
A Self-Adapting Algorithm for Context Aware Systems

Tudor Cioara, lonut Anghel, loan Salomie, Mihaela Dinsoreanu,
Georgiana Copil and Daniel Moldovan

Technical University of Cluj-Napoca
Cluj-Napoca, Romania

{Tudor.Cioara, Ionut.Anghel, Ioan.Salomie, Mihaela.Dinsoreanu}@cs.utcluj.ro

Abstract- This paper presents a self-adapting algorithm that can
automatically detect the changes in a system execution context

and decide how the system should react. The self-adapting
algorithm is characterized by a closed feedback loop with four
phases: monitoring, analyzing, planning and execution. The
monitoring phase uses the RAP (Resources, Actions, Policies)

context model to represent in a programmatic manner the raw
data collected about the system's self and execution environment.
In the analysis phase, the context entropy concept is used to
evaluate the context situation for detecting the context changes

and determining the degree of respecting a predefined set of
policies. The planning phase uses a reinforcement learning based
technique to explore all possible system's states and select the
adaptation action that should be executed by the system as a

response to the context changes. The execution phase modifies the
system behavior by enforcing the adaptation actions selected in
the planning phase.

Keywords - autonomic computing, pervasive computing, self­
adaptive, MAPE phases, reinforcement learning

I. INTRODUCTION AND RELATED WORK

The complex structure and execution environment of
today's distributed systems makes their management an
extremely difficult task, which usually requires human
intervention. There is a high demand for reducing the
distributed system management complexity while ensuring a
good system tolerance and robustness. A promising solution is
to develop self-adaptive systems which automatically change
their observable behavior and structure according to the
execution environment internal or external conditions [1]. A
self-adaptive system features a closed feedback loop with four
MAPE phases: Monitoring, Analysis, Planning and Execution.
In the monitoring phase, the self-adaptive system continuously
monitors itself and its execution environment in order to
capture and represent the relevant information. The analysis
phase deals with detecting significant changes in the system
self and execution environment while the planning phase
decides and selects the appropriate adaptation actions as
response to the detected changes. The execution phase
modifies the system behavior by enforcing the adaptation
actions selected in the planning phase.

This paper proposes a self-adapting algorithm that can
automatically detect and analyze the changes in a system
execution context, decide how the system should react and
execute such decisions. For the monitoring phase we have used
our sensor based monitoring infrastructure detailed in [2]. The
system execution context is represented in a programmatic
manner using our RAP context model [3]. The analysis phase
evaluates the system execution context changes and calculates

374

the context entropy values. We have defmed and used the
context entropy concept to reflect the degree of fulfilling a
predefmed set of policies that guide the system execution. The
policies are described in XML and are automatically converted
into SWRL (Semantic Web Rule Language) using our policy
representation and evaluation model, proposed in [4]. The
planning phase has four main steps: (1) identify and select the
policy p with the highest contribution to the context entropy,
(2) determine the set of resources affected by p, (3) organize
the affected resources into inter-independent resource groups
(IIRGs) and (4) use reinforcement learning to generate the best
action to be taken in order to bring the IIRG's resources as
close as possible to policy p compliant state.

The research regarding the self-adaptivity problem is
focused on tree major directions: (i) the development of models
and tools for acquiring and formally representing the system
execution context, (ii) the development of models and
techniques for analyzing the system execution context related
information and (iii) the development of models and algorithms
that allow computational systems to decide, select and execute
actions according to the context or situation at hand.

The most important problems related to context
information acquisition are to identify the characteristics that
define the system execution context [5], and to define models
for capturing the characteristics specific information [6]. In the
domain literature, several characteristics that may define the
system execution context are considered [7], [8], [9]:
spatiotemporal characteristics (time and location), ambiental
characteristics, facility characteristics (the system devices and
their capabilities), user-system interaction, system internal
events, system life cycle, etc. Regarding context
representation, generic models that aim at accurately
describing the system execution context in a programmatic
manner are proposed. In [10] the use of key-value models to
represent the set of context characteristics and their associated
values is proposed. Markup models [11] and object oriented
models [12] are also used to structure and represent the
context information. The use of ontologies to represent the
context information is proposed in [13]. The context
characteristics are represented as ontological concepts and
instantiated with run-time sensor captured values.

In the context analyzing research direction, models and
techniques that aim at determining and evaluating the context
changes are proposed. These models are strongly correlated
with the system execution context representation model. In
[14] fuzzy Petri nets are used to describe context changing
rules. Data obtained from sensors together with user profiles

9th RoEduNet IEEE International Conference 2010

and requests represent the input data for the reasoning
mechanism. Context analyzing models based on reasoning and
learning on the available context information are proposed in
[16], [17]. Context changing rules are described using natural
language [15] or flrst order logic and evaluated using
reasoning engines.

Models and algorithms that allow computational systems
to decide on the adaptation actions that have to be executed
according to the context or situation at hand are proposed. The
objective is to associate a certain degree of intelligence to the
computational systems for context adaptation [1]. In [18], the
authors propose a context adaptive platform based on the
closed loop control principle. [19] proposes adaptation models
based on defming the system behavior in a certain situation
using a set of context adapting rules. A self-adapting model
that uses a system situation space to represent the system
execution context is proposed in [20]. Using learning
algorithms, the system may infer the action to be executed for
a new situation by placing it in a situation space group.

II. THE SELF-ADAPTING ALGORITHM

To defme and formalize the self-adapting property of a
context aware system we have used three main situation
calculus concepts: (l) the situation concept also referred as
system situation or context situation, represents the state of a
context aware system (system's self and execution
environment) at a moment of time, (2) a set of conditions that
guide and control the system execution and (3) the action plans
that may be executed by the context aware system in order to
enforce the set of conditions for a speciflc situation. Using
these concepts, we defme the self-adapting property of a
context aware system as a function, which associates to each
system context situation s that fails to fulflll the prescribed set
of conditions, an action plan a, that should be executed in order
to reinforce the set of conditions.

1. blinn: RAP _ model- the context model sets R,A,P
2. SA - the set of existing equvalence classes
3. TE- the entropythreashold
4. output: a new adapted system state
5. 1"·Oc(II.l1u'e selfAdaptingAlgorithm(RAP _model. S'\ TV
6. begin_MAPE
7. //Mouitoting Plaasf'

8. envI = gatherEnviromentInfonnationO;
9. s = createContextSituatiOll(RAP _model. envI)
10. //AllrlUSyS Phase
11. Es = evaluateContextSituationEntropy(s, P)
12. IlPlalUu.nglDedcUug Phase
13. action=0
14. if(Es>Ti) IIlen
15. Sl = detennineEquivClass(P. s, SA)
16. If(s·h. SAl
17. action = a
18. ebe
19. a' = determineActionsSequence(p,Es. TV
20. action = a'
21. 51' = createNewEquivClass(p, s, a')
22. SA= SA+ Sl'

23. eml if
24. eml if
25. l/Ex(>cutiouPhase

26. executeAction(actionSeq)
27. eml :MAPE

Figure l. The self-adapting algorithm

Fig. 1 presents the proposed self-adapting algorithm
which is based on a control feedback loop with the following
MAPE phases: (i) the Monitoring Phase - collects raw data
about the system's self and execution environment and uses it
to construct and represent the system context situation in a

9th RoEduNet IEEE International Conference 2010

programmatic manner (lines 7-9), (ii) the Analysis Phase -
analysis the context situation in order to detect signiflcant
abnormal changes (lines 10- 11), (iii) the Planning Phase -
decides and selects the appropriate adaptation action plan to
be executed (lines 12-24), (iv) the Execution Phase - the
proper execution of the selected action plan (lines 25-26).

The following sub-sections detail the flrst three phases of
the self-adapting algorithm. The execution phase is trivial and
is not further detailed.

A. The Monitoring Phase

The goal of the self-adapting algorithm monitoring phase
is to collect the system's self and execution environment raw
data and to construct / represent the system context situation in
a programmatic manner. The system's self and execution
environment raw data describes the context in which the
system evolves. The system's self raw data represents the
system internal state and is used to assure the system's self­
awareness. This data is usually gathered using low level
system calls, logging or life cycle events. The system's
execution environment raw data is captured using sensor
networks or intelligent devices [2] with the goal of assuring
the system context awareness.

To represent the system's context situation in a
programmatic manner we have used our RAP (Resources,
Actions and Policies) context model defmed in [3]. The RAP
model deflnes two types of context information
representations: (i) set based, used to determine the system
execution environment changes and (ii) ontology based, used
to infer new context information by means of reasoning and
learning algorithms. In the set based approach, the context
information is modeled as a triple, C = <R, A, P >, where R is
the set of context resources that provide raw data about the
system's self and execution environment, A is the set of actions
which are executed to enforce system execution rules and P is a
set of policies which defme the rules that guide the system
execution. In the ontology-based representation, the
relationships between the context model sets are modeled in a
general purpose context ontology core. The domain speciflc
concepts are represented as sub trees of the core ontology by
using is-a type relations. A RAP context model instance
represents a context situation and contains the values of the
RAP context model sets elements in a speciflc moment of time.
The RAP context model instance is onto logically represented
by the core ontology together with the domain speciflc
concepts sub trees and their instances.

B. The Analisys Phase

The analysis phase targets the evaluation of the system
context situations in order to detect those situations in which
the rules that guide the system execution are broken. The set of
guiding rules or conditions are described as RAP policies using
our policy representation / evaluation model proposed in [4].
For measuring the degree of fulfllling the set of policies of a
system context situation, we have defmed the concept of
context situation entropy (Es) and its associated threshold (T E) '
The next sub-sections give a short overview of the policy
representation / evaluation model and the context situation
entropy concept.

375

1) The policy representation / evaluation model

The policy representation model uses three main XML
elements to describe a policy: Reference, Subject and Target.

The XML Reference element represents a collection of
system resources (see Fig. 2 lines 1-7 for an example). Each
reference has a unique name that can be referred from all the
other XML elements of the policy. The reference resources
collection is defined by applying three types of restrictions:
domain restriction (location as criteria), type restriction
(resource class as criteria) and property restriction (resource
properties other than location as criteria).

The XML Subject element uses a reference name to
indentify the system resources collection on which the policy
imposes restrictions (see Fig. 2, lines 8-16). The Subject
element has two children: (i) EvaluationTrigger XML element
that contains a set of possible events that may trigger the
policy evaluation and (ii) EvaluationCondition XML element
containing a set of conditions for which the policy is enforced.

The XML Target element represents a collection of
resources for which the goals specified by the PolicyGoals
XML element applies (Fig. 2 lines 17-21). The PolicyGoals
element is used to determine the action plan that has to be
executed to enforce the policy.

<Rderence Kame="DSRLTE:\tp .. >
<Restrictions>

<DomainRestriction Domain="DSRL":>­
<rypcRcsuiction Type="TcmpcraturcScnsor" '>
<PropertyRestriction Property="hltlucnceZooc"

Value="10" OperatoF'greaterThan" '>
6 <Resmctions>
7 <Reference>
S <Subject l'ame="'DSRL TDfP'">
9 <E\'a1uationTriggers>
10 <Trigger Ennt="TempuarunChangedE ,' ent" '>
11 <EnluationTriggers>
t 2 <E\·a.1uationConditions>
13 <Condition Property="TemperarureValueP'rop"

14 <Condition>
Operator="equal" VaJue="22''>

15 <. EnluationConditions>
16 <. Subject>
17 <Target l'ame="'DSRLTH IP '">

1 S <PolicyGoals>

19 <Goal Property='�TemperatuuVa1ueProp"\'a1ue="22" '>
20 <"PolicyGoals>

21 <Target>

Figure 2. The XML representation of the policy "In the DSRL laboratory the
temperature must be 22 degrees"

In order to be evaluated, the policies are automatically
converted into SWRL (Semantic Web Rule Language) rules
and injected into the RAP specific context model instance
ontology. The SWRL rules are used to reason about RAP
context model instance ontology individuals in terms of
ontology classes and properties. Rules are written in the form
of an implication between an antecedent (body) and a
consequent (head).

The process of obtaining the SWRL rule antecedent from
the XML policy description consists from two phases: (i) the
generation of the SWRL atoms used to identify the specific
context model instance ontology individuals involved in the
reasoning process and (ii) the transformation of the XML
policy evaluation condition into SWRL rules.

The SWRL rule consequent contains a SWRL atom that
sets the EvaluationResultProp attribute to true for all RAP
context model Policy class individuals, which correspond to

376

the XML broken policies. The Policy EvaluationResultProp
class attribute value stores a Boolean information regarding
the degree of fulfilling the policy.

2) The system context situation entropy

The system context situation entropy measures the level of
system's self and execution environment disorder by
evaluating the degree of fulfilling the policies. If the evaluated
system context situation entropy is below a predefined
threshold T E, then all the policies are fulfilled and adaptation
is not required. Otherwise the system must execute adaptation
actions to control its self and execution environment and to
keep the system entropy below T E.

The entropy for a certain system context situation is:

(1)

where:
pWj is the weight of the policy i, and represents the
importance of the policy for the system execution
rwjj is the weight of the system resource i in the policy
j. The resource weight reflects the system resource
importance for the policy. If a policy imposes no
restrictions to a system resource then the resource
weight of the resource for that policy is zero.
Vjj is the deviation between the system resource j
recorded value and the policy i accepted value.

We also define the entropy contribution (Ej) of a policy:

(2)

Taking into account the system toleration to changes, we
have defined two types of entropy thresholds: restrictive
threshold and relaxed threshold. In the fIrst case, we define
the threshold T E = 0 as lowest entropy value. This means that,
whenever a policy-imposed restriction is broken, the self­
adapting algorithm is triggered. In the second case, for each
policy we defme an accepted entropy contribution value Ej and
compute current threshold TE as in (3). For the relaxed
threshold, broken policies are tolerated if their entropy
contribution is lower than the accepted contribution value.

T E= L pWj *Vj/(100+Ei % 100) (3)

C. The Planning Phase

This phase deals with deciding and planning the actions
that need to be taken in order to enforce a broken policy. The
phase starts with identifying previously encountered similar
context situations in which the same policies were broken. If a
similar situation is found, the same action plan is selected and
executed, otherwise a new action plan must be constructed.

1) Equivalent system context situations

To identify and classify similar system context situations
we have defmed the equivalence context situation class
concept and an equivalence relation. Two context situations
are equivalent if both fulfill and break the same policies. To

9th RoEduNet IEEE International Conference 2010

clasify the system context situations in equivalence classes we
use the infonnation system theory. An infonnation system is
defmed as an association (W, Atr) where: W is a non-empty
finite set of objects and Atr is a non-empty finite set of
attributes. For this association a function af that assigns to
every object in W, a value for each attribute in Atr, can be
defmed. For a context aware system, the non-empty set of
objects W is mapped onto the set of context situations S while
Atr is mapped to the set of policies P. We defme a function,
Fsk, that assigns to every system context situation Sk, a list of
values returned by evaluating all the defined policies in that
context situation. Two system context situations s) and S2
belong to the same equivalence class if and only if Fs) and FS2
generate the same lists of policy evaluation values (Table I).

TABLE I. DETERMINING THE EQUIVALENCE CLASSES FOR THE SYSTEM
CONTEXT SITUATIONS

s--..&t lib mi m.
" 1
" 0
... ...
" Il 1

0 0
1 1
... ...
0 0)

Fs,

Equivalent
Context
Situations

Fs,

As a result, the equivalence class is defmed as the set of
system context situations in which the same adaptation action
plan a is executed (we use the notation Sa, where a is the
adaptation action plan).

2) Adaptation actions planning

The action selection phase of the self-adapting algorithm
considers the broken policies one by one, ordered by their
contribution to the overall entropy (see relation 3). The action
selection phase can be divided in four main steps (Fig. 3): (1)
select the policy with the highest contribution to entropy (line
9), (2) for the selected policy, detennine the set of affected
system resources and organize them into inter-independent
resource groups (IIRGs) (line 10) and (3) use reinforcement
learning (if necessary) to generate the best action sequence to
be taken in order to bring the IIRG's resources as close as
possible to a policy compliant state (lines 11-15).

input: p. the set of context policies
Es - the entropy value for the curent context situation
T! - the entropy threashold

output: actionsT oBeTaken - the sequence of actions to be
executed

S procedure determmeActionsSequence(P. Es. T e)
6 bqla
7 ActionsList actionsToBeTaken;
8 wbUeEs>Tedo
9 policy = determineLargestContributionToEntropyPolicyO
10 URGs = URGExtraction(policy)
11 whO. (faultyResourcesNotTaken(policy)) do

12 faultyResource = selectFaultyResource(policy)
13 ORO = selectinterlndependentResourcesGroup(llRGs)
14 seqActions = reinforcementLeaming(faultyResource, Es,

15 add(actionsToBeTaken, seqActioos)
16 fndwhUe
17 fDdwhUe
18 return actionsToBeTaken
19 end

rootNode, rootNode)

Figure 3. The actions selection phase procedure pseudo-code

The inter-independent resource group (IIRG) concept is
defmed and used into the reinforcement learning algorithm to
avoid the situation when healing a context policy may cause

9th RoEduNet IEEE International Conference 2010

breaking another one because their associated resources are
depended. For example, a temperature sensor and a humidity
sensor are dependent taking into consideration a room
temperature policy and a human thennal comfort factor policy.
In this situation, an action executed to heal a specific policy
(e.g. room temperature policy), changes the policy associated
resources values and triggers a variation of its depended
resources values with the result of breaking another context
policy (e.g. human thennal comfort factor policy). If all IIRG
resources comply with the policy rules, no action is executed.
More details about the IIRG concept and our IIRG extraction
algorithm can be found in [2 1].

3) Determining the Best Action Sequence

The best actions sequence to be taken for a certain IIRG is
found by merging the best sequences of actions detennined for
each IIRG resources. For an IIRG resource, the sequence of
actions is computed through a reinforcement learning
algorithm, by using a policy iteration technique (see Fig. 4).

The learning process considers all possible system context
situations and builds a decision tree by simulating the
execution of all available actions for each system context
situation. A tree node represents a system context situation. A
tree path between two nodes A and B defmes a sequence of
actions which, executed on the system context situation
represented by the node A, generates a new system context
situation represented by the node B. The reinforcement
learning process uses a reward / penalty approach to fmd the
best sequence of actions that the system may execute in a
given context situation. In our case, the minimum entropy path
in the reinforcement learning decision tree represents the best
sequence of actions.

Ioput: faultyResource - faulty resource
rootNode - reinforcement learning state tree root node
cunentNode· reinforcement learning state tree cuneot node

output: Decision tree minimum path wich represents
the sequence of actions

5 procedure reinforcementLearning(faultyResource, currentEntropy ,
rootNode, currentNode)

6 bqla
7 Actions "" getActions(resource)
8 for eacb (action E Actions) do
9 newEntropy=simuiateActionExecution(fauityResource,action)
10 newNode= addChild(currentNode, newEntropy, resource)
11 If(aIICyclesQ=FALSE)lbeu
12 lI(newEntropy<TE) tbea
13 retnra patbFromRootActioosList(currentNode)
14 else
IS if(newEntropy<cunentEntropy)tbeD
16 reinforcementLearning(faultyResource, ncwEntropy, root, newNode)
17 todll
18 end if
19 else
20 retarD minimumPathActioosList()
21 tad If
22 ead for

23 ead

Figure 4. The reinforcement learning algorithm

The learning process may generate different type of results
discussed below.

Case 1: The algorithm fmds only a possible system context
situation that has its entropy lower than the predefmed
threshold. In this case the sequence of actions that lead to this
context situation is selected and the search is stopped.

Case 2: The current system context situation entropy is
higher than the threshold, but smaller than the minimum
entropy detennined so far. We replace the minimum entropy

377

with the new entropy and continue with the search process.
Case 3: The current entropy is higher than both the

threshold and the minimum entropy; the reinforcement
learning algorithm continues the search process. If all
exercised paths of the decision tree are cycles, the algorithm
stops and chooses the path leading to a state with the
minimum entropy.

III. CASE STUDY

As case study, we develop an intelligent pervasive system
used to manage our DSRL (Distributed Systems Research
Lab) smart laboratory. The system uses a sensor network to
collect the information regarding students' location or
orientation and ambiental information like light level,
temperature or humidity. Also in the laboratory, the students
are identified using a camera with face recognition software.
The system uses a set of actuators to control the laboratory
environmental characteristics and to enforce the actions
executed as a response to policy breaking. The system
infrastructure components (sensors and actuators) and their
possible values / default actions are shown in Table 2.

TABLE II. THE SYSTEM INFRASTRUCTURE COMPONENTS

Infrastructure � Possible values! Available actions
Component

Temperature Sensor zoe
Humidity Sensor [0·1001%

Light Sensor {ON, OFF}
Computer State Sensor {ON, OFF}

Alarm State Sensor {ON, OFF}

Face Recognition Camera {Professor, Student, Unknown}
Room State Sensor {Empty, Not Empty}

Air Conditioning Unit Actuator {Decrease by 5°C, Decrease by 2 0c}

Heater Actuator { Increase by 5 °e }
Humidity Controller Actuator {[ncrease by 3 %,Decrease by 3 %}

Light Controller Actuator {Tum ON, Tum OFF}
Alarm Controller Actuator {Tum ON, Tum OFF}

Computer Controller Actuator {Tum ON, Tum OFF}

In the smart laboratory, a set of policies is defmed to
govern the environmental characteristics and the access to the
laboratory resources. The set of policies used to drive the
intelligent system management process execution are
presented in Table 3.

TABLE III. THE SMART LABORATORY POLICIES

Policy

Temperature
Humidity

Actor
Recognition

Light

Accellted values

Temperature E (lBoe, 23°C)
Humidity E (20 %,30 %)

I
_ {OFF , Face Recognition - Professor I Student

A arm - ON ,Face Recognition = Unknown
Computer

{ON ,Face Recognition = Professor
= OFF, Face Recognition = Unknown I Student

Li ht
_ {OFF ,Room empty

g - ON ,Room not empty

For simulation purposes, we have provided two sensor
values manipulation mechanisms: a Context Disturbing
Mechanism (CDM) and a Direct Manipulation Mechanism
(DMM). CDM assigns values to sensors using a predefined
pattern (or random values) in order to generate complex
context situations in which adaptation is needed. DMM uses

378

an Extensible 3D (X3D) implementation, to represent the
smart laboratory infrastructure as X3D objects (Fig. 5). A
click event performed on an object generates a change in the
object state. The X3D approach allows us to accurately
construct real life scenarios and closely control their evolution.

•

Figure 5. The X3D representation of the DSRL managing system

For testing purposes, the following scenario is considered:
a Professor enters the laboratory, the Computer is "OFF" and
the Alarm is "ON". The system constructs an instance of the
current context situation and uses it to evaluate the SWRL
representation of all defined policies. As a result of the
evaluation process, the "Actor Recognition" policy is broken
(see Table 3) and the managing system needs to take
adaptation decisions. In the decision process, the self-adapting
algorithm uses the reinforcement learning based approach
presented in section C.3 and constructs a decision tree by
simulating the execution of all actuators available actions. In
our test case scenario, the "Actor Recognition" policy affects
the following system infrastructure components: the Alarm
and the Computer State sensors. For each resource, we
simulate the following actions execution: (i) tum the computer
on / off, executed by the Computer controller and (ii) tum the
alarm on / off, executed by the Alarm Controller. The process
continues until the best action sequence that generates a
context situation with minimum entropy is found (Fig. 6). For
the above presented scenario, we assume the following: (i) the
context entropy threshold is T E=O, (ii) the weights for policies
and resources are equal to 1 and (iii) all actions have an
immediate effect.

Cllrenl; state CU'rent broken poIdes

"""" , r &_� 11 �atlle-sensor 21
aceRecognlionPolcy

-=- 0

aarm-state-sensor 1

-- 23 Act:Itn�cdct:erl'l'li'ledforcortextrcptJi" -" 0

ace<� 0 """" T , .. �
OI'flld:«-state-sensor 0 mStateSensorI

>ct � ''''''''''' 1

Figure 6. The Actor Recognition Policy broken

To assess the self-adapting algorithm's performance, the
CDM mechanism is used in two different tests. In the first test,
a pattern of four context situations that need adaptation is
generated: (i) the professor is in the room while the Computer
is "OFF" and the Light is "OFF", (ii) the student is in the
room while the alarm is "ON", (iii) the Temperature and
Humidity are out of their admissible ranges and (iv) an

9th RoEduNet IEEE International Conference 2010

unknown person is in the room and the Alarm is "OFF". Fig.
7 graph shows the time needed by the self-adapting algorithm
to analyze each of the four context situation and to identify the
corresponding actions plans: 20, 4, 61 and respectively 22
seconds. When a similar situation was previously encountered,
the time decreases to 0 seconds because the self-adapting
algorithm directly selects the same adaptation actions.

-)

(das
I

Figure 7. Results for CDM using a pattern

For the second test case, the self-adapting algorithm was
run for about 3 hours (Fig. 8). During this time the CDM
mechanism gave random values to all sensors as following: (i)
for the Temperature sensor [15 . . . 25], (ii) for Humidity sensor
[15 . . . 35], (iii) for the Light, Room State, Computer State and
Alarm sensors 0 or 1 ("OFF", "ON") and (iv) for the Face
Recognition camera 0, 1, 2 ("Professor", "Student",
"Unknown"). Each variation in the plot represents a situation
in which an unknown context situation has been encountered
and a search for the best sequence of actions was performed.
In the first 1000 seconds, almost all running times of the
action selection algorithm are greater than 10 seconds. After
that, the self-healing mechanism begins to learn, achieving the
performance of having only four running times greater than 10
seconds in the [5000, 7000] time interval.

Figure 8. Results for CDM with random values

Also, an overall reduction in the number and height of the
peaks is visible because at each step the algorithm checks if it
doesn't already know the best sequence of actions for the
current situation. Considering that the number of possible
sensor combinations for the chosen ranges is 22.481.940, the
self-adapting algorithm shows promising results.

IV. CONCLUSIONS

This paper presents a self-adapting algorithm that can
automatically detect and analyze the changes in a system
execution context and decide how the system should react, and
execute adaptation actions. The test case results are promising,

9th RoEduNet IEEE International Conference 2010

showing that the self-adapting algorithm is capable to take
adaptation decisions in various types of context situations.
Also the adaptation decision time tends to decrease in time as a
result of the learning process.

REFERENCES

[I] M. Salehie, L. Tahvildari, "Self-adaptive software: Landscape and
research challenges" ACM Tran. on Aut. and Adaptive Systems,
ISSN:1556-4665,2009.

[2) I. Anghel, T. Cioara, I. Salomie, M. Dinsoreanu, "A Self-configuring
Middleware for Managing Context Awareness", Int. Conf. on Wireless
Inf. Net. and Systems, pp. 131-139, ISBN: 978-989-674-008-5,2009.

[3] T. Cioara, I. Anghel, I. Salomie "A Generic Context Model Enhanced
with Self-configuring Features", Journal of Digital Information
Management (JDIM), Volume 7/3, pp.l59-165, ISSN 0972-7272, 2009.

[4] T. Cioara, I. Anghel, I. Salomie "A Policy-based Context Aware Self­
Management Model", 11th Int. Symposium on Symbolic and Numeric
Alg. for Scientific Comp., 333-341, ISBN: 978-0-7695-3964-5,2009.

[5] K.Wang, "Context awareness and adaptation in mobile learning", Proc.
of the 2nd IEEE Int. Work. on Wireless and Mobile Tech. in Education,
pp. 154-158, ISBN:0-7695-1989-X , 2004.

[6] Z. Yu, "iMuseum: A scalable context-aware intelligent museum system,
Computer Communications", Vol. 31118, pp. 4376-4382 ,2008.

[7) C. Burghardt, C. Reisse,"lmplementing scenarios in a Smart Learning
Environment", 6th Annual IEEE Int. Conf. on Pervasive Computing and
Communications, ISBN: 0-7695-3113-X, 2008.

[8] L. Pareschi, D. Riboni, "Composition and Generalization of Context
Datafor Privacy Preservation", 6th Annual IEEE Int. Conf. on Perv.
Compo and Comm. ISBN: 0-7695-31 13-X, 2008.

[9] M. Grossniklauss, Context Aware Data Management, I" ed, VDM
Verlag, ISBN 978-3-8364-2938-2, 2007.

[10) K. M. Anderson, F. A. Hansen and N. O. Bouvin,"Templates and
queries in contextual hypermedia", In Proc. of the 17th Conf. on
Hypertext and hypermedia, Denmark, pp. 99 - 110,2006.

[II) D. Raz, A. T. Juhola, "Fast and Efficient Context-Aware Services",
Wiley Series on Comm. Networking & Distributed Systems, ISBN-13:
978-0470016688,pp. 5-25,2006.

[12) T. Hofer, W. Schwinger, M. Pichler, "Context-awareness on mobile
devices - the hydrogen approach", In Proc. of the 36th Annual Hawaii
International Conference on System Sciences, USA, pp. 292,2003.

[13) I. Cafezeiro, E. Hermann, "Ontology and Context", 6th Annual IEEE
Int. Conf. on Perv. Compo and Comm. ISBN: 0-7695-3113-X, 2008.

[14) Q. Huaifeng, "Integrating Context Aware with Sensornet", ProC. of I"
Int Conf. on Semantics, Knowledge, Grid, ISBN:0-7695-2534-2, 2006.

[15) A. Bernstein, E. Kaufmann, "Querying the Semantic Web with
Ginseng:A Guided Input Natural Language Search Engine", Proc. of
15th Work. on Information Technology and Systems, 2005.

[16) E. Sirin, B. Parsia, "Pellet: A practical OWL-DL reasoner", Web
Semantics: Science, Services and Agents on the World Wide Web, Vol.
5, No. 2., pp. 51-53,2007.

[17) M. Amoui, M. Salehie, "Adaptive Action Selection in Autonomic
Software Using Reinforcement Learning", Proc. of the 41h Int. Conf. on
Aut. and Autonomous Sys., pp. 175-181, ISBN 0-7695-3093-1, 2008.

[18) M. Cremene, M. Riveill "Autonomic adaptation based on service­
context adequacy determination" Electronic Notes in Theoretical
Computer Science, 2007.

[19) M. Parashar, and S. Hariri, "Autonomic Computing: An Overview",
LNCS Springer Verlag, Vol. 3566, pp. 247 - 259, 2005.

[20) N. O'Connor, R. Cunningham, "Self-Adapting Context Definition", I"
Int. Conf. on Self-Adaptive and Self-Organizing Systems, 2007.

[21) T. Cioara, I. Anghel, I. Salomie, "A Reinforcement Learning based Self­
healing Algorithm for Managing Context Adaptation", 8th Annual IEEE
Int. Conf. on Perv. Compo and Communications, 2010.

379

