
The rate of approximation of real functions by

rational functions with prescribed numerator

degree

Ioan Gavrea, Adrian Holhoş
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Abstract

We give estimations of the approximation of positive real functions by
reciprocals of polynomials and of approximation of functions that change
sign by rational functions with prescribed numerator degree, in terms of
first order modulus of smoothness of Ditzian and Totik.

1 Introduction

In [6], the authors show that one can approximate a nonconstant positive real
function by reciprocals of real polynomials at the rate ω(f, 1/n), where ω(f, ·)
is the usual modulus of continuity. In [5], the rate is given by ωϕ1 (f, 1/n), the
first order modulus of Ditzian and Totik. Our Lemma 3.1 and Theorem 3.1 give
a new proof of the result obtained in [5].

Using the technique from [7, Theorem 2.1], we derive in Lemma 3.2 a better
inequality with respect to the order of n. The inequality from Lemma 3.3 is
given in [4, Theorem 3.1], but we give a simpler proof. Theorem 3.2 is the result
from [4] and is presented for the sake of completeness.

2 Preliminaries

The Ditzian-Totik modulus of first order is defined by

ωϕ1 (f, δ) = sup
|h|≤δ

sup
x±(h/2)ϕ(x)∈[0,1]

∣∣∣∣f (x+
h

2
ϕ(x)

)
− f

(
x− h

2
ϕ(x)

)∣∣∣∣ , δ ≥ 0,

for the step-weight ϕ(x) =
√
x(1− x) and for a continuous function f ∈ C[0, 1].

The K-functional related to this modulus is defined by

Kϕ
1 (f, δ) = inf

g∈AC[0,1]
(‖f − g‖+ δ ‖ϕg′‖), δ ≥ 0,
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in which ‖·‖ denotes the uniform norm on [0, 1] and AC[0, 1] is the space of
absolutely continuous functions defined on [0, 1]. It is well-known (see [2]), that
the K-functional Kϕ

1 (f, δ) and the modulus ωϕ1 (f, δ) are equivalent.
The second order modulus of Ditzian-Totik for the step-weight ϕ(x) =√
x(1− x) and for f ∈ C[0, 1], is defined by

ωϕ2 (f, δ) = sup
|h|≤δ

sup
x,x±hϕ(x)∈[0,1]

|f (x+ hϕ(x))− 2f(x) + f (x− hϕ(x))| , δ ≥ 0.

It is well-known that this modulus is equivalent with the K-functional

Kϕ
2 (f, δ) = inf

g′∈AC[0,1]
(‖f − g‖+ δ2

∥∥ϕ2g′′
∥∥), δ ≥ 0.

Consider the sequence of positive linear operators An : C[0, 1]→ Πn, where
Πn is the space of all polynomial with degree at most n. Suppose An has the
properties

1. An(ei, x) = ei(x), i = 0, 1, where ei(x) = xi,

2. An((t− x)2, x) ≤ C · ϕ
2(x)

n2
,

3. ‖Anf − f‖ ≤ C · ωϕ1
(
f,

1

n

)
,

4. An(f, x) ≥ f(x), 0 < x < 1, for every convex function f on (0, 1),

5. |An(f, x)− f(x)| ≤ Cω2

(
f,
ϕ(x)

n

)
,

In fact, properties 3,4 and 5 can be obtained from 1 and 2. An example of such
operators are An = H2[n−1

2 ]+1 : C[0, 1] → Πn, n ≥ 3, which were defined in [3]

in the following manner: For n ≥ 1 let xn be the greatest root of the Jacobi

polynomial J
(1,0)
n of degree n related to the interval [0, 1] and

P2n−1(x) = λn

∫ x

0

(
J
(1,0)
n (t)

t− xn

)2

dt, where λn =
1∫ 1

0
(1− x)

(
J

(1,0)
n (x)
x−xn

)2
dx

.

If P2n−1(x) =
∑2n−1
k=0 akx

k, then the operators H2n+1 : C[0, 1] → Π2n+1 are
defined by

H2n+1f =

2n−1∑
k=0

ak
k + 1

Lk+2f,

where the operators Ln : C[0, 1]→ Πn are defined by

Ln(f, x) = f(0)(1− x)n + f(1)xn + (n− 1)

n−1∑
k=1

pn,k(x)

∫ 1

0

pn−2,k−1(t) · f(t) dt,
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where

pn,k(x) =

(
n

k

)
xk(1− x)n−k.

The operators H2n+1 are linear and positive, preserve the affine functions and

H2n+1(e2, x)−x2 = x(1−x)

(
1−

∫ 1

0

x2P2n−1(x) dx

)
≤ ϕ2(x)(1−xn) ≤ Cϕ2(x)

n2
.

3 Main results

Lemma 3.1. For the operators An we have the property

An(|f(t)− f(x)|2, x) ≤ C ·
[
ωϕ1

(
f,

1

n

)]2
.

Proof. Because of the equivalence between ωϕ1 (f, t) andKϕ
1 (f, t), for each integer

n = 1, 2, . . . , there exists an absolutely continuous function fn, such that

‖f − fn‖ ≤ C1ω
ϕ
1

(
f,

1

n

)
, and ‖ϕf ′n‖ ≤ C2nω

ϕ
1

(
f,

1

n

)
. (3.1)

We have

|fn(t)− fn(x)| =
∣∣∣∣∫ t

x

f ′n(u) du

∣∣∣∣ ≤ ‖ϕf ′n‖ ∣∣∣∣∫ t

x

du

ϕ(u)

∣∣∣∣ .
Using the inequality (see [1])∣∣∣∣∫ t

x

du

ϕ(u)

∣∣∣∣ ≤ 2 · |t− x| ·min

(
1

ϕ(x)
,

1

ϕ(t)

)
,

the relations(3.1) and the properties of An, we obtain

An(|fn(t)− fn(x)|2, x) ≤ ‖ϕf ′n‖
2
An

(
4(t− x)2

ϕ2(x)
, x

)
≤ C ·

[
ωϕ1

(
f,

1

n

)]2
.

Using the inequality (a+ b)2 ≤ 2(a2 + b2), we finally obtain

An(|f(t)− f(x)|2, x) = An(|f(t)− fn(t)− (f(x)− fn(x)) + fn(t)− fn(x)|2 , x)

≤ 4 · ‖f − fn‖2 +An(|fn(t)− fn(x)|2, x)

≤ C ·
[
ωϕ1

(
f,

1

n

)]2
.

Theorem 3.1. Let f ∈ C[0, 1] be a nonconstant and nonnegative function.
Then, there is a sequence of polynomials pn ∈ Πn such that∥∥∥∥f − 1

pn

∥∥∥∥ ≤ C · ωϕ1 (f, 1

n

)
.
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Proof. For ε > 0, we define de function

fε(x) = f(x) + ε > 0, x ∈ [0, 1].

and consider the polynomials

pn(x) = An

(
1

fε
, x

)
> 0, x ∈ [0, 1].

Using Cauchy-Schwarz inequality for positive linear operators, we have

1 = [An(e0, x)]
2 ≤ An(fε, x) ·An

(
1

fε
, x

)
= pn(x) ·An(fε, x). (3.2)

We define the set

E =

{
x ∈ [0, 1] | pn(x) <

1

fε(x)

}
.

For x ∈ E, we have by relation (3.2) and the properties of An

0 <
1

pn(x)
− fε(x) ≤ An(fε, x)− fε(x) ≤ Cωϕ1

(
fε,

1

n

)
= Cωϕ1

(
f,

1

n

)
. (3.3)

For x /∈ E, we have

0 ≤ fε(x)− 1

pn(x)
=
fε(x)

pn(x)
An

(
1

fε(t)
, x

)
−An

(
e0(t)

pn(x)
, x

)
= An

(
fε(x)

pn(x)
· [fε(x)− fε(t)]
fε(t) · fε(x)

, x

)
≤ An

(
fε(x)

fε(t)
· [fε(x)− fε(t)], x

)
,

because for x /∈ E we have pn(x) · fε(x) ≥ 1. We deduce that

0 ≤ fε(x)− 1

pn(x)
≤ An ([fε(x)− fε(t)], x) +An

(
[fε(t)− fε(x)]2

fε(t)
, x

)
≤ An ([f(x)− f(t)], x) +

1

ε
An
(
[f(t)− f(x)]2, x

)
,

because 1/fε ≤ 1/ε. Taking ε = ωϕ1 (f, 1/n), which is not zero because f is
nonconstant and using Lemma 3.1 we obtain for x /∈ E

0 ≤ fε(x)− 1

pn(x)
≤ Cωϕ1

(
f,

1

n

)
.

From this and (3.3) we have ‖fε − 1/pn‖ ≤ Cωϕ1 (f, 1/n), so∥∥∥∥f − 1

pn

∥∥∥∥ ≤ ‖f − fε‖+

∥∥∥∥fε − 1

pn

∥∥∥∥ ≤ Cωϕ1 (f, 1

n

)
.
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Lemma 3.2. For any 0 < b1 < b2 < · · · < b` < 1, ` ≥ 1, let

ρ(x) = (x− b1)(x− b2) · · · (x− b`).

Then, there exists a polynomial Sn ∈ Πn such that for any x ∈ [0, 1] and n ≥ `
we have

0 ≤ 1− |ρ(x)|
Sn(x)

≤ min

1,
C`

n

∑̀
j=1

ϕ(x)

|x− bj |

 .

Proof. Let b ∈ (0, 1) and let gb(x) = |x− b|. Using the property 4 of An for the
nonnegative and convex function gb, we have

An(gb, x) ≥ gb(x) ≥ 0, 0 < x < 1.

Therefore,

0 ≤ 1− gb(x)

An(gb, x)
≤ 1, 0 < x < 1.

From ω2(gb, h) ≤ 2h, using the property 5 of An, we have

|An(gb, x)− gb(x)| ≤ Cϕ(x)

n
.

We obtain

0 ≤ 1− gb(x)

An(gb, x)
=
|An(gb, x)− gb(x)|

An(gb, x)
≤ Cϕ(x)

n ·An(gb, x)
≤ Cϕ(x)

n · gb(x)
.

We deduce that for any b ∈ (0, 1),

0 ≤ 1− |x− b|
An(gb, x)

≤ min

(
1,

Cϕ(x)

n|x− b|

)
, 0 < x < 1.

Because An(g, 0) = g(0) and An(g, 1) = g(1), the last inequality is valid also for
x = 0 and x = 1. We define

Sn(x) =
∏̀
j=1

A[n/`](gbj , x),

where [x] denotes the greatest integer not exceeding x. Sn is a polynomial with
the degree at most ` · [n/`] ≤ n, having the properties

Sn(x) ≥
∏̀
j=1

gbj (x) = |ρ(x)|
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and

1− |ρ(x)|
Sn(x)

= 1−
∏̀
j=1

(
1−

(
1− |x− bj |

A[n/`](gbj , x)

))

≤ 1−
∏̀
j=1

(
1−min

(
1,

C`ϕ(x)

n|x− bj |

))

≤
∑̀
j=1

min

(
1,

C`ϕ(x)

n|x− bj |

)
,

where we have used the inequality (see [4])

1−
∏̀
j=1

(1− yj) ≤
∑̀
j=1

yj , yj ∈ [0, 1].

Lemma 3.3. There exists an absolute constant C > 0 such that for t, x ∈ [0, 1]
and f ∈ C[0, 1],

|f(t)− f(x)| ·min

(
1,

max(ϕ(t), ϕ(x))

n|t− x|

)
≤ C · ωϕ1

(
f,

1

n

)
.

Proof. Using the relations from the proof of Lemma 3.1 we have

|f(t)− f(x)|·min

(
1,

max(ϕ(t), ϕ(x))

n|t− x|

)
≤ |fn(t)− fn(x)| · max(ϕ(t), ϕ(x))

n|t− x|
+ |f(t)− fn(t)− [f(x)− fn(x)]|

≤ ‖ϕf ′n‖ 2|t− x| ·min

(
1

ϕ(t)
,

1

ϕ(x)

)
· max(ϕ(t), ϕ(x))

n|t− x|
+ 2 ‖f − fn‖

≤ C · ωϕ1
(
f,

1

n

)
.

Theorem 3.2. There exists an absolute constant C > 0 with the property:
if the function f ∈ C[0, 1] changes sign exactly ` ≥ 1 times in [0, 1], say at
b1, b2, . . . , b`, then for each n ≥ 2`, there exists a polynomial pn ∈ Πn, having
the same sign as f in (b`, 1) and such that for x ∈ [0, 1],∣∣∣∣f(x)− (x− b1)(x− b2) · · · (x− b`)

pn(x)

∣∣∣∣ ≤ C`2ωϕ1 (f, 1

n

)
.
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Proof. Let 0 < b1 < b2 · · · < b` < 1 and f ∈ C[0, 1] change sign exactly at bj ,

1 ≤ j ≤ `. We may assume that f is positive in (b`, 1). Let ρ(x) =
∏`
j=1(x−bj).

If pn is a positive polynomial in [0, 1], then∣∣∣∣f(x)− ρ(x)

pn(x)

∣∣∣∣ =

∣∣∣∣|f(x)| − |ρ(x)|
pn(x)

∣∣∣∣ .
We set

pn(x) = S[n/2](x) · U[n/2](x) > 0,

where S[n/2] is the polynomial of degree [n/2] ≥ `, from the Lemma 3.2, and
U[n/2] is the polynomial from Theorem 3.1 with the property∣∣∣∣|f(x)| − 1

U[n/2](x)

∣∣∣∣ ≤ C · ωϕ1 (|f |, 1

n

)
≤ C · ωϕ1

(
f,

1

n

)
.

Then∣∣∣∣f(x)− ρ(x)

pn(x)

∣∣∣∣ =

∣∣∣∣|f(x)| − |ρ(x)|
pn(x)

∣∣∣∣
=

∣∣∣∣|f(x)|
(

1− |ρ(x)|
S[n/2](x)

)
+
|ρ(x)|

S[n/2](x)

(
|f(x)| − 1

U[n/2](x)

)∣∣∣∣
≤ |f(x)|min

1,
C`

n

∑̀
j=1

ϕ(x)

|x− bj |

+

∣∣∣∣|f(x)| − 1

U[n/2](x)

∣∣∣∣
≤ C`

∑̀
j=1

|f(x)− f(bj)|min

(
1,

ϕ(x)

n|x− bj |

)
+ ωϕ1

(
f,

1

n

)

≤ C`2ωϕ1
(
f,

1

n

)
.
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