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Abstract- This paper presents a self-adapting algorithm that can 
automatically detect the changes in a system execution context 

and decide how the system should react. The self-adapting 
algorithm is characterized by a closed feedback loop with four 
phases: monitoring, analyzing, planning and execution. The 
monitoring phase uses the RAP (Resources, Actions, Policies) 

context model to represent in a programmatic manner the raw 
data collected about the system's self and execution environment. 
In the analysis phase, the context entropy concept is used to 
evaluate the context situation for detecting the context changes 

and determining the degree of respecting a predefined set of 
policies. The planning phase uses a reinforcement learning based 
technique to explore all possible system's states and select the 
adaptation action that should be executed by the system as a 

response to the context changes. The execution phase modifies the 
system behavior by enforcing the adaptation actions selected in 
the planning phase. 

Keywords - autonomic computing, pervasive computing, self­
adaptive, MAPE phases, reinforcement learning 

I. INTRODUCTION AND RELATED WORK 

The complex structure and execution environment of 
today's distributed systems makes their management an 
extremely difficult task, which usually requires human 
intervention. There is a high demand for reducing the 
distributed system management complexity while ensuring a 
good system tolerance and robustness. A promising solution is 
to develop self-adaptive systems which automatically change 
their observable behavior and structure according to the 
execution environment internal or external conditions [1]. A 
self-adaptive system features a closed feedback loop with four 
MAPE phases: Monitoring, Analysis, Planning and Execution. 
In the monitoring phase, the self-adaptive system continuously 
monitors itself and its execution environment in order to 
capture and represent the relevant information. The analysis 
phase deals with detecting significant changes in the system 
self and execution environment while the planning phase 
decides and selects the appropriate adaptation actions as 
response to the detected changes. The execution phase 
modifies the system behavior by enforcing the adaptation 
actions selected in the planning phase. 

This paper proposes a self-adapting algorithm that can 
automatically detect and analyze the changes in a system 
execution context, decide how the system should react and 
execute such decisions. For the monitoring phase we have used 
our sensor based monitoring infrastructure detailed in [2]. The 
system execution context is represented in a programmatic 
manner using our RAP context model [3]. The analysis phase 
evaluates the system execution context changes and calculates 
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the context entropy values. We have defmed and used the 
context entropy concept to reflect the degree of fulfilling a 
predefmed set of policies that guide the system execution. The 
policies are described in XML and are automatically converted 
into SWRL (Semantic Web Rule Language) using our policy 
representation and evaluation model, proposed in [4]. The 
planning phase has four main steps: ( 1) identify and select the 
policy p with the highest contribution to the context entropy, 
(2) determine the set of resources affected by p, (3) organize 
the affected resources into inter-independent resource groups 
(IIRGs) and (4) use reinforcement learning to generate the best 
action to be taken in order to bring the IIRG's resources as 
close as possible to policy p compliant state. 

The research regarding the self-adaptivity problem is 
focused on tree major directions: (i) the development of models 
and tools for acquiring and formally representing the system 
execution context, (ii) the development of models and 
techniques for analyzing the system execution context related 
information and (iii) the development of models and algorithms 
that allow computational systems to decide, select and execute 
actions according to the context or situation at hand. 

The most important problems related to context 
information acquisition are to identify the characteristics that 
define the system execution context [5], and to define models 
for capturing the characteristics specific information [6]. In the 
domain literature, several characteristics that may define the 
system execution context are considered [7], [8], [9]: 
spatiotemporal characteristics (time and location), ambiental 
characteristics, facility characteristics (the system devices and 
their capabilities), user-system interaction, system internal 
events, system life cycle, etc. Regarding context 
representation, generic models that aim at accurately 
describing the system execution context in a programmatic 
manner are proposed. In [ 10] the use of key-value models to 
represent the set of context characteristics and their associated 
values is proposed. Markup models [ 11] and object oriented 
models [12] are also used to structure and represent the 
context information. The use of ontologies to represent the 
context information is proposed in [ 13]. The context 
characteristics are represented as ontological concepts and 
instantiated with run-time sensor captured values. 

In the context analyzing research direction, models and 
techniques that aim at determining and evaluating the context 
changes are proposed. These models are strongly correlated 
with the system execution context representation model. In 
[ 14] fuzzy Petri nets are used to describe context changing 
rules. Data obtained from sensors together with user profiles 
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and requests represent the input data for the reasoning 
mechanism. Context analyzing models based on reasoning and 
learning on the available context information are proposed in 
[ 16], [ 17]. Context changing rules are described using natural 
language [ 15] or flrst order logic and evaluated using 
reasoning engines. 

Models and algorithms that allow computational systems 
to decide on the adaptation actions that have to be executed 
according to the context or situation at hand are proposed. The 
objective is to associate a certain degree of intelligence to the 
computational systems for context adaptation [ 1]. In [ 18], the 
authors propose a context adaptive platform based on the 
closed loop control principle. [ 19] proposes adaptation models 
based on defming the system behavior in a certain situation 
using a set of context adapting rules. A self-adapting model 
that uses a system situation space to represent the system 
execution context is proposed in [20]. Using learning 
algorithms, the system may infer the action to be executed for 
a new situation by placing it in a situation space group. 

II. THE SELF-ADAPTING ALGORITHM 

To defme and formalize the self-adapting property of a 
context aware system we have used three main situation 
calculus concepts: (l) the situation concept also referred as 
system situation or context situation, represents the state of a 
context aware system (system's self and execution 
environment) at a moment of time, (2) a set of conditions that 
guide and control the system execution and (3) the action plans 
that may be executed by the context aware system in order to 
enforce the set of conditions for a speciflc situation. Using 
these concepts, we defme the self-adapting property of a 
context aware system as a function, which associates to each 
system context situation s that fails to fulflll the prescribed set 
of conditions, an action plan a, that should be executed in order 
to reinforce the set of conditions. 

1. blinn: RAP _ model- the context model sets R,A,P 
2. SA - the set of existing equvalence classes 
3. TE- the entropythreashold 
4. output: a new adapted system state 
5. 1"·Oc(II.l1u'e selfAdaptingAlgorithm(RAP _model. S'\ TV 
6. begin_MAPE 
7. //Mouitoting Plaasf' 

8. envI = gatherEnviromentInfonnationO; 
9. s = createContextSituatiOll(RAP _model. envI) 
10. //AllrlUSyS Phase 
11. Es = evaluateContextSituationEntropy(s, P) 
12. IlPlalUu.nglDedcUug Phase 
13. action=0 
14. if(Es>Ti) IIlen 
15. Sl = detennineEquivClass(P. s, SA) 
16. If(s·h. SAl 
17. action = a 
18. ebe 
19. a' = determineActionsSequence(p,Es. TV 
20. action = a' 
21. 51' = createNewEquivClass(p, s, a') 
22. SA= SA+ Sl' 

23. eml if 
24. eml if 
25. l/Ex(>cutiouPhase 

26. executeAction(actionSeq) 
27. eml :MAPE 

Figure l. The self-adapting algorithm 

Fig. 1 presents the proposed self-adapting algorithm 
which is based on a control feedback loop with the following 
MAPE phases: (i) the Monitoring Phase - collects raw data 
about the system's self and execution environment and uses it 
to construct and represent the system context situation in a 
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programmatic manner (lines 7-9), (ii) the Analysis Phase -
analysis the context situation in order to detect signiflcant 
abnormal changes (lines 10- 11), (iii) the Planning Phase -
decides and selects the appropriate adaptation action plan to 
be executed (lines 12-24), (iv) the Execution Phase - the 
proper execution of the selected action plan (lines 25-26). 

The following sub-sections detail the flrst three phases of 
the self-adapting algorithm. The execution phase is trivial and 
is not further detailed. 

A. The Monitoring Phase 

The goal of the self-adapting algorithm monitoring phase 
is to collect the system's self and execution environment raw 
data and to construct / represent the system context situation in 
a programmatic manner. The system's self and execution 
environment raw data describes the context in which the 
system evolves. The system's self raw data represents the 
system internal state and is used to assure the system's self­
awareness. This data is usually gathered using low level 
system calls, logging or life cycle events. The system's 
execution environment raw data is captured using sensor 
networks or intelligent devices [2] with the goal of assuring 
the system context awareness. 

To represent the system's context situation in a 
programmatic manner we have used our RAP (Resources, 
Actions and Policies) context model defmed in [3]. The RAP 
model deflnes two types of context information 
representations: (i) set based, used to determine the system 
execution environment changes and (ii) ontology based, used 
to infer new context information by means of reasoning and 
learning algorithms. In the set based approach, the context 
information is modeled as a triple, C = <R, A, P >, where R is 
the set of context resources that provide raw data about the 
system's self and execution environment, A is the set of actions 
which are executed to enforce system execution rules and P is a 
set of policies which defme the rules that guide the system 
execution. In the ontology-based representation, the 
relationships between the context model sets are modeled in a 
general purpose context ontology core. The domain speciflc 
concepts are represented as sub trees of the core ontology by 
using is-a type relations. A RAP context model instance 
represents a context situation and contains the values of the 
RAP context model sets elements in a speciflc moment of time. 
The RAP context model instance is onto logically represented 
by the core ontology together with the domain speciflc 
concepts sub trees and their instances. 

B. The Analisys Phase 

The analysis phase targets the evaluation of the system 
context situations in order to detect those situations in which 
the rules that guide the system execution are broken. The set of 
guiding rules or conditions are described as RAP policies using 
our policy representation / evaluation model proposed in [4]. 
For measuring the degree of fulfllling the set of policies of a 
system context situation, we have defmed the concept of 
context situation entropy (Es) and its associated threshold (T E) ' 
The next sub-sections give a short overview of the policy 
representation / evaluation model and the context situation 
entropy concept. 
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1) The policy representation / evaluation model 

The policy representation model uses three main XML 
elements to describe a policy: Reference, Subject and Target. 

The XML Reference element represents a collection of 
system resources (see Fig. 2 lines 1-7 for an example). Each 
reference has a unique name that can be referred from all the 
other XML elements of the policy. The reference resources 
collection is defined by applying three types of restrictions: 
domain restriction (location as criteria), type restriction 
(resource class as criteria) and property restriction (resource 
properties other than location as criteria). 

The XML Subject element uses a reference name to 
indentify the system resources collection on which the policy 
imposes restrictions (see Fig. 2, lines 8-16). The Subject 
element has two children: (i) EvaluationTrigger XML element 
that contains a set of possible events that may trigger the 
policy evaluation and (ii) EvaluationCondition XML element 
containing a set of conditions for which the policy is enforced. 

The XML Target element represents a collection of 
resources for which the goals specified by the PolicyGoals 
XML element applies (Fig. 2 lines 17-21). The PolicyGoals 
element is used to determine the action plan that has to be 
executed to enforce the policy. 

<Rderence Kame="DSRLTE:\tp .. > 
<Restrictions> 

<DomainRestriction Domain="DSRL":>­
<rypcRcsuiction Type="TcmpcraturcScnsor" '> 
<PropertyRestriction Property="hltlucnceZooc" 

Value="10" OperatoF'greaterThan" '> 
6 <Resmctions> 
7 <Reference> 
S <Subject l'ame="'DSRL TDfP'"> 
9 <E\'a1uationTriggers> 
10 <Trigger Ennt="TempuarunChangedE ,' ent" '> 
11 <EnluationTriggers> 
t 2 <E\·a.1uationConditions> 
13 <Condition Property="TemperarureValueP'rop" 

14 <Condition> 
Operator="equal" VaJue="22''> 

15 <. EnluationConditions> 
16 <. Subject> 
17 <Target l'ame="'DSRLTH IP '"> 

1 S <PolicyGoals> 

19 <Goal Property='�TemperatuuVa1ueProp"\'a1ue="22" '> 
20 <"PolicyGoals> 

21 <Target> 

Figure 2. The XML representation of the policy "In the DSRL laboratory the 
temperature must be 22 degrees" 

In order to be evaluated, the policies are automatically 
converted into SWRL (Semantic Web Rule Language) rules 
and injected into the RAP specific context model instance 
ontology. The SWRL rules are used to reason about RAP 
context model instance ontology individuals in terms of 
ontology classes and properties. Rules are written in the form 
of an implication between an antecedent (body) and a 
consequent (head). 

The process of obtaining the SWRL rule antecedent from 
the XML policy description consists from two phases: (i) the 
generation of the SWRL atoms used to identify the specific 
context model instance ontology individuals involved in the 
reasoning process and (ii) the transformation of the XML 
policy evaluation condition into SWRL rules. 

The SWRL rule consequent contains a SWRL atom that 
sets the EvaluationResultProp attribute to true for all RAP 
context model Policy class individuals, which correspond to 
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the XML broken policies. The Policy EvaluationResultProp 
class attribute value stores a Boolean information regarding 
the degree of fulfilling the policy. 

2) The system context situation entropy 

The system context situation entropy measures the level of 
system's self and execution environment disorder by 
evaluating the degree of fulfilling the policies. If the evaluated 
system context situation entropy is below a predefined 
threshold T E, then all the policies are fulfilled and adaptation 
is not required. Otherwise the system must execute adaptation 
actions to control its self and execution environment and to 
keep the system entropy below T E. 

The entropy for a certain system context situation is: 

( 1) 

where: 
pWj is the weight of the policy i, and represents the 
importance of the policy for the system execution 
rwjj is the weight of the system resource i in the policy 
j. The resource weight reflects the system resource 
importance for the policy. If a policy imposes no 
restrictions to a system resource then the resource 
weight of the resource for that policy is zero. 
Vjj is the deviation between the system resource j 
recorded value and the policy i accepted value. 

We also define the entropy contribution (Ej) of a policy: 

(2) 

Taking into account the system toleration to changes, we 
have defined two types of entropy thresholds: restrictive 
threshold and relaxed threshold. In the fIrst case, we define 
the threshold T E = 0 as lowest entropy value. This means that, 
whenever a policy-imposed restriction is broken, the self­
adapting algorithm is triggered. In the second case, for each 
policy we defme an accepted entropy contribution value Ej and 
compute current threshold TE as in (3). For the relaxed 
threshold, broken policies are tolerated if their entropy 
contribution is lower than the accepted contribution value. 

T E= L pWj *Vj/( 100+Ei % 100) (3) 

C. The Planning Phase 

This phase deals with deciding and planning the actions 
that need to be taken in order to enforce a broken policy. The 
phase starts with identifying previously encountered similar 
context situations in which the same policies were broken. If a 
similar situation is found, the same action plan is selected and 
executed, otherwise a new action plan must be constructed. 

1) Equivalent system context situations 

To identify and classify similar system context situations 
we have defmed the equivalence context situation class 
concept and an equivalence relation. Two context situations 
are equivalent if both fulfill and break the same policies. To 
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clasify the system context situations in equivalence classes we 
use the infonnation system theory. An infonnation system is 
defmed as an association (W, Atr) where: W is a non-empty 
finite set of objects and Atr is a non-empty finite set of 
attributes. For this association a function af that assigns to 
every object in W, a value for each attribute in Atr, can be 
defmed. For a context aware system, the non-empty set of 
objects W is mapped onto the set of context situations S while 
Atr is mapped to the set of policies P. We defme a function, 
Fsk, that assigns to every system context situation Sk, a list of 
values returned by evaluating all the defined policies in that 
context situation. Two system context situations s) and S2 
belong to the same equivalence class if and only if Fs) and FS2 
generate the same lists of policy evaluation values (Table I). 

TABLE I. DETERMINING THE EQUIVALENCE CLASSES FOR THE SYSTEM 
CONTEXT SITUATIONS 

s--..&t lib mi m. 
" 1 
" 0 
... ... 
" Il 1 

0 0 
1 1 
... ... 
0 0 ) 

Fs, 

Equivalent 
Context 
Situations 

Fs, 

As a result, the equivalence class is defmed as the set of 
system context situations in which the same adaptation action 
plan a is executed (we use the notation Sa, where a is the 
adaptation action plan). 

2) Adaptation actions planning 

The action selection phase of the self-adapting algorithm 
considers the broken policies one by one, ordered by their 
contribution to the overall entropy (see relation 3). The action 
selection phase can be divided in four main steps (Fig. 3): ( 1) 
select the policy with the highest contribution to entropy (line 
9), (2) for the selected policy, detennine the set of affected 
system resources and organize them into inter-independent 
resource groups (IIRGs) (line 10) and (3) use reinforcement 
learning (if necessary) to generate the best action sequence to 
be taken in order to bring the IIRG's resources as close as 
possible to a policy compliant state (lines 11-15). 

input: p. the set of context policies 
Es - the entropy value for the curent context situation 
T! - the entropy threashold 

output: actionsT oBeTaken - the sequence of actions to be 
executed 

S procedure determmeActionsSequence(P. Es. T e) 
6 bqla 
7 ActionsList actionsToBeTaken; 
8 wbUeEs>Tedo 
9 policy = determineLargestContributionToEntropyPolicyO 
10 URGs = URGExtraction(policy) 
11 whO. ( faultyResourcesNotTaken(policy) ) do 

12 faultyResource = selectFaultyResource(policy) 
13 ORO = selectinterlndependentResourcesGroup(llRGs) 
14 seqActions = reinforcementLeaming(faultyResource, Es, 

15 add(actionsToBeTaken, seqActioos) 
16 fndwhUe 
17 fDdwhUe 
18 return actionsToBeTaken 
19 end 

rootNode, rootNode) 

Figure 3. The actions selection phase procedure pseudo-code 

The inter-independent resource group (IIRG) concept is 
defmed and used into the reinforcement learning algorithm to 
avoid the situation when healing a context policy may cause 
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breaking another one because their associated resources are 
depended. For example, a temperature sensor and a humidity 
sensor are dependent taking into consideration a room 
temperature policy and a human thennal comfort factor policy. 
In this situation, an action executed to heal a specific policy 
(e.g. room temperature policy), changes the policy associated 
resources values and triggers a variation of its depended 
resources values with the result of breaking another context 
policy (e.g. human thennal comfort factor policy). If all IIRG 
resources comply with the policy rules, no action is executed. 
More details about the IIRG concept and our IIRG extraction 
algorithm can be found in [2 1]. 

3) Determining the Best Action Sequence 

The best actions sequence to be taken for a certain IIRG is 
found by merging the best sequences of actions detennined for 
each IIRG resources. For an IIRG resource, the sequence of 
actions is computed through a reinforcement learning 
algorithm, by using a policy iteration technique (see Fig. 4). 

The learning process considers all possible system context 
situations and builds a decision tree by simulating the 
execution of all available actions for each system context 
situation. A tree node represents a system context situation. A 
tree path between two nodes A and B defmes a sequence of 
actions which, executed on the system context situation 
represented by the node A, generates a new system context 
situation represented by the node B. The reinforcement 
learning process uses a reward / penalty approach to fmd the 
best sequence of actions that the system may execute in a 
given context situation. In our case, the minimum entropy path 
in the reinforcement learning decision tree represents the best 
sequence of actions. 

Ioput: faultyResource - faulty resource 
rootNode - reinforcement learning state tree root node 
cunentNode· reinforcement learning state tree cuneot node 

output: Decision tree minimum path wich represents 
the sequence of actions 

5 procedure reinforcementLearning(faultyResource, currentEntropy , 
rootNode, currentNode) 

6 bqla 
7 Actions "" getActions(resource) 
8 for eacb ( action E Actions) do 
9 newEntropy=simuiateActionExecution(fauityResource,action) 
10 newNode= addChild(currentNode, newEntropy, resource) 
11 If( aIICyclesQ=FALSE )lbeu 
12 lI(newEntropy<TE) tbea 
13 retnra patbFromRootActioosList(currentNode) 
14 else 
IS if(newEntropy<cunentEntropy)tbeD 
16 reinforcementLearning(faultyResource, ncwEntropy, root, newNode) 
17 todll 
18 end if 
19 else 
20 retarD minimumPathActioosList() 
21 tad If 
22 ead for 

23 ead 

Figure 4. The reinforcement learning algorithm 

The learning process may generate different type of results 
discussed below. 

Case 1: The algorithm fmds only a possible system context 
situation that has its entropy lower than the predefmed 
threshold. In this case the sequence of actions that lead to this 
context situation is selected and the search is stopped. 

Case 2: The current system context situation entropy is 
higher than the threshold, but smaller than the minimum 
entropy detennined so far. We replace the minimum entropy 
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with the new entropy and continue with the search process. 
Case 3: The current entropy is higher than both the 

threshold and the minimum entropy; the reinforcement 
learning algorithm continues the search process. If all 
exercised paths of the decision tree are cycles, the algorithm 
stops and chooses the path leading to a state with the 
minimum entropy. 

III. CASE STUDY 

As case study, we develop an intelligent pervasive system 
used to manage our DSRL (Distributed Systems Research 
Lab) smart laboratory. The system uses a sensor network to 
collect the information regarding students' location or 
orientation and ambiental information like light level, 
temperature or humidity. Also in the laboratory, the students 
are identified using a camera with face recognition software. 
The system uses a set of actuators to control the laboratory 
environmental characteristics and to enforce the actions 
executed as a response to policy breaking. The system 
infrastructure components (sensors and actuators) and their 
possible values / default actions are shown in Table 2. 

TABLE II. THE SYSTEM INFRASTRUCTURE COMPONENTS 

Infrastructure � Possible values! Available actions 
Component 

Temperature Sensor zoe 
Humidity Sensor [0·1001% 

Light Sensor {ON, OFF} 
Computer State Sensor {ON, OFF} 

Alarm State Sensor {ON, OFF} 

Face Recognition Camera {Professor, Student, Unknown} 
Room State Sensor {Empty, Not Empty} 

Air Conditioning Unit Actuator {Decrease by 5°C, Decrease by 2 0c} 

Heater Actuator { Increase by 5 °e } 
Humidity Controller Actuator {[ncrease by 3 %,Decrease by 3 %} 

Light Controller Actuator {Tum ON, Tum OFF} 
Alarm Controller Actuator {Tum ON, Tum OFF} 

Computer Controller Actuator {Tum ON, Tum OFF} 

In the smart laboratory, a set of policies is defmed to 
govern the environmental characteristics and the access to the 
laboratory resources. The set of policies used to drive the 
intelligent system management process execution are 
presented in Table 3. 

TABLE III. THE SMART LABORATORY POLICIES 

Policy 

Temperature 
Humidity 

Actor 
Recognition 

Light 

Accellted values 

Temperature E (lBoe, 23°C) 
Humidity E (20 %,30 %) 

I 
_ {OFF , Face Recognition - Professor I Student 

A arm - ON ,Face Recognition = Unknown 
Computer 

{ON ,Face Recognition = Professor 
= OFF, Face Recognition = Unknown I Student 

Li ht 
_ {OFF ,Room empty 

g - ON ,Room not empty 

For simulation purposes, we have provided two sensor 
values manipulation mechanisms: a Context Disturbing 
Mechanism (CDM) and a Direct Manipulation Mechanism 
(DMM). CDM assigns values to sensors using a predefined 
pattern (or random values) in order to generate complex 
context situations in which adaptation is needed. DMM uses 
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an Extensible 3D (X3D) implementation, to represent the 
smart laboratory infrastructure as X3D objects (Fig. 5). A 
click event performed on an object generates a change in the 
object state. The X3D approach allows us to accurately 
construct real life scenarios and closely control their evolution. 

• 

Figure 5. The X3D representation of the DSRL managing system 

For testing purposes, the following scenario is considered: 
a Professor enters the laboratory, the Computer is "OFF" and 
the Alarm is "ON". The system constructs an instance of the 
current context situation and uses it to evaluate the SWRL 
representation of all defined policies. As a result of the 
evaluation process, the "Actor Recognition" policy is broken 
(see Table 3) and the managing system needs to take 
adaptation decisions. In the decision process, the self-adapting 
algorithm uses the reinforcement learning based approach 
presented in section C.3 and constructs a decision tree by 
simulating the execution of all actuators available actions. In 
our test case scenario, the "Actor Recognition" policy affects 
the following system infrastructure components: the Alarm 
and the Computer State sensors. For each resource, we 
simulate the following actions execution: (i) tum the computer 
on / off, executed by the Computer controller and (ii) tum the 
alarm on / off, executed by the Alarm Controller. The process 
continues until the best action sequence that generates a 
context situation with minimum entropy is found (Fig. 6). For 
the above presented scenario, we assume the following: (i) the 
context entropy threshold is T E=O, (ii) the weights for policies 
and resources are equal to 1 and (iii) all actions have an 
immediate effect. 

Cllrenl; state CU'rent broken poIdes 

"""" , .... r &_� 11 �atlle-sensor 21 
aceRecognlionPolcy 

-=- 0 

aarm-state-sensor 1 

-- 23 Act:Itn�cdct:erl'l'li'ledforcortextrcptJi" -" ........ 0 

ace<� 0 """" T ..... , .. � 
OI'flld:«-state-sensor 0 mStateSensorI 

>ct � ''''''''''' 1 

Figure 6. The Actor Recognition Policy broken 

To assess the self-adapting algorithm's performance, the 
CDM mechanism is used in two different tests. In the first test, 
a pattern of four context situations that need adaptation is 
generated: (i) the professor is in the room while the Computer 
is "OFF" and the Light is "OFF", (ii) the student is in the 
room while the alarm is "ON", (iii) the Temperature and 
Humidity are out of their admissible ranges and (iv) an 
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unknown person is in the room and the Alarm is "OFF". Fig. 
7 graph shows the time needed by the self-adapting algorithm 
to analyze each of the four context situation and to identify the 
corresponding actions plans: 20, 4, 61 and respectively 22 
seconds. When a similar situation was previously encountered, 
the time decreases to 0 seconds because the self-adapting 
algorithm directly selects the same adaptation actions. 

-) 

(das 
I 

Figure 7. Results for CDM using a pattern 

For the second test case, the self-adapting algorithm was 
run for about 3 hours (Fig. 8). During this time the CDM 
mechanism gave random values to all sensors as following: (i) 
for the Temperature sensor [ 15 . . .  25], (ii) for Humidity sensor 
[ 15 . . .  35], (iii) for the Light, Room State, Computer State and 
Alarm sensors 0 or 1 ("OFF", "ON") and (iv) for the Face 
Recognition camera 0, 1, 2 ("Professor", "Student", 
"Unknown"). Each variation in the plot represents a situation 
in which an unknown context situation has been encountered 
and a search for the best sequence of actions was performed. 
In the first 1000 seconds, almost all running times of the 
action selection algorithm are greater than 10 seconds. After 
that, the self-healing mechanism begins to learn, achieving the 
performance of having only four running times greater than 10 
seconds in the [5000, 7000] time interval. 

Figure 8. Results for CDM with random values 

Also, an overall reduction in the number and height of the 
peaks is visible because at each step the algorithm checks if it 
doesn't already know the best sequence of actions for the 
current situation. Considering that the number of possible 
sensor combinations for the chosen ranges is 22.481.940, the 
self-adapting algorithm shows promising results. 

IV. CONCLUSIONS 

This paper presents a self-adapting algorithm that can 
automatically detect and analyze the changes in a system 
execution context and decide how the system should react, and 
execute adaptation actions. The test case results are promising, 
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showing that the self-adapting algorithm is capable to take 
adaptation decisions in various types of context situations. 
Also the adaptation decision time tends to decrease in time as a 
result of the learning process. 
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