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Abstract

For the class of bounded functions defined on [0, 1] and continuous on (0, 1) we
give a characterization of the functions which can be uniformly approximated
by Bernstein-type operators.
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1. Introduction

Bernstein polynomials were introduced by S. N. Bernstein [1] in 1912 to
constructively solve the problem of K. Weierstrass [13] of uniformly approx-
imating the continuous functions by using polynomials. They are defined
by

Bu(f,z) = zn: (Z)‘”k(l _ )k (%) L ozel01, n>1 (1)

k=0
They approximate uniformly every continuous function f defined on the com-
pact [0, 1], i.e.

|Bnf — fll = sup |Bn(f,z) — f(z)] = 0, whenn — oo.

z€[0,1]

We study in this paper a general class of Bernstein type operators:

L) =3 (1) —ay 2, nz1 2)

k=0
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where A, ;(f) are positive linear functionals such that

A, (1) =1, forevery k=0,1,..., n.

Tim [[Lper — e = 0, (3)
lim || L,es — el = 0.
n—oo

Using the Theorem of Popoviciu-Bohman-Korovkin [10, 2, 7] one can prove
that every continuous function f € C[0,1] can be uniformly approximated
by L,f.

The problem studied in this paper is the following: if we restrict to the
class of bounded functions defined on [0, 1] and continuous on (0, 1) does the
uniform approximation property of L,, operators still hold? It is possible to
uniformly approximate sin %? We give in Theorem 1 the characterization of
the functions from this class which can be uniformly approximated by L,,.

2. Main result

Theorem 1. If f: [0,1] — R is a bounded function which is continuous on
(0,1) then

|\Lnf — f]l = 0, when n — o0
if and only iof

f s uniformly continuous on (0,1).

Proof. Suppose ||L,f — f|| = 0, when n — co. We prove that f must be
uniformly continuous on (0, 1).

Let us denote by p,, ; the polynomials (Z) 28(1 — z)"F ‘We have (see [4,
p. 305))

p;k(x) = [Pr-1k-1(T) = Pn1k(7)] -
So,

L, (f,x) —ann1k1 _nzpn 11<; f)-



Because Y ,_,pni(z) = 1, we deduce that |L! (f,z)| < 2n|f|. Using the
properties of the global modulus of continuity (see [4]) we have

W(f, 5”) S W(f - Lnfa 5n) + w(Lnf> 6n)
< 2 ||f - Lnf“ + sup |Ln(f7 t) - Ln(fu I)|

[t—z|<dn
t,z€(0,1)

<2([f = Lofll + 6n sup 1L (foo)l < 2|[f = Lafl| + 21 f] 72 6n.
ce(0,

If we choose the sequence 9,, such that J,, - n tends to zero, we deduce from
the above inequality that w(f,d,) — 0 when n — oco. This proves that f is
uniformly continuous on (0, 1).

The converse can be obtained using the Shisha-Mond [11] evaluation of
the rate of approximation:

La(f.2) = f@)] €2+ (f, VIl = 2P, 7))

Let us denote

0, = sup \/Ln(\t—x|2,x)

z€(0,1)

Using the relations (3) and because

00 < V| Lnez — ea]l + 2 [ Loer — e

we deduce that d,, tends to zero. Because f is uniformly continuous we obtain
that w(f,0,) tends to zero, so ||L,f — f|| — 0 tends to zero, when n tends
to infinity. O

Example 2. The function f(z) = sin+ for « € (0,1) cannot be uniformly
approximated by the Bernstein-type operators in the uniform norm.

Example 3. The result of Theorem 1 is true for Bernstein-Stancu operators

k+a
n+p )7’

where 0 < o < 8 we obtain the operators introduced and studied by D. D.
Stancu [12].

and in particular for Bernstein operators. Indeed, for A, x(f) = f (

Example 4. For

_k_
n+1

Ailf) = (n+ 1) / £ty dt

we obtain the operators of Kantorovich [6] for which the Theorem 1 is true.
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Example 5. For

Aalf) = 0+1) [ 1 (7)ea - otroa

we obtain the operators introduced by J. L. Durrmeyer [5] in 1967 and studied
by A. Lupas [8] and M. M. Derriennic [3]. Theorem 1 is true for these
operators, too.
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