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Abstract

We characterize the functions defined on a noncompact interval, which
are uniformly approximated by a sequence of positive linear operators.
The particular cases of the Szász-Mirakjan operators, the Baskakov oper-
ators, the Meier-König and Zeller operators, the Gauss-Weierstrass oper-
ators and the Bleimann-Butzer-Hahn operators are included.

1 Introduction

Let C(I) be the space of continuous functions defined on a noncompact interval
I ⊆ R. For n ∈ N, let An : C(I) → C(I) be a sequence of positive linear
operators. We want to characterize those functions f ∈ C(I) which can be
uniformly approximated by these operators, i.e.

sup
x∈I
|An(f, x)− f(x)| = ‖Anf − f‖∞ → 0.

An important result in this direction is Theorem 2 from [7], which gives the
necessary and sufficient conditions for uniform convergence, when the functions
are continuous and bounded on I. Using the Ditzian-Totik modulus of smooth-
ness, the result is proved for a large class of positive linear operators preserving
constant functions and satisfying certain assumptions. In [5], the authors study
what happens if the boundedness assumption on the functions is dropped, and
give some results for Bernstein-type operators, using a probabilistic approach.

In this paper, we continue the work from the papers mentioned above. The
Theorem 2.1 is the general result which will be applied for particular cases of
operators. The contents and the proof of Theorem 2.1 a) are the same as those of
Theorem 2 from [5], but for a larger class of operators. The part b) of the same
theorem extends the result from [7]. But the main innovation, which is contained
in the Remarks 2.1 and 2.2, is a new method to find an appropriate function
ϕ in connection with the Theorem 2.1. The results obtained in Corollary 3.1,
3.2 and 3.3 are not new, see [7] and [5], but are included to present our simpler
technique. The first part of Corollary 3.4 is also known, see [6], however the
second part of this corollary and the Corollary 3.5 are new results.
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2 Main result

Let ϕ : I → J be a continuously differentiable one-to-one map. Define the space

UCϕ =
{
f ∈ C(I) | f ◦ ϕ−1 is uniformly continuous on J

}
.

For a function f ∈ UCϕ we define the following modulus of continuity

ωϕ(f, δ) = sup
x,t∈I

|ϕ(x)−ϕ(t)|≤δ

|f(x)− f(t)|, for δ > 0,

which generalizes the usual modulus of continuity. Actually, we have the relation

ωϕ(f, δ) = ω(f ◦ ϕ−1, δ).

Proposition 2.1. For every function f ∈ UCϕ we have

lim
n→∞

ωϕ(f, δn) = 0 whenever δn → 0.

The converse is also true, i.e. if there is a positive sequence δn converging to 0,
such that ωϕ(f, δn)→ 0, then f ∈ UCϕ.

Proof. This property is true due to the property of the usual modulus of continui-
ty to be continuous at 0 only for an uniformly continuous function.

Proposition 2.2. For every function f ∈ UCϕ and for every t, x ∈ I and δ ≥ 0
we have

|f(t)− f(x)| ≤
(

1 +
|ϕ(t)− ϕ(x)|

δ

)
ωϕ(f, δ).

Proof. Let t, x ∈ I. We have

|f(t)− f(x)| ≤ ωϕ(f, |ϕ(t)− ϕ(x)|) ≤
(

1 +
|ϕ(t)− ϕ(x)|

δ

)
ωϕ(f, δ),

the last inequality being true because

ωϕ(f, λδ) = ω(f ◦ ϕ−1, λδ) ≤ (1 + λ) · ω(f ◦ ϕ−1, δ) = (1 + λ) · ωϕ(f, δ).

Theorem 2.1. Let An : C(I)→ C(I) be a sequence of positive linear operators
preserving constant functions. Then
a) if supx∈I An(|ϕ(t)−ϕ(x)|, x) = an → 0 and f ∈ UCϕ, then ‖Anf − f‖∞ → 0
and moreover

‖Anf − f‖∞ ≤ 2 · ωϕ(f, an).

b) if ‖Anf − f‖∞ → 0 and Anf ∈ UCϕ, then f ∈ UCϕ.
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Proof. Applying the positive operators An to the inequality

|f(t)− f(x)| ≤
(

1 +
|ϕ(t)− ϕ(x)|

δ

)
ωϕ(f, δ),

we obtain

|An(f, x)− f(x)| ≤
(

1 +
An|ϕ(t)− ϕ(x)|

δn

)
· ωϕ(f, δn).

Choosing δn = an, we obtain the inequality

‖Anf − f‖∞ ≤ 2 · ωϕ(f, an).

Using the result from Proposition 2.1, we obtain a). To prove b), we use the
fact that ωϕ is a seminorm and obtain

ωϕ(f, δn) ≤ ωϕ(f −Anf, δn) + ωϕ(Anf, δn) ≤ 2 ‖f −Anf‖∞ + ωϕ(Anf, δn).

Using the result from Proposition 2.2, we obtain ωϕ(Anf, δn)→ 0, for a sequence
δn → 0. We obtain that ωϕ(f, δn)→ 0, which proves that f ∈ UCϕ.

Remark 2.1. For the positive linear operators An that transform the continuous
functions into differentiable functions we have the following method to find the
function ϕ and to prove that Anf is from UCϕ: by the Cauchy mean-value
formula we have for some c between x and t, the relation

ϕ′(c)[Anf(x)−Anf(t)] = (Anf)′(c)[ϕ(x)− ϕ(t)],

so

ωϕ(Anf, δn) = sup
x,t∈I

|ϕ(x)−ϕ(t)|≤δn

|Anf(x)−Anf(t)| ≤ δn · sup
c∈I

∣∣∣∣ (Anf)′(c)

ϕ′(c)

∣∣∣∣ .
If the quantity ‖(Anf)′/ϕ′‖∞ is finite for all n, then we obtain the desired
convergence ωϕ(Anf, δn)→ 0, as δn → 0.

Remark 2.2. Now, having found a function φ for which ‖(Anf)′/φ′‖∞ is finite
for every n, it remains to prove that supx∈I An(|φ(x) − φ(t)|, x) is a sequence
converging to 0. But, in most of the cases, this is very difficult. To over-
come this, we use an idea from [7]: we take a function ϕ for which we have
supx∈I An(|ϕ(x)−ϕ(t)|, x)→ 0, when n→∞, and prove that f belongs to UCφ
if and only if f belongs to UCϕ. This equivalence is true if we prove that φ◦ϕ−1
and ϕ ◦ φ−1 are uniform continuous functions.

3 Applications

Corollary 3.1. For the Szász-Mirakjan operators Sn : C[0,∞) → C[0,∞) de-
fined by

Snf(x) = e−nx
∞∑
k=0

(nx)k

k!
f

(
k

n

)
,
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we have ||Snf − f ||∞ → 0 if f(x2) is uniformly continuous on [0,∞). If f is
bounded and continuous on [0,∞) and ||Snf−f ||∞ → 0 then f(x2) is uniformly
continuous on [0,∞). We have also the estimation

||Snf − f ||∞ ≤ 2 · ω
(
f(t2),

1√
n

)
, n ≥ 1.

Proof. We have (see for example [2]) Sn(1, x) = 1, Sn(t, x) = x, Sn(t2, x) =

x2 +
x

n
. Using the Cauchy-Schwarz inequality for positive linear functionals we

have

Sn(|t− x|, x) ≤
√
Sn((t− x)2, x) =

√
Sn(t2, x)− x2 =

√
x

n
.

For a bounded function f ∈ C[0,∞) the derivative (Snf)′(x) fulfills

|(Snf)′(x)| =

∣∣∣∣∣nx
∞∑
k=0

f

(
k

n

)(
x− k

n

)
e−nx

(nx)k

k!

∣∣∣∣∣
≤ n

x
‖f‖∞ Sn(|t− x|, x) ≤ ‖f‖∞

√
n√
x
.

We choose the function ϕ(x) =
√
x and δn = 1/n, and using the Remark 2.1 we

obtain

ωϕ(Snf, δn) ≤ δn · sup
x∈I

∣∣∣∣ (Snf)′(x)

ϕ′(x)

∣∣∣∣ ≤ 2||f ||∞√
n

,

which proves that Snf ◦ ϕ−1 is uniformly continuous. Using Theorem 2.1 b)
we deduce that f ◦ ϕ−1(x) = f(x2) is uniformly continuous if Snf converges
uniformly to f on [0,∞). To prove the other part of the Corollary, we use

|ϕ(x)− ϕ(t)| = |x− t|
√
x+
√
t
≤ |x− t|√

x
, for x > 0, t ≥ 0

to obtain

an = sup
x>0

Sn(|ϕ(x)− ϕ(t)|, x) ≤ sup
x>0

Sn(|t− x|, x)√
x

≤ 1√
n
.

By Theorem 2.1 a) we obtain that Snf converges uniformly to f on [0,∞), if
f(x2) is uniformly continuous on [0,∞).

Corollary 3.2. For the Baskakov operators Vn : C[0,∞)→ C[0,∞) defined by

Vnf(x) =

∞∑
k=0

(
n+ k − 1

k

)
xk

(1 + x)n+k
f

(
k

n

)
,

we have ||Vnf−f ||∞ → 0, if f(ex−1) is uniformly continuous on [0,∞). If f is
bounded and continuous on [0,∞) and Vnf converges uniformly to f on [0,∞),
then f(ex − 1) is uniformly continuous on [0,∞). We have also the estimation

||Vnf − f ||∞ ≤ 2 · ω
(
f(et − 1),

1√
n− 1

)
, n ≥ 2.
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Proof. We have (see [2]) Vn(1, x) = 1, Vn(t, x) = x, Vn(t2, x) = x2+
x(1 + x)

n
.

Using the Cauchy-Schwarz inequality we have

Vn(|t− x|, x) ≤
√
Vn((t− x)2, x) =

√
Vn(t2, x)− x2 =

√
x(1 + x)

n
.

For a bounded function f ∈ C[0,∞), computing the derivative

|(Vnf)′(x)| =

∣∣∣∣∣ n

x(1 + x)

∞∑
k=0

f

(
k

n

)(
x− k

n

)(
n+ k − 1

k

)
xk

(1 + x)n+k

∣∣∣∣∣
≤ n

x(1 + x)
‖f‖∞ Vn(|t− x|, x) ≤ ‖f‖∞

√
n√

x(1 + x)
,

we can choose the function φ(x) = ln
(
x+ 1

2 +
√
x(1 + x)

)
and δn = 1/n.

Because φ′(x) = 1/
√
x(1 + x), using the Remark 2.1, we obtain

ωφ(Vnf, δn) ≤ δn · sup
x∈I

∣∣∣∣ (Vnf)′(x)

φ′(x)

∣∣∣∣ ≤ ||f ||∞√n ,

which proves that Snf ◦ φ−1 is uniformly continuous. Using Theorem 2.1
b) we deduce that (f ◦ φ−1)(x) = f

(
(2ex − 1)2/8ex

)
is uniformly continu-

ous if Vnf converges uniformly to f on [0,∞). But the uniform continuity of
f
(
(2ex − 1)2/8ex

)
is equivalent to the uniform continuity of f(ex − 1). Indeed,

let ϕ(x) = ln(1 + x). Because the function

(ϕ ◦ φ−1)(x) = ln

(
1 +

(2ex − 1)2

8ex

)
= 2 ln(2ex + 1)− x− ln 8

is uniformly continuous on [0,∞) (having a bounded derivative) and because

(φ ◦ ϕ−1)(x) = ln

(
ex − 1

2
+
√

(ex − 1)ex
)

is also uniformly continuous on [0,∞) (being a continuous function on [0,∞)
with the property that (φ ◦ ϕ−1)(x) − x has a finite limit at infinity), we have
proved the equivalence stated. To prove the other part, we use the Geometric,
Logarithmic, Arithmetic Mean Inequality

√
uv <

u− v
lnu− ln v

<
u+ v

2
, true for every 0 < v < u.

We obtain

|ϕ(x)−ϕ(t)| = | ln(1+x)−ln(1+t)| ≤ |x− t|√
(1 + x)(1 + t)

=

∣∣∣∣∣
√

1 + x

1 + t
−
√

1 + t

1 + x

∣∣∣∣∣ .
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Using the Cauchy-Schwarz inequality we get

an = sup
x≥0

Vn(|ϕ(x)− ϕ(t)|, x)

≤ sup
x≥0

√
(1 + x)Vn

(
1

1 + t
, x

)
+
Vn(1 + t, x)

1 + x
− 2Vn(1, x)

and because

Vn

(
1

1 + t
, x

)
=

∞∑
k=0

(
n+ k − 1

k

)
xk

(1 + x)n+k
· n

n+ k

≤ n

(n− 1)(1 + x)

∞∑
k=0

(
n+ k − 2

k

)
xk

(1 + x)n−1+k

=
n

(n− 1)(1 + x)

we obtain

an ≤
√

n

n− 1
+ 1− 2 =

1√
n− 1

, for n ≥ 2.

By Theorem 2.1 a) we obtain that Vnf converges uniformly to f on [0,∞), if
f(ex − 1) is uniformly continuous on [0,∞).

Corollary 3.3. For the Meyer-König and Zeller operators Mn : C[0, 1) →
C[0, 1) defined by

Mn(f, x) =

∞∑
k=0

(
n+ k

k

)
xk(1− x)n+1f

(
k

n+ k

)
we have ||Mnf − f ||∞ → 0, for those f such that f(1− e−x) is uniformly con-
tinuous on [0,∞). If f is bounded and continuous on [0, 1) and Mnf converges
uniformly on [0, 1) to f , then f(1−e−x) is uniformly continuous on [0,∞). We
have also the estimation

||Mnf − f ||∞ ≤ 2 · ω
(
f(1− e−t), 1√

n

)
, for n ≥ 1.

Proof. We have (see [3]) Mn(1, x) = 1, Mn(t, x) = x and

x(1− x)2

n+ 1
≤Mn(t2, x)− x2 ≤ 2x(1− x)2

n+ 1
, for n ≥ 3.

From these relations we obtain

Mn(|t− x|, x) ≤
√
Mn((t− x)2, x) =

√
Mn(t2, x)− x2 ≤ (1− x)

√
2x√

n+ 1
.
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A simple computation yields

|(Mnf)′(x)|

=

∣∣∣∣∣ n+ 1

x(1− x)2

∞∑
k=0

(
n+ k + 1

k

)
xk(1− x)n+2

(
k

n+ 1 + k
− x
)
f

(
k

n+ k

)∣∣∣∣∣
≤ n+ 1

x(1− x)2
· ||f ||∞ ·Mn+1(|t− x|, x) ≤ ||f ||∞

√
2(n+ 1)

(1− x)
√
x
.

We choose φ(x) = ln 1+
√
x

1−
√
x

, because φ′(x) = 1
(1−x)

√
x

. We have φ−1(x) =(
ex−1
ex+1

)2
, so using Remark 2.1 and Theorem 2.1 b), f ◦ φ−1 is uniformly con-

tinuous on [0,∞), if we have ||Mnf − f ||∞ → 0. But the uniform continuity
of f ◦ φ−1 on [0,∞) is equivalent with the uniform continuity of the function
f(1− e−x) on [0,∞). Indeed, let ϕ(x) = − ln(1− x). If we prove that the func-
tions φ ◦ ϕ−1 and ϕ ◦ φ−1 are uniformly continuous, the equivalence is proved.
But

(φ ◦ ϕ−1)(x)− x = ln
1 +
√

1− e−x

(1−
√

1− e−x)ex
= 2 ln

(
1 +
√

1− e−x
)

is a continuous function on [0,∞) having a finite limit at infinity, so, φ ◦ϕ−1 is
uniformly continuous on [0,∞). The function

(ϕ ◦ φ−1)(x) = − ln

(
1−

(
ex − 1

ex + 1

)2
)

= 2 ln (ex + 1)− x− ln 4

has a bounded derivative, so it is uniformly continuous on [0,∞).
To prove the other part, we use the same Geometric, Logarithmic, Arithmetic
Mean Inequality and we obtain

|ϕ(x)−ϕ(t)| = |−ln(1−x)+ln(1−t)| ≤ |x− t|√
(1− x)(1− t)

=

∣∣∣∣√1− x√
1− t

−
√

1− t√
1− x

∣∣∣∣ .
We have

an = sup
x∈[0,1)

Mn(|ϕ(x)− ϕ(t)|, x) ≤ sup
x∈[0,1)

√
1− x+

n+ 1

n
x+ 1− 2 =

1√
n
,

because

Mn

(
1

1− t
, x

)
=

∞∑
k=0

(
n+ k

k

)
xk(1− y)n+1 · n+ k

n
= 1 +

n+ 1

n
· x

1− x
.

By Theorem 2.1 a) we obtain that Mnf converges uniformly to f on [0, 1), if
the function f(1− e−x) is uniformly continuous on [0,∞).
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Corollary 3.4. For the Gauss-Weierstrass operators

Wn(f, x) =

√
n√
2π

∫ ∞
−∞

e−n
(u−x)2

2 f(u) du,

defined for continuous functions on R, for which the integral is finite, we have
the uniform convergence ||Wnf − f ||∞ → 0, if f is uniformly continuous on
R. If f is bounded and continuous on R and Pnf converges uniformly to f on
the whole real axis, then f is uniformly continuous on R. We have also the
estimation

||Wnf − f ||∞ ≤ 2 · ω
(
f,

1√
n

)
, for n ≥ 1.

Proof. We have Wn(1, x) = 1, Wn(t, x) = x, Wn(t2, x) = x2 + 1
n , and

Wn(|t− x|, x) ≤
√
Wn((t− x)2, x) =

√
Wn(t2, x)− x2 ≤ 1√

n
.

Because the derivative

|(Wnf)′(x)| = n|Wn((t− x)f(t), x)| ≤ n||f ||∞Wn(|t− x|, x) ≤
√
n||f ||∞,

is bounded for every n, for a bounded and continuous function f , we consider
ϕ(x) = x, and by Remark 2.1 and Theorem 2.1 b), we obtain that f is uniformly
continuous, if ||Wnf − f ||∞ → 0. Conversely, Wnf converges to f uniformly on
R, if f is uniformly continuous on R, because of the Theorem 2.1 a) and because
the sequence

an = sup
x∈R

Wn(|ϕ(x)− ϕ(t)|, x) = sup
x∈R

Wn(|x− t|, x) ≤ 1√
n

converges to 0.

Corollary 3.5. For the Bleimann-Butzer-Hahn operators Ln : C[0,∞)→ C[0,∞)
defined by

Ln(f, x) =

n∑
k=0

(
n

k

)
xk(1 + x)−nf

(
k

n− k + 1

)
we have ||Lnf − f ||∞ → 0, for those f such that f(x−2 − 1) is uniformly con-
tinuous on (0, 1]. If f is bounded and continuous on [0,∞) and Lnf converges
uniformly on [0,∞) to f , then f(x−2−1) is uniformly continuous on (0, 1]. We
have also the estimation

||Lnf − f ||∞ ≤ 2 · ω
(
f(t−2 − 1),

1√
n+ 1

)
, for n ≥ 1.

Proof. We have (see [4]) Mn(1, x) = 1, Mn(t, x) = x− x
(

x
1+x

)n
and (see [1])

Ln((t− x)2, x) ≤ 3x(1 + x)2

n+ 2
, for n ≥ 1 and x ≥ 0.
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From these relations we obtain

Ln(|t− x|, x) ≤
√
Ln((t− x)2, x) ≤ (1 + x)

√
3x√

n+ 2
.

A simple computation yields

|(Lnf)′(x)| =

∣∣∣∣∣n+ 1

x

n∑
k=0

(
n

k

)
xk

(1 + x)n

(
k

n+ 1
− nx

(1 + n)(1 + x)

)
f

(
k

n− k + 1

)∣∣∣∣∣
≤ n+ 1

x
· ||f ||∞ · Ln

(∣∣∣∣ t

1 + t
− nx

(1 + n)(1 + x)

∣∣∣∣ , x) ,
and because

Ln

(
t

1 + t
, x

)
=

nx

(1 + n)(1 + x)

Ln

((
t

1 + t

)2

, x

)
=

n2x2

(1 + n)2(1 + x)2
+

nx

(1 + n)2(1 + x)2

we obtain, by applying the Cauchy-Schwarz inequality

|(Lnf)′(x)| ≤ ||f ||∞
√
n

(1 + x)
√
x
.

We choose φ(x) = 2 arctan
√
x, because φ′(x) = 1

(1+x)
√
x

. The inverse of φ,

namely φ−1(x) =
(
tan x

2

)2
is defined for x ∈ [0, π), so using Remark 2.1 and

Theorem 2.1 b), f ◦ φ−1 is uniformly continuous on [0, π), if we have ||Lnf −
f ||∞ → 0. But the uniform continuity of f ◦φ−1 on [0, π) is equivalent with the
uniform continuity of the function f(x−2−1) on (0, 1]. Indeed, let ϕ(x) = 1√

1+x
.

If we prove that the functions φ ◦ ϕ−1 and ϕ ◦ φ−1 are uniformly continuous,
the equivalence is proved. But

(φ ◦ ϕ−1)(x) = 2 arctan

√
1− x2
x

is a continuous function on (0, 1] having a finite limit at x = 0, so, φ ◦ ϕ−1 is
uniformly continuous on (0, 1]. The function

(ϕ ◦ φ−1)(x) =
1√

1 +
(
tan x

2

)2 = cos
x

2

has a bounded derivative, so it is uniformly continuous on [0, π).
To prove the other part, we use the inequality

|ϕ(x)−ϕ(t)| =
∣∣∣∣ 1√

1 + x
− 1√

1 + t

∣∣∣∣ =

∣∣√1 + t−
√

1 + x
∣∣√

(1 + x)(1 + t)
≤ 1√

1 + x

|t− x|√
(1 + x)(1 + t)
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and applying the Cauchy-Schwarz inequality, we obtain

Ln(|ϕ(x)− ϕ(t)|, x) ≤ 1√
1 + x

√
Ln

(
(x− t)2

(1 + x)(1 + t)
, x

)

=
1√

1 + x

√
Ln

(
1 + x

1 + t
, x

)
+ Ln

(
1 + t

1 + x
, x

)
− 2Ln(1, x).

Using

Ln

(
1 + x

1 + t
, x

)
= (1 + x)Ln

(
1− t

1 + t
, x

)
= 1 + x− nx

n+ 1
= 1 +

x

n+ 1

and

Ln

(
1 + t

1 + x
, x

)
=

1

1 + x
Ln (1 + t, x) =

1 + x− x
(

x
1+x

)n
1 + x

= 1−
(

x

1 + x

)n+1

we deduce that the sequence

an = sup
x≥0

Ln(|ϕ(x)− ϕ(t)|, x) ≤ sup
x≥0

1√
1 + x

√
x

n+ 1
−
(

x

1 + x

)n+1

≤ 1√
n+ 1

is convergent to 0, so, by Theorem 2.1 a) the sequence Lnf converges uniformly
to f on [0,∞), if f(x−2 − 1) is uniformly continuous on (0, 1].
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