving front; the soil is homogeneous, has a 

flat shape and perfect conductivity. The next paragraphs aim 

to reveal the mathematical expressions of the field 

components in cylindrical coordinates, both for electric and 

magnetic fields, as Fredholm integral equations of the first 

kind. 
Above it can be seen a given approximate geometry model 

of the lightning reconstruction, which can be generalized to 
any spatial curve as lightning channel: 

 

Figure 1. Geometrical parameters used in calculating return stroke fields. 

Where: H - channel height;  tri ,'  - return stroke current 

spatial and time dependence;  zyxP ,, = r - is the coordinate of 

point in space where the potentials are computed, evaluation 
location of sensors; 'r - is the coordinate of a point of the 
source of the current. 

 Starting from the Maxwell equations in a linear, 
homogeneous and isotropic medium, we have the solution as 
magnetic vector potential and the equation to link the field and 
potential: 
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 These are inhomogeneous solutions expressed by the 
magnetic vector and electric potentials, dependent one to each 
other. We also assume that the current distribution and the 
charge distribution are zero at t = 0.  



 In the case of the lightning return stroke the source is 
moving along a curve starting on earth and going up, let C be 
this general curve with h being the height parameter: 

         ];0[,'''' Hhhzhýhxh  kjir   (3) 

And the radius from the variable channel to the observation 
point to be: 
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 After a series of integrations and substitutions and the use 
images method to add the contribution of the earth, we obtain 
the expression of the electric field in respect with this variable 
spatial curve of the lightning channel, as equation to describe 
the phenomena: 
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Are the static, the inductive and the radiation components of 
the electric field. This expression for the electric field was 
deduced in [24] for the case where the curve C is a segment of 
a line, using Fourier transform; thus we now have a general 
equation to use. 

 Similar considerations and mathematical steps were used 
to deduce the magnetic field formula: 
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Up to now, although the relations are valid for any variable 
spatial channel curve, so as these relations to be numerically 
computable, let us introduce some issues regarding the return 
stroke current. General expression of the current: 

       dd tthittuthI  ',''','  (8) 

With the arguments cRtt /'  . The time delay dt  is the 

duration for the current to arrive from the ground (h=0) to the 

point of the channel corresponding to h and can be computed 

with the line integral: 
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Where v is the propagation speed of the current, a function of 
height. Next, if we consider that the lightning channel is 
composed of n linear segments obtained by joining the points 

 kkkk zyxP ,, , nk ,...,0 , the first point is  0000 ,, zyxP the 

origin and denote by kjir  kkkk zyx' , kk 'rrR   

also 1''  kkk rrl  the tangent vector of 'r corresponding to 

the segment kk PP 1 . 

 

Figure 2. Lightning channel numerical discretization 

Denote by kv the speed of the current corresponding to each 

segment. Consider cRt /00   the time for lighting to travel 

from 0P  to P . Thus, we can compute: 

  
c

R

v

l

v

l
t k

k

k
k  ...

1

1  (10) 

Having these considerations, each of the field expressions can 
now be numerically evaluated very easy as follows: 

  nstatic EE  ...1E  (11) 

Where jE  is the integral corresponding to the segment 

.,...,1,1 njPP jj   Each segment has the equation: 
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We also obtain: 
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Using relations (12) and (13), we can use the final computable 
integral (14): 
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 These mathematical expressions of the field components in 



cylindrical coordinates, both for electric and magnetic fields, 
as Fredholm integral equations of the first kind are used as the 
engineering models. 

We found that a miss interpretation persists regarding the 

frequency domain of these radial, axial and polar field 

equations. They do not represent the Fourier transform of the 

time domain field expressions, but formally written with 

complex numbers relations. Thus, (1) converts in (2), and the 

same with the other components: 
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In this case, the kernel function Gz incorporates the static, 

induction and radiation contributions, as in correspondence 

with the relations from (14). The return stroke current (RSC) 

as a function (16) and (17), shows dependence to an initial 

peak value at the channel base, a spatial attenuation along the 

channel and to the propagation speed of the current, both for 

time and frequency dependence: 
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Where:  ,0I frequency converted channel base current 

(CBC); P(h') - spatial attenuation of the return stroke current.  

IV. REGULARIZATION OF ILL-POSED EQUATIONS 

Taking account that these described inverse Fredholm ill 

posed integral equations, consist in computation the cause 

from the effect, it is expected that small noise in the right-hand 

side measured field components, are likely to generate 

numerical RSC's highly contaminated by undesired high-

frequency oscillations [13], [18]. 

Thus, if one by standard numerical procedures evaluates 

the solution, this has three major inconvenient characteristics: 

imprecision, instability to small input field modifications and 

physical inconsistence. The ill-posed electromagnetic inverse 

problems, ill-posed EIP, are very well detailed in the 

literature, especially for Fredholm integral equations [13], 

[19]. 

For this reason in our study there has been adopted the 

concept of Working Regularization Algorithm (WRA) [13], as 

a functional mixture of three factors: a regularization 

algorithm, a parameter choice method and the implementation 

of these methods. For efficiency we take into account any 

available mathematical structure in the problem (singularity, 

symmetry, sparse). 

By using the condition number in the initial evaluation, we 

can show a clear connection between the solution instability 

and the condition number, as related to any perturbation that 

may occur in the measured field, or in the problem structure – 

the kernel matrix. Thus the noise acts on the effect – vector as: 
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u' - perturbed effect vector; 'X  - the resulted solution 

(attenuation function) as related to the perturbed effect; KA - 

condition number; 
Minimizing a Tikhonov functional [13], [18], expressed 

with the help of vector norms (18), it is nothing but a constrain 
method, which limits the uncontrolled growth of the solution: 
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minarg XCuXAfTikhonov    (19) 

Where: A - matrix system; u - field vector;  – regularization 

parameter; A·X=u the system of equations originated from the 

integral equation (14). The term ·||C·X|| consists in a penalty 

applied to the solution, in order not to allow its instability. 

Also, the operator C may embed geometrical and physical 

constrains for the solution. This regularization procedure and 

its derivations may be regarded as a penalty method [13]. 

Truncated singular value σi decomposition (TSVD), 

applied as a regularization method, with the limitation of 

certain terms that enter in the sum, as related to a singular 

value stated as threshold, it is interpreted as being a projection 

method; an evaluation of a vector by summing up of other 

vectors, without undesired components. 

   



  i
k

i

Ti

i

k VuUfX
1

 (20) 

Where: fi - filter factors; VU , - singular matrices; k - 

truncation coefficient which acts as regularization parameter.   

Thus, the regularization effects as a penalty method, or as a 
projection one. We classified these regularization procedures 
as following: Tikh - penalty method, based on Tikhnov theory 
reflected by relation (19); DVST on/off - projection method, 
truncated singular value decomposition with on/off filter 
factors fi=1/σi if i≤k or 0 if i>k; DVSTA - projection method, 
damped truncated decomposition of the singular values, based 
on relation (20) with fi=σi/(σi

2
+α) if i≤k or i>k; other standard 

methods: GCS - conjugate gradient method; TRA - algebraic 
reconstruction technique [20]; GCV - generalised crossed 

validation method expressed as the minimum of GCV()= 

·∂||C·X||
2
/∂2

 for the choice of the regularization parameter; 
LC - L shape curve function a dependent variation between the 
error and solution norms as introduced in (19) to which the 
corner represents the optimum regularization parameter [21]. 

For each of the above regularization methods, the original 
contribution of the authors is related to the definition and 
evaluation of the filtering factors. The threshold from which 
the filtering starts, it is by itself a regularization parameter, in 
relation with the decomposition of the time domain signal. 

Both WRA penalty and projection methods consist initially 
in a harmonic analysis for the norms of the singular vectors V, 
from the decomposition, and afterwards in a filtering of those 
singular vectors that have a lower norm, than an imposed 
limit, if they may be affected by the amplification due to the 
singular values σi, in the solution reconstruction. 

After computing the solution, by any of these methods, an 
error evaluation is performed, using the relations: 
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Some error causes that appear for electric or magnetic field 
measurement: LLS devices; current reflections in instru-
mented towers [15]. In the evaluations it is also tested the 
sensitivity of the solution, when noise occurs in the field 
vector. 

V. NUMERICAL RESULTS AND DISCUSSIONS 

Not having any available data about the height dependent 
attenuation function P(h'), numerically the vector X, this can 
be evaluated for each frequency from the Fourier spectrum by 
solving the above integral equation (14) for a vertical channel 
and the other related field integrals. Then the numerical 
solutions can be compared with the proposed test functions 
MTLE and MTLL, as only these have non unitary spatial 
attenuation dependence. 

There were used several input data regarding the location 
of the field sensors (range of 50 to 5000 m), height of the 
measurement sensors (0 to 15 m), height of the current 
channel (1 to 7.5 km) and the sampling frequencies of the 
measured fields (20 to 500 harmonics, related to a maximum 
duration of 10

-3
 sec). All of these numerical cases, applied to 

the Fredholm integral eq. models, vertical electrical field (14) 
and related horizontal electric and azimuth magnetic field 
strengths, lead to ill-posed and very severely ill-conditioned 
initial systems of equations and required regularization. 

Let us consider the results for a 7.5 km channel height and 
an initially imposed CBC, as with indicated expression and 
parameters given in [4].  

 
Figure 3. Vertical electrical field component sample at 50 m from the strike 

 

In fig. 3 it can be seen the result of evaluating directly the 
electric field strength for the TL, MTLL and MTLE models 
[4], [5], [11], both in time domain and the frequency spectrum 
for MTLE model, at a distance of 50 m from the strike 
location, for a duration of 50 μs. This is accounted for the 
scenario with only one electric field sensor for the remote 
sensing procedure to identify the spatial distribution of the 
current along the channel height. 

Using these electrical field values, with a 5% added noise 
as fig. 3 shows, we determined the attenuation function by the 
WRA. In fig. 4 it is represented a sample result for the 
identification of the MTLE (Test 1) model: 

 
Figure 4. Inverse reconstruction of return current spatial distribution with 

projection and penalty methods 

 

Having the reconstructed MTLE model spatial attenuation 

function with the Tikhonov using the L curve criterion and 75 

`harmonics` in not perfectly fitting the CBC (correspondence 

with the Fourier spectrum of the Ez field), it can be evidenced 

the return stroke current, at different heights, as in fig. 5. The 

more `harmonics` evaluated, the lower will be the fluctuation 

in the solution. We assume that the model evidenced 

discontinuity in the RSC at different heights may be due to 

dispersion of the current, using the support of [16].   

 
Figure 5. Return stroke current identification for different attenuation 

functions 

 

Then it was performed the combination of the field 

equations, for the scenario of both electric and magnetic 

measured field components, with only one sensor and applied 

regularization procedures. A sample of the solution errors 

yields the optimum approach, for the location of the sensor at 

500 m, and MTLE:  

 
Figure 6. Sensitive analysis of the regularization applied on the combination 

of the integral models for a single location electric and magnetic field sensors 

 

In the reconstruction of the MTLL (Test 2) model we also 

achieved reasonable performance as related to other reported 



results [9] - [12]. Regarding the experimental aspects of the 

present study, it is worth mentioning that we used simulated 

values as a testing approach. It is our intention to handle also 

natural or triggered lightning recordings, provided by LINET 

Germany. More data have to be evaluated in order to 

adequately validate the models and to improve them in order 

to reproduce as closely as possible experimental values. 

We find out that without regularization, only for higher 

frequencies it is expected to have an improvement in the 

stability of the solutions, if using single frequency recordings 

but multiple field sensor locations. 

Using the presented assumptions we explored the solution 

behaviour for each of the proposed testing conditions. When 

taking into account what is the best frequency spectrum, for 

which to reconstruct the spatial attenuation function, it should 

be noticed that in the range 1 kHz – 1 MHz (with added DC 

component) the errors reach minimum values. 

VI. CONCLUDING REMARKS 

The present work focuses on the synthesis of lightning 

return stroke currents, from remotely measured generated 

fields. After the identification of a mathematical model of the 

return stroke current, it becomes possible to evaluate the 

electric and magnetic field values in any interest area. As the 

problem proves to be severely ill-posed, we proposed a WRA 

as a group of regularization procedures, all based on the 

harmonic filtering of the singular vectors. 

The effectiveness of the algorithms has been proved 

especially for on/off DVST and DVSTA; also, for Tikhonov 

regularization in the combination of two type of field 

measurements, radial – axial. In order to verify the robustness 

of the inverse procedure, we added noise to the free term of 

the system, i.e. to the field measurements. 

The vertical lightning channel is no more acceptable, as 

one takes into account that real lightning is characterized by 

tortuosity and branching, in order to be able to justify the fine 

structure of the fields radiated by lightning discharges whose 

time-domain behavior exhibits a noisy shape with rich spectral 

[16], [17]. These features are investigated and exploited to 

improve the return stroke current reconstructions.  

The author’s contributions relate to the an original 

mathematical approach of variable channels, introduction and 

validation of the Fourier frequency decomposition of the field 

time domain signals, and numerical regularization in this 

lightning return stroke current problem reconstruction. 
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