
A Policy Driven Self-healing Algorithm for Context Aware Systems

Ionut Anghel, Tudor Cioara, Ioan Salomie, Mihaela Dinsoreanu, Anca Rarau

Technical University of Cluj-Napoca, Computer Science Department

{Ionut.Anghel,Tudor.Cioara, Ioan.Salomie, Mihaela.Dinsoreanu, Anca.Rarau}@cs.utcluj.ro

Abstract

This paper proposes a generic self-healing

algorithm that automatically detects, diagnoses and

repairs the problems appeared during the context

aware systems' adaptation processes. The set, situation

calculus and information system theories are used to

define and formalize the concepts of context situation

entropy and equivalent context situations together with

a set of self-healing principles. These concepts and

principles are used to generically define the self-

healing algorithm. The self-healing property is

enforced by monitoring the systems execution

environment for: (i) evaluating the degree of fulfilling

the context policies of the current context situation

(context situation entropy), (ii) obtaining the

equivalent context situations and (iii) determining the

actions that have to be executed in order to keep the

system in consistent functional states. The self-healing

algorithm is validated on our RAP context model by

enhancing it with a generic policy representation

technique for run-time evaluation.

1. Introduction and Related Work

The context aware systems continuously monitor,

capture and interpret information related to their

execution environment in order to adapt their behavior

to changes. The

aware systems execution environment makes the

system management and adaptation processes an

extremely difficult task. The self-management

capabilities have become a mandatory requirement for

creating systems which automatically change their

observable behavior and structure according to the

internal or external conditions of their evolution

environment. The self-management capabilities can be

achieved by using the autonomic computing paradigms

(self configuring, self healing, self optimizing and

self-protecting) for the development and integration of

self-* enhanced components into context aware

systems [1].

In this paper we propose a generic self-healing

algorithm that can be used to automatically detect,

diagnose and repair the problems appeared during the

context adaptation processes. By mapping the situation

calculus theory onto context aware systems we define

the self-healing property in terms of fulfilling degree

for a predefined policies set that describes the systems

correct behavior and should drive the system

execution, accordingly. Using set and information

system theories we define and formalize the concepts

of context situation entropy and equivalent context

situations together with a set of self-healing principles.

Based on these concepts and principles, the self-

healing property of a context aware system is enforced

by monitoring the system execution environment in

order to: (i) evaluate the degree of fulfilling the context

policies for the current context situation (context

situation entropy), (ii) obtain the equivalent context

situations and (iii) determine the actions that have to

be executed in order to keep the system in consistent

functional states. The self-healing algorithm is

validated on our RAP context model [2] by enhancing

it with a generic policy representation method for run-

time evaluation.

The current researches related to the self-healing

autonomic feature, in different contexts, focus upon

specifying and developing system models that should

allow for: (i) identifying the causes of failures or

crashes [3], (ii) identifying possible errors in the

system life cycle [4] and (iii) performing run-time

diagnosis and offering solutions [5]. The proposed

models are based on anticipating and avoiding run-

time problems as well as identifying ways to restore

the system in case of failure. The adoption of

biological principles such as decentralization,

autonomy, natural selection or symbiosis in the process

of designing and building self-healing application

components or services is a novel research direction

[6]. A component of an application is designed as a

biological entity, equivalent to an individual bee in a

978-1-4244-5007-7/09/$26.00 ©2009 IEEE 229

bee colony that competes or collaborates for

computing resources. Using natural selection

principles, the components

predefined rules or policies are banned for execution.

Self-healing techniques that use reinforcement learning

in dealing with crashes and denial of service have been

studied in [7]. In case of a crash, the authors propose

action selection techniques based on learning from

previous experience. In [8] the authors propose a self-

healing and optimizing mechanism for minimizing

energy consumption fluctuations of network devices

and thus reducing the network global energy

consumption. The approach is based on defining an

agent with associated energy plans for each managed

device, part of the tree-like hierarchy of devices. IBM

researchers R. Das and J. O. Kephart use virtualization

and load-balancing techniques for achieving self-

healing and self-optimizing of data centers resources

[9]. By combining different types of agent based

managers (power, performance and coordination), the

data center available resources are efficiently

administrated without SLA penalties.

The rest of the paper is organized as follows:

Section 2 defines the self-healing property for context

aware systems and presents the generic self-healing

algorithm; Section 3 shows how the self-healing

algorithm is applied on our RAP context model

together with simulation results while Section 4

concludes the paper and describes the future work.

2. Defining the Self-Healing Property for

Context Aware Systems

In order to define and formalize the self-healing

property of a context aware system we use the

situation calculus theory [10]. By mapping the

situation calculus theory onto context aware systems,

we have identified three main concepts that can be

used to define the self-healing property: (i) the

situation concept that represents the complete state of

the context aware system execution environment at a

moment of time, (ii) a set of conditions that guide and

control the system execution and (iii) the action plans

taken by the context aware system in order to enforce

the set of conditions for a specific situation.

A context aware system situation represents the

system internal state together with a snapshot of its

execution environment taken at a specific moment of

time. Usually, the context aware system captures its

situation related information using a set of real or

virtual context resources (sensors networks, GPS,

RFID etc.).

From now on we refer the context aware system

situation as context situation and represent it with s.

The set of all context situations s, for a context aware

system is represented with S.

The set of conditions used to control the context

aware system execution is represented using a set of

context policies. A context policy is notated with p

while the set of context polices is referred as P.

To enforce the set of conditions for a specific

situation the context aware application must execute

corresponding action plans notated with a. The set of

all action plans, that a context aware system may

execute is represented with A.

We define the self-healing property of a context

aware system as a function:

Self_Healing: Ps A

 s S => a A, Self-Healing(Ps) = a (1)

The self-healing function is non-injective implying

that there are distinct context situations for which the

same action plan is executed in order to enforce the

policy. As a result, the context situations are grouped

in clusters using the selected action plan as a

discriminator (see Figure 1).

Figure 1. The Self-healing non-injective function

In the following sections we define and formalize

the concepts of context situation entropy and

equivalent context situations together with a set of self-

healing principles to describe the self-healing

algorithm. Using these concepts the self-healing

property of context aware systems is enforced by

monitoring the system execution environment in order

to detect the context situations for which at least one

context policy is broken. The self-healing property is

implemented by executing three steps: (1) evaluating

the context situation entropy as the degree of policy

fulfilling for the current context situation, (2) obtaining

the equivalent context situations and (3) determining

230

the actions that have to be executed in order to keep

the system in consistent and healthy functional states.

2.1. Context Situation Entropy

In order to measure the degree of respecting the set

of context policies for a given context situation, we

define the concept of context situation entropy (Es) and

its associated threshold (TE). The context situation

entropy measures the level of system internal and

external (environment) disorder by evaluating the

degree of fulfilling the context policies. If the context

entropy is below TE, then all context policies are

fulfilled and the system is in a consistent and healthy

functional state.

The entropy of a context aware system tends to

incr

control over its internal/external state. In our approach,

the control is exercised through the actions executed in

order to keep the system entropy below TE.

To evaluate the context entropy we define a

function (Peval) that takes a context situation and a

specific context policy as input values and generates

output values of zero or one. When Peval (s, p) = 1, the

policy is not fulfilled for the s context situation,

otherwise the policy is respected. Using the Peval

function, we can evaluate the entropy for a context

situation:

Peval : (s, p) {0, 1}

Es: P , Es = Peval (s, p) (2)

The entropy is used to determine the self-healing

capacity of a context aware system. The context aware

system has the self-healing property enabled if and

only if the product of context entropy values for any

two consecutive context situations is below the entropy

threshold squared. This product is an invariant for the

context aware system self-healing property:

Es Es++ < (TE)
2
 (3)

2.2. Equivalent Context Situations

According to the set theory [11], an equivalence

class is a subset of elements which respect the same

collection of properties. The collection of properties

that must be fulfilled by all elements part of an

equivalence class defines an equivalence relation. For

a context aware system we define the equivalence

relation over the context situations set S based on the

property of fulfilling and breaking context policies.

Two context situations are equivalent (notation ~~) if

both fulfill and brake the same context policies.

[s] = { x S | x ~~ s} (4)

For a context aware application, the equivalence

relation over the context situation set S has the

following properties:

Reflexivity: s1 S, s1 ~~ s1. Each context

situation part of the S set is equivalent to itself.

For the same context situation the same policies

are always broken or fulfilled.

Symmetry: s1, s2 S if s1 ~~ s2 then s2 ~~ s1. If

the context situation s1 is equivalent to another

context situation s2 they both brake and fulfill the

same context policies.

Transitivity: s1, s2, s3 S if s1 ~~ s2 and s2 ~~ s3

then s1 ~~ s3. If the context situation s1 is

equivalent to the context situation s2 and s2 is

equivalent to s3, then we conclude that s1 and s3

brake and fulfill the same context policies.

To clasify the context situations in equivalence

classes we use the information system theory [12]. An

information system is defined as an association (W,

Atr) where: W is a non-empty finite set of objects and

Atr is a non-empty finite set of attributes. For this

association a function af that assigns to every W

object, a value for each Atr attribute can be defined.

For a context aware system the non-empty set of

finite objects W is mapped to the set of context

situations S while the set of attributes Atr is mapped to

the set of context policies P. We map the af function

onto the Fsk function that assigns a list of values

returned by evaluating all policies using the Peval

function, to the context situation sk:

Fsk: <Peval (sk, p1), ,... Peval (sk, pn)>

 (5)

Two context situations s1 and s2 belong to the same

equivalence class if and only Fs1 and Fs2 generate the

same output list of policy evaluation values (Table 1).

Table 1. Determining the equivalence classes for

the context aware systems situations

231

As a result, the equivalence class is defined as the set

of context situations for which the same action plan a

is executed in order to keep the system in a healthy

state. For an equivalence class we use the notation S
A
,

where a is the equivalence class attached action plan.

2.3. The Self-Healing Algorithm

Using the above presented self-healing concepts we

can define four self-healing principles that are used to

drive the self-healing process.

The indiscenability principle. The context aware

system cannot discern between two equivalent context

situations. It means that for the equivalent context

situations, the context aware system will always take

the same decisions in order to enforce the healthy state

of the system.

Order preservation principle. During the self-

healing adaptation processes, the context aware system

must always preserve the order in which two context

situations appear.

Input:

P - the set of context policies
 s - the current context situation
 SA - the set of existing equvalence classes
 TE- the entropy threashold
Output: a healthy context aware system state

begin

 / / evaluate the context entropy
E s p PPeval (s, p)

 if (E s < TE) then

 return / / s is a neutral context situation
 else

sa = determineEquivClass(P, s, SA)
 if (sa

 in SA)
 / / action plan already defined

executeAction(a)
 else

 / / generate and execute action plan
a' = determineAction(P, s)
sa' = createNewEquivClass(P, s, a')
SA = SA + sa'

executeAction(a')
end

Figure 2. The Self-healing algorithm

Adaptation consistency principle. Each

equivalence class should be associated with an

executable action plan. As a consequence, for a context

situation s that belongs to the same equivalence class,

the context aware system will always execute the same

action plan.

Neutral context situation principle. A neutral

context situation is a context situation in which the

system is in a healthy state where no context policy is

broken. As a result no action should be executed.

Figure 2 presents the proposed self-healing

algorithm for a context aware system. The algorithm

has three main phases: (i) evaluating the context

entropy for the current context situation (ii)

determining the equivalent context situations and (iii)

determining the action plans that have to be executed

in order to keep the system in consistent and healthy

functional states.

3. Validating the Self-Healing Algorithm

on the RAP Context Model

by our Distributed System Research Laboratory [14].

In the laboratory the students are marked using RFID

tags and identified using a RFID reader. The students

interact with the smart laboratory by means of wireless

capable PDAs on which different laboratory provided

services are executed (submit homework service,

lesson hints services, print services, question-based

services etc.). A sensor network captures information

regarding student locations or orientation and also

ambient information like the temperature or humidity.

in the labo

Next sections present how the first two phases of

the proposed self-healing algorithm are validated using

the above presented scenario and our RAP context

model to represent the information context.

3.1. The RAP Context Model Overview

To represent a real world context in a

programmatic manner (understandable for context

aware applications) we use our RAP context model.

This model defines the context as a triple: C = <R, A,

P> where R is the set of context resources that

generates and/or processes context information, A is

the set of actors which interact with context resources

in order to satisfy their needs and P is the set of real

world context related policies. The set of context

resources R is split in two disjunctive subsets: (i) the

set of context resources attached to the real world

context environment RE and (ii) the set of context

resources attached to the actors RA. In order to provide

232

an accurate representation of the execution

environment, the following representation artifacts are

defined: specific context model, specific context model

instance and context actor instance. The specific

context model CS = <RS, AS, PS> is obtained by

mapping the context model onto different closed

environments and populating the sets with environment

specific elements. A specific context model instance

CSI = <RSI, ASI, PSI> contains the set of context

resources with which the middleware interacts,

together with their values in a specific moment of time

t. The context actor instance CIa
t

= <Ra
t
, a, P

t
>

contains the set of context resources with which the

actor can interact, together with their values in a

specific moment of time t. The advantage of the RAP

model is the ontological representation of the context

model artifacts which allows for learning and

reasoning in order to obtain high-level context

information. The specific context model concepts are

represented as sub trees of the core ontology by using

is-a type relations. The context situation or the context

instance is represented by the core ontology together

with the specific context model concepts and their

instances in a specific moment of time.

3.2. The RAP context model policy

representation and evaluation

In order to create the execution conditions of the

self-healing algorithm we enhance the RAP context

model with an XML generic policy representation for

run-time evaluation.

In the RAP context model we use two types of

resources: (i) passive resources that capture and store

context specific data and (ii) active resources that

interact directly with the context and modify the

context state. According to this classification we have

defined metrics constraints policies and action

policies.

The metrics constraints policies are defined for

the set of passive context resources in order to impose

restrictions to the captured context specific data. The

context aware application needs to automatically

determine what actions or plans of actions should be

executed in order to enforce and maintain these

constraints.

The action policies are defined for the context

elements that can directly modify the context state

(active resources or actors) and specify the actions that

should be performed to satisfy the action policy

constraints.

Both types of policies are described in XML using

the following elements: Reference, Subject and Target.

The XML Reference element represents a

collection of context entities (context resources and

actors) on which the policy is applied. Each reference

is associated a unique name. In order to be member of

the context entity collection, a context entity should

obey several restrictions. We have defined three types

of restrictions with different degrees of generality:

domain restriction, type restriction and property

restriction. The domain restriction (defined by the

DomainRestriction XML element and its Domain

attribute) is the most general restriction type and uses

the physical location to create the Reference context

entities collection. The type restriction (defined by the

TypeRestriction XML element and its Type attribute)

restricts Reference context entities collection using the

entities class as a criteria. The property restriction

(defined by the PropertyRestriction and its Property,

Values and Operator attributes) further restricts the

Reference context entities collection to those context

entities that satisfy a certain condition related to one or

more properties, other than location. The Type,

Domain and Property attributes values must be classes

defined in the RAP context model OWL ontology.

For example, in our test case scenario, to define the

Reference context entities collection that contains all

movement sensors with their influence zone higher

than 5 meters placed in DSRL laboratory, the Figure 3

structure must be used.

 <Restrictions>

 <TypeRestriction

 <PropertyRestriction

 </Restrictions>
</Reference>

Figure 3. XML Reference example

The XML Subject element and its Name attribute

specifies and identifies the context entities collection

which is the subject of the policy using a reference

defined in the References section. A Subject element

may have two children: (i) EvaluationTrigger XML

element that contains a set of events generated by the

subject which can trigger the evaluation of the policy

and (ii) EvaluationCondition XML element that

contains a set of conditions for which the policy will be

enforced.

233

To specify that in the DSRLTEMP Reference

context entities collection the policy should be

evaluated when the measured temperature has changed

and is equal to 22 degrees, Figure 4 structure is

defined.

 <EvaluationTriggers>

 </EvaluationTriggers>
 <EvaluationConditions>
 <Condition

 </Condition>
 </EvaluationConditions>
</Subject>

Figure 4. XML Subject example

The XML Target element depends on policy type.

In the metrics constraint policies case, the Target

element represents a collection of entities for which the

goals specified by the PolicyGoals XML element

applies. It uses a Reference context entities collection

defined in the References section to identify the target

of the policy.

The PolicyGoals are used by the context aware

application to determine the action plan that has to be

executed in order to enforce the policy. For action

policies the Target element represents a collection of

entities for which the actions specified by the Action

XML element are directly executed in order to enforce

the policy. In Figure 5 we present an example for a

metrics constraint policy that must enforce a 22 degree

Celsius temperature in the DSRL laboratory.

 <PolicyGoals>
 <Goal Prope
 </PolicyGoals>
</Target>

Figure 5. XML Target example

The context policies are converted into SWRL

rules [13] and evaluated using the RAP specific

context model instance ontology representation. The

SWRL rules are used to reason about specific context

model instance ontology individuals in terms of

ontology specific context model classes and properties.

Rules are written in the form of an implication between

an antecedent (body) and consequent (head). Both the

antecedent and consequent consist of multiple atoms

conjunctions.

3.3. Evaluation Results

In order to test the algorithm we have implemented

a simulator that provides an editor in which an

evaluation test case can be described by adding a

timeline and the corresponding values for the context

properties that change.

The policies are loaded from XML files and

converted into SWRL rules using a policy conversion

module. The resulting SWRL rules are injected into

the DSRL specific context model ontology

representation and evaluated using the Pellet reasoning

engine [15]. While running the simulation, a policy

monitor window shows which policies are not

respected and should be enforced (Figure 6).

Figure 6. The policy evaluation simulator

In order to assess the performance of the context

situation entropy evaluation and the equivalence

classes determination, several tests with different

input data of increasing complexity have been

generated.

The first testing scenario determines the evaluation

time for an increasing number of context policies

processed all at once (parallel evaluation). For this

scenario we started with a test having 3 policies as

input, and then we gradually increased the number of

policies up to 30 for the last test. The policies that

were used had the same complexity (the corresponding

SWRL rules contained approximately the same number

of atoms in the antecedent). Each test had 20 runs and

234

an average was made in order to obtain the evaluation

time for that test (Figure 7).

Figure 7. The performance of the context situation

entropy parallel evaluation

The second testing scenario determines the

evaluation time for an increasing number of context

policies individually processed (sequential evaluation).

The goal of this test scenario is to see how the system

performance differs when performing evaluation of

several policies at the same time compared to the

situation when those policies are evaluated

individually. For this scenario the evaluation time is

computed as a sum of the evaluation time for each

policy (Figure 8).

Figure 8. The performance of the context situation

entropy sequential evaluation

The above presented scenario results show that the

evaluation time varies linearly with the number of

evaluated policies. By comparing the parallel and

sequential results, it can be observed that it is more

efficiently to evaluate all the policies at one time.

The last testing scenario shows how the policy

evaluation depends on its complexity. The complexity

of a policy is given by the number of atoms in the

antecedent of the corresponding SWRL rule. For this

scenario we started with a test having as input one

policy with 4 atoms and we increased gradually the

number of atoms up to 34 for the last test. Each test

was done several times with a different policy and an

average was computed.

Figure 9. The performance of the policy evaluation

for increasing the policy complexity

By looking at the chart (Figure 9) we can draw the

conclusion that for a number of atoms smaller than 20

the evaluation time increases slowly. When the

complexity of the policy increases above 20 atoms the

evaluation time increases much faster.

4. Conclusions

In this paper we proposed a generic self-healing

algorithm that can be used to automatically detect,

diagnose and repair the problems that may appear

during the context adaptation processes. The algorithm

is based on the concepts of context situation entropy

and equivalent context situations together with a set of

self-healing principles defined using the set, situation

calculus and information system theories. The self-

healing property is enforced by monitoring the system

execution environment in order to: (i) evaluate the

degree of fulfilling the context policies for the current

context situation (context situation entropy), (ii) obtain

the equivalent context situations and (iii) determine the

actions that have to be executed for keeping the system

in consistent functional states. The self-healing

algorithm is validated using our RAP context model

for representing the context information and the DSRL

laboratory as a smart space scenario.

For further development we intend to define,

formalize and implement the action selection phase of

the self-healing algorithm using reinforcement learning

algorithms.

235

5. References

[1] Daniel A. Menascé and Jeffrey O. Kephart, Autonomic

Computing , IEEE Internet Computing, vol. 11, no. 1,

2007, pp. 18-21.

[2] Ioan Salomie, Tudor Cioara, Ionut Anghel and Mihaela

Dinsoreanu, RAP - A Basic Context Awareness Model

Proceedings of 4th IEEE International Conference on

Intelligent Computer Communication and Processing, Cluj-

Napoca, Romania, 2008, pp. 315-318.

[3] M. Parashar, and S. Hariri, Autonomic Computing: An

Overview LNCS Springer Verlag, Vol. 3566, 2005, pp.

247 259.

[4] Jared Saia and Amitabh Trehan, Picking up the Pieces:

Self-Healing in reconfigurable networks Proc. of IEEE

International Parallel and Distributed Processing

Symposium, 2008, pp. 1 12.

[5] Salomie I., Moga A. and Dinsoreanu M., Enhancing

Web Service Composition with Self-healing Facilities ,

2007 WSEAS Trans. on Information Science and

Applications, 2007, pp. 42-50.

[6] P. Champrasert and J. Suzuki, SymbioticSphere: A

Biologically-Inspired Autonomic Architecture for Self-

Adaptive and Self-Healing Server Farms Proc of the

International Symposium on a World of Wireless, Mobile

and Multimedia, 2006, pp. 474-480.

[7] Mehdi Amoui, Mazeiar Salehie, Siavash Mirarab and

Ladan Tahvildari, Adaptive Action Selection in Autonomic

Software Using Reinforcement Learning Proc. of the

Fourth International Conference on Autonomic and

Autonomous Systems (ICAS'08), 2008, pp. 175-181.

[8] E. Pournaras, M. Warnier and F. Brazier, Using

intelligent agents for self-adaptation and self-optimization of

energy consumption in power networks Proc. of 1st

International Workshop on Agents for Autonomic

Computing, in conjunction with ICAC 2008, 2008.

[9] Rajarshi Das, Jeffrey O. Kephart, Charles Lefurgy,

Gerald Tesauro, David W. Levine and Hoi Chan,

Autonomic multi-agent management of power and

performance in data centers Proc. AAMAS2008, 2008, pp.

107-114.

[10] F. Pirri and R. Reiter, Some contributions to the

metatheory of the Situation Calculus . Journal of the ACM,

pp. 325 361, 1999.

[11] Jech Thomas, Set Theory: Third Millennium Edition ,

Springer Monographs in Mathematics, Springer-Verlag,

ISBN 978-3-540-44085-7, 2003, p. 642.

[12] Galliers R.D., Markus M.L. and Newell S. (Eds),

Exploring Information Systems Research Approaches NY:

Routledge, ISBN-10 041577196X , 2007.

[13] Ian Horrocks et. All, SWRL: A Semantic Web Rule

Language , W3C Standard,

http://www.w3.org/Submission/SWRL/

[14] DSRL, Distributed Systems Research Laboratory,

Technical University of Cluj-Napoca, dsrl.coned.utcluj.ro.

[15] Evren Sirin, Bijan Parsia, Bernardo C Grau, Aditya

Kalyanpur and Yarden Katz, "Pellet: A practical OWL-DL

reasoner", Web Semantics: Science, Services and Agents on

the World Wide Web, Vol. 5, No. 2., pp. 51-53, 2007.

236

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /MyriadWebPro
 /MyriadWebPro-Bold
 /MyriadWebPro-Condensed
 /MyriadWebPro-CondensedItalic
 /MyriadWebPro-Italic
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Raavi
 /Ravie
 /ShowcardGothic-Reg
 /Shruti
 /SimSun
 /SnapITC-Regular
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00540068006500730065002000730065007400740069006e00670073002000610072006500200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e003000200061006e00640020006d0061007400630068002000740068006500200022005200650071007500690072006500640022002000730065007400740069006e0067002000660069006c0065007300200066006f00720020005000440046002000730070006500630069006600690063006100740069006f006e002000760065007200730069006f006e00200034002e0030002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [595.276 841.890]
>> setpagedevice

