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Abstract

We prove an integral formula of Green’s type and we apply this result
in the proof of a generalization of Stokes’ integral formula.

1 Introduction

Stokes” Theorem is a well known theorem in multivariable calculus and has a
long and interesting history (see the article [3]). In some recent theoretical
problems of physics (see [1] and [2] and the references given there) there is an
increasing need to apply this theorem in a context where the usual conditions of
the theorem (the smoothness of the vector field and smoothness of the surface)
no longer hold.

In this paper we prove an integral formula similar to Green’s theorem (Lemma
2.1 and Lemma 2.2) and then we give the proof of the Stokes’ theorem for vector
fields which are allowed to be discontinuous in a finite number of points.

2 Main results

Lemma 2.1. Let C be the boundary of the rectangle D = [a,b] X [c,d] oriented
in the positive direction. Let x € CY(D) and let P : D — R be a bounded
function which has only finitely many points of discontinuity in D and which
has partial derivatives on D that are Riemann integrable on D. Then
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Remark 2.1. If z € C?*(D) then relation (2.1) is a consequence of Green’s
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Proof of Lemma 2.1. The conditions over P and x assure the existence of the
integrals of relation (2.1). Moreover, the functions %—P and ap being Riemann
integrable on [a, b] X [c,d] they are absolutely integrable, too
Let By, f be the bivariate Bernstein polynomials for the function f and for
the rectangle D:

& d—c u—a v—c
By f(u,v) = ZZJC(G‘H C+J>pn,i<b_>pm,j (d—)’

a C
=0 j=0

dudv

where p,, ;(z) = (7)2*(1 — z)"*.
Using the Remark 2.1 for B, ,x € C?(D) we have

Brm® nmx B oP aBnmx OP 0B, mx
/P du P dv //( % 9v  du )dudv.

It is known (see for example [4]) that for every f € C(D) we have
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uniformly on D when n,m — oo.

Let € > 0 be an arbitrary real number. For sufficiently large n and m we
have
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‘We obtain
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where C' is the real number defined by
oP
C = sup \P(u,v)\~2(b—a+d—c)+// —(u,v) du dv.
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Letting € N\, 0 we obtain relation (2.1). O

N[

Remark 2.2. The relation (2.1) remains true if D is a simply connected domain
formed by joining a finite number of rectangles in such a way that they have
disjoint interiors and such that each rectangle has at least two points in common
with another rectangle.

It is sufficient to prove this for two rectangles Dy and Dy which have a
common boundary on the segment AB. Let C1 and Cy be the boundaries of Dy
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and Dy oriented positively (traversed in the direction such that the interior of
the rectangle is “to the left”). On Cy the segment is traversed from B to A and
on Cy from A to B. Denote by D the union of points D1 U Dy and by C' the
boundary of D oriented in the positive direction. The double integral on D is
the sum of double integrals on Dy and on Dy. The line integral along C is the
sum of line integrals along C1 and Cy because the line integral on AB cancels
the line integral on BA.

Lemma 2.2. Let D be a closed bounded simply connected domain in R?, which
1s bounded by the simple closed positively oriented piecewise smooth curve C. Let
P : D — R be a bounded function which has only finitely many points of dis-
continuity in D and which has partial derivatives which are Riemann integrable
onD. Ifx e Cl(D), then
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Proof. Because D is bounded there is a rectangle [a,b] X [¢, d] which includes

D. We can choose for example

a= min u, b= max u, c= min v and d= max v.
(u,v)ED (u,v)€D (u,v)€D (u,v)€D



Divide the rectangle [a,b] x [c, d] into n? rectangles of sides =% and %=<. Con-
sider D!, the set of points of rectangles which have common points with D and
D! the set of points of rectangles which are entirely contained in D. We have
D) C D C D). Because C is simple and piecewise smooth the set D] contains
for sufficiently large n at least two rectangles.

Also, because C' is piecewise smooth it has finite length L. Consider § =
min (b = dn‘). Because every arc of C' of length at most § is contained in
at most four rectangles from D! \ D! we deduce that D] \ D! has at most
4 ([%4] + 1) rectangles. This is a well-known result [5].

We want to find a domain D,, C D/, satisfying the property from Remark
2.2 and a curve C),, the boundary of D,,, such that this curve is simple and
intersects the curve C' in such a way that the distance between consecutive
points of intersection tends to zero.
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This can be accomplished in many ways. For example, consider C!/ the
boundary of D!!. Let Ry, Ra,...,Rx be the rectangles from D!/ which have in
common with C// at least one side. Leti € {1,..., N }. If R; has common points
with C' choose M; one point of the intersection. Consider now, one rectangle
R; which has only one exterior side (only one side in common with CJ/). We
lengthen the two sides of the rectangle which have common vertices with the
exterior side, keeping fixed the third interior side. In this way we enlarge the
rectangle until it touches the curve C' in at least one point M;. If the rectangle
R; has two or three exterior sides we choose one of these sides and enlarge the
rectangle as above. In this manner, we obtain an ”enlarged” domain D,,, with
the boundary C,, and the points My, Ms, ..., My with the property that two
consecutive points are at a distance at most 4-max (b;“, d7 c) one from another.

Using Remark 2.2 we have
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Let € > 0. Because

Area(D\ D) < Area(D', \ D) < 4 (m . 1) . %

tends to 0 when n tends to infinity
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and because of the integrability of 5~ - 3% — 5, - 55 we have
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For the points M;(u;,v;), i =1,..., N+1, with My; = M; using the definition
of the line integral along C for sufficiently large n we get
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Letting £ \, 0 we obtain relation (2.1). O

Theorem 2.1. Let 7 = x(u, v)i+y(u, v)7+2(u, )k, (u,v) € D be the parametriza-
tion of a simple, open and orientable surface S, with x,y,z € CY(D), where
D is a closed bounded simply connected domain in the plane with its bound-
ary 0D, a simple closed positively oriented piecewise smooth curve, and V =
P(z,y,2)T+ Q(x,y,2)7+ R(z, v, z)E be a vector field such that P, Q and R are
bounded functions which have only finitely many points of discontinuity in S
and which have partial derivatives which are integrable on S. Then
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where C' is the boundary curve of S and the image of 0D through the given
parametrization.

Proof. We prove that

/ / —d da:f—dedy.

/Qd // dz dy——Qdydz7
/Rdz—// a—Rdzdm

Similarly



Adding the three relations we obtain Stokes formula.
Because dz = g—i du + g—ﬁ dv we obtain

ox ox ox ox
P = —d —_— = -—du+ P - — dw.
Jpar=[ r (au “t o d”> T TR

Applying Lemma 2.2 we have

ox oP 0x 0P Ox
ar P. 2 e = gr _ 9
3D " Ou dut d // ( ou v ov 8u) dudv.

Because P = P(z(u,v),y(u,v), z(u,v)) we have
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