THE RATE OF CONVERGENCE OF POSITIVE LINEAR OPERATORS
IN WEIGHTED SPACES

ABSTRACT. We estimate the rate of approximation of positive linear operators for unbounded
functions defined on the positive semi-axis, in terms of the modulus of continuity of the first
order and the rate of convergence of the function toward infinity.

1. INTRODUCTION

Let Ry = [0,00) and let ¢ : Ry — R4 be an unbounded strictly increasing continuous
function with ¢(0) = 0 and with the property that ¢! is uniformly continuous. Let p(z) =
1+ ¢%(x) be a weight function and let B,(R.) be the Banach space defined by

B,(Ry) ={f:Ry = R| there exists M > 0 such that |f(x)| < M - p(zx), forallz >0}.

This weighted space can be endowed with the p-norm

o f(@)]
HfH,,—iglg o)

We define also the subspaces

C,(Ry) = {feB,(Ry), fiscontinuous},

CHRy) = {f c CP(R+),$EIEOO£E3 =K; < +o0o } .

In [1] is given the following Korovkin-type theorem
Theorem 1.1. If A, : C,(R) — B,(R) is a sequence of positive linear operators such that
lim [|Ane' —¢'|| =0, i=0,1,2,
n— o0 p
then for any function f € Cﬁ (R) we have
lim [|A,f— f|,=0.
n—oo

In [2] it is given an estimation of the rate of convergence for positive linear operators of the
following type

B f(x) = { f(z), x>,

where (Ay)nen is a sequence of positive linear operators acting from C,(Ry)) to B,(Ry)
and (7, )nen 1s a sequence converging to infinity when n aproaches infinity. The result is the
following
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Theorem 1.2. Let A, : C,(Ry) — B,(R4) be a sequence of positive linear operators with

[4ne® = ¢°l o = an,
lAnp =0l 3 = bn
[4ne® = ?[|, = cn,
[4ne® =& 3 = dn,

where an,by,c, and d, tend to zero as n goes to the infinity. Let n, be a sequence of real
numbers such that

lim n, =00 and lim p% (Nn)0n, = 0,
n—oo n—oo

where 6, = 2\/(an +2by, + ¢n)(1 4+ an) + an + 3b, + 3¢ + dp. Then for every f € Cp(R4)
0<z<nn p(z)
where w, is defined for f € C,(Ry) and 6 > 0 by

1
< (T +dan +2¢0) - w, (£.02 ()00 ) + 11| 0

_ |f(x) = f(W)l
wplf:0) = om0 @) )
lo(x)—p(y)|<s

In the same paper it is proved that if ¢ satisfies also the condition
[z —y| < Mlp(x) — ¢(y)|*, for every z,y >0,

where M > 0 and a € (0,1], then the right-hand side of the estimation from the above
theorem tends to 0.
In the present paper, we want to give an estimation of the rate of convergence of A, f toward
[ in the general case of any sequence of positive linear operators A, : C,(Ry) — B,(R4). For
this, we need the following modulus of continuity
we(f,6) = sup  |f(z) = f(1)];
x,t>0
(@) —p(t)|<d
defined for every bounded function f : Ry — R and every 6 > 0. This modulus is an
nonnegative, increasing, bounded function in ¢ and has the following properties

Proposition 1.1. For every bounded and uniformly continuous function f : Ry — R we have

lim wy(f,0,) =0 whenever §, — 0.
n—oo

Proof This property is true due to the property of ¢! to be uniformly continuous and due
to the following representation

wu(f,0) =w(fo o !, 5).
Indeed, fop~!is a bounded uniformly continuous function and the usual modulus of continuity
w is continuous in 0 for such a function. O

Remark 1.1. If ¢(x) = x, then w, reduces to the usual modulus of continuity. If o lisa

Holder function, i.e. there exist M > 0 and o € (0, 1] such that ¢ : Ry — Ry has the property
|z —y| < Mlp(x) — ¢(y)|*, for every z,y >0,

then we have the relation
wlP(f? 5) S w(fv M(sa)'
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Proposition 1.2. For every bounded function f : R, — R and for every t,x,0 > 0 we have
t) — o(x)]?
0 - s < (1+ EOZA) 1),
Proof We prove first, that for every m € N

wo(f,mo) <m-wy(f,0).
For m = 0 and m = 1 it holds with equality. For m > 2, let ¢t > x > 0 such that we have
o(t) — p(z) < md. We construct the points 29 =z < z1 < - -+ < x,, = t with the property

oz — p(zp—1) = W < 4.

‘We obtain

|f( i flar — flarp—1)| Siw@(fﬁ) Sm-ww(f,é).
k=1 k=1
This proves the relation wy(f, md) < m-wy(f,0). Considering A > 0 we obtain
wy(f; A8) < wy(f, ([A] +1)8) < ([A] + Dwe(f,6) < (A+ Dwy(f,6).
Now, we can prove the relation from the proposition. Let ¢,z > 0. We have
£ (&) = ()] < wo(f; [0(t) — o (2)))-
If [p(t) — ¢(z)] < 6, then |f(t) — f(z)] < wp(f,d). If [@(t) — ()] > 6, then

ol o) = olal) = v, (12 o (1 BOZ L)

— o(x)]?
(1+ B0 (1,

IN

2. MAIN PART

Theorem 2.1. Let A, : C,(Ry) — B,(Ry) be a sequence of positive linear operators such
that

[4ng® = &l 0 = an,
lAnp =0l 3 = n
HAnSO2*SO2Hp = Cnp,

where ay, by, ¢y, tend to zero as n goes to the infinity. Let 6, = v/ an + 2b, + ¢, and let n, be
a sequence of real numbers such that

lim 9, =00 and lim p% (Nn)0n, = 0.
Then for any function f € C/];:(RJ,_) we have
1
(2.1) [[Anf - pr < Ky(an +cn) + (Hpr + Kp)[p2 (M) 0n V1 + ap + an + 60/ 07 + 4]

+ (2 + an) wy <£, p;(nn)csn) + 2r, (3 + 2ay, + 2¢,),

13-4}

f(x)

where Ky = lim —— and r, = sup
z—00 p(x) T>1n




4 THE RATE OF CONVERGENCE IN WEIGHTED SPACES

Proof Let f(z) = g(z) + Ky - p(x). We have lim,_.o g(x)/p(z) = 0 and
(2.2) [Anf(z) = f(z)| < |Ang(z) — g(2)| + K - [Anp(z) — p(z)].

We have, also,

T'n = Sup
127771

)| - gy L)

f - .
Let M, = max,<y, |g(z)|. We consider also the sequences ¢, = ||g||pp%(77n)5n(1 + an)f% >0
converging to 0 and

2 = max (7 (9(m) + 1), 07 lgll, p0n) /tn) ) >
It is easy to see that ¢(z,) — ¢(n,) > 1 and
My, = max [g(x)| < max|lgll, p(z) = llgll, p(1n) < tnp(zn)-
xSnn wﬁnn

We consider now the functions h,, € C,(Ry) defined by

('7:)7 T < My,
hn<w>{ L2 6(00), @ € (1hn, 20),

Let us prove that
(2.3) () — 9(2)] < 2ruple), @20,

Indeed, if < 7, then the difference hy(z) — g(x) is 0. If x > n,, then |g(x)| < rpp(x). For
x € [N, 2n] we have

hnla) — g(a)] < |o(z)] + M|g<nn>| < (@) + rap(m) < 2rup().

For & > z,, the difference |hy,(z) — g(x)| is just |g(z)| so less than 2r, p(x).
Using relation (2.3) we obtain

(24) [Ang(z) —g(@)] < An(lg(t) = hn(D)|,2) + [Anhn(2) = hn(2)] + |hn(2) — g(2)]
< 2r(Anp(z) + p(2)) + [Anhn(z) — hn(2)].
Next, we give the estimation of the difference |A,h,(x) — hy(x)|. For z > z,
(2.5) [Anhn() = ha(2)] = [Aphn(@)] < Aplhal(z) < Ma A’ (2) < tap(za) Ang® (2)
< tap(x) Ang’(2).
For x < n, we get

[ Anhn(@) = ha(@)] < ha(@)]|Ane®(@) — (@) + An(|Bn(t) — ha(2)], 2)
(2.6) < 1g(@)[| A" (@) — @ (@)] + An(lha(t) — g(8)],2) + An(|g(t) — g(x)], )
< gl p(2)| A (2) — @ (@)] + 2rnAup(e) + An(lg(t) — g(2)], 2)
Using the relation
)| < o) o4 e |[20) _ 9@)
9() = 9@ < EESe(0) = pla)| + pla) | Tos — T
(2.7) < lgll, p(t) — p(2)| + p(z) %(t)—%x)
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we obtain

28 Al - g(@lla) < ol Aulole) = ploll.a) + pl)Aug () i (£.1)

Anllel) ), (9.

+p(1n)

In the case = € [ny, z,) we have

[ Anhn () — b ()] [ ()| An® () — °(2)] + An(|hn(t) = hn(2)], 7)
91| Ang® (@) — " (2)| + An(|hn(t) — ha(2)], 2)
h

g, p(2)| A (@) = °(@)] + An(hn(t) = hn(2)], 2).

(2.9)

ININ N

We estimate now the difference |h,,(t) — hy,(x)|. For t > z, we have

n(®) o) = o) = ZEI=E )1 < gl b ) ot) ~ o).

For t € [y, z,] we have

p(zn) — p(x)

= o 7| = lgll, P2 @) m)le®) = (@)

For ¢ < n,, we use the relation (2.7) and we obtain

at) = b)) = 'g<t>—9‘w‘*"mg<m < 1g(t) — g(na)] + l9(m)l (@) — )]

@(zn) — (1)

_ 27
< gl 00—+ pl) |1+ O (94)
+lgll, 0% ()% (1) |o(t) — o ()|
— ()%
< ol 1)t o) + o) EL AL (24)
Hlgll, 02 ()92 (1) | (t) — () -
We can deduce
An(|hn(t) = ha(@)],2) < llgll, Au(lp(t) — p(2)],2) + p2 ()0 (na) 9], An(|0(t) — p(x)], 2)
A z)]?, x
a([p ()h;/?( )] q% (ih>

(2.10) + [ p() An® () + p(11)
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To obtain the final result we use the relations
[Anp(z) — p()] [Ang® () = ()] + |Ang® () — $*(2))|
an + p(x)cp,
[Anp(z) — p(2)| + 2p(2)
p(x)(an + cn + 2),
A p* () = 20(2) Angp () + ¢° () Anp® ()
A,0% () = 9*(2) = 20(2)[Anp(@) — p(2)] + ©*(2)[Ang’(x) — 1]
pl@)en + 20(@)p? (2)bn + ¢ (@)an
p()dy,
VA ([p(t) = p(@)2, )/ An® ()
p% (2)0n V1 + an,
An(le(t) — ()] - lo(t) + ()], x)
VA ([p(t) — o(@)]2,2) v/ An ([p(1) + ()2, 2)
p(x)d,/ 02 + 4.

From the estimations (2.5), (2.6) and (2.9) we deduce
An(|hn(t) — hp(2)], z 1
al®) = Il DL2) g1, 3 ()3 TF i+ gl 50/33 4 4

p(z)
2
+ (1 +an + p(n”)5”> W (i,h) +2rn (1 + ap + ).

Anp(z) + p(@)

VAN VAN VAR VAN

A ([p(t) — @(@)]?, z)

—

IN N IA

An(‘@(t) - QO(:E) ,LE)

IA

An(|p(t) = p(z)|, )

IA N

h2
Considering h = p% (nn)dy, in the above inequality, the relations (2.2) and (2.4) give us

[Anf(2) — f()|
p(x)

1
< Kp(an+cn) +lgll, 02 (010)0n V1 + an + an + 6,/ 07 + 4]
+ (24 an) wy (i, pé(nn)5n> +2r, (3 + 2a, + 2¢y).
Because w, (%, h) = Wy, (%,h) and [|g[|, < [|f]l, + Ky we obtain the estimation

1A = fll, < Kplan+ca) + (1, + EKp)o? (02)00V/TF an + an + 6,\/02 + 4]
+ 2+ an)wy <IJ;, p% (nn)5n> + 2r, (3 4+ 2a, + 2¢,).

O

Remark 2.1. The estimation (2.1) of Anf — f in p-norm is in terms of the sequences conver-
ging to 0: an, by, cp, p%(nn)én, We (%,p% (nn)5n> and r,. Indeed, wy, (%, p% (nn)5n> tends to 0,

because f/p is uniformly continuous. Because 1, — 0o and because lim,_.o f(z)/p(z) = Ky,
we obtain Ty, = sup,>, |f(r)/p(z) — K¢| — 0.

Example 2.1. For p(x) = x and the Szasz-Mirakjan operators M, : C,(Ry) — B,(Ry)

defined by
o0 k
My f) = ey 2L (i)

k=0
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which have the properties M,1(z) = 1, Mpei(z) = x and Myes(z) = 2% +x/n (s0, an = by, =0

and ¢, = 1/(2n) ), we obtain for every function f: Ry — R with limg,_, o ﬁi)g = Ky < oo the
estimation

| My f(z) — fz)] _ Ky 3 [1+m; £ 1402
< K n 2 = —= 8
ig% 1+ 22 ~ 2n + (L1, + Ky) 2\/ﬁ+ 2n Tl 2n +87m,

p
f(=)
1422

where 1, — 00 and ry, = SUPg>,,

Kf’ — 0.
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