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Abstract — This paper presents an algorithm for optimal 

spatial coverage of an unknown region by a swarm of agents. The 

algorithm is based on the Ant Colony Optimization heuristic 

which is mapped and adapted to solve the current optimization 

problem. Each agent will leave a virtual pheromone trail during 

its movement through the unknown region, either attractor or 

repellent, represented by a positive or negative value, that decays 

in time. A novel stimergy technique is used to coordinate the 

agents’ behavior when deciding to follow or to move away from 

the pheromone trail, depending on the pheromone value. For 

exploring the unknown areas a combination of a greedy technique 

based on the concept of rejection vector and a probabilistic 

technique for selecting the agents’ rotating angles are employed. 

The obtained results are promising showing  that our solution 

manages to obtain a coverage with up to 40% higher than classic 

rejection algorithm and with up to 25% that the distributed 

rejection algorithm. 

Keywords—optimal spatial coverage; swarm based optimization; 

stimergy coordination; rejection vector. 

I. INTRODUCTION 

The optimal coverage of an unknown environment using a 
set of intelligent agents and considering different constraints is 
an important problem in domains such as nuclear 
decontamination, victim localization in indoor or outdoor 
environments after cataclysms (earthquakes, arson, floods, 
etc.), surveillance for offices or manufacturing facilities or 
agricultural land coverage for reducing fuel consumption.  

Being an NP-hard problem, the optimal coverage of an 
unexplored region cannot be solved using conventional 
exhaustive approaches, but rather using approximate 
approaches which are more practical due to their ability to 
provide the optimal or near optimal solutions in a short time and 
without processing the entire search space [1].  

Biology offers many clues and heuristics which can be 
easily adapted for solving such optimization problems. The 
birds and insects are employing self-organizing behavioral 
strategies, at the swarm level, which help them to find food, live 
and survive in the harshest conditions. An example, in this 
sense is the foraging behavior of birds in nature which was used 
for designing the Particle Swarm Optimization heuristic [2]. 
When searching for food, the birds of a flock cooperate with 
each other to find a rich food sources without being centrally 
coordinated. The flock may identify an area rich in food if each 

bird’s trajectory is established by efficiently combining the 
information regarding the bird’s current position and former 
position where it has found a rich food area on one hand, and 
with data regarding the position of a neighbor bird that emits 
the loudest sound on the other hand [3].  

The study of bio-inspired, swarm algorithms and their vast 
number of applications has drawn the attention of researchers 
from various study domains. The main benefits of using swarm 
heuristics over classical, centralized approaches can be clearly 
seen when the solution space of the problem is highly dynamic, 
unpredictable, unstructured and no prior information on the 
environment exists. These characteristics are present in case of 
the optimal coverage of an unknown environment using a set of 
intelligent agents (swarm of agents). A distributed, 
decentralized approach for guiding the swarm of agents to reach 
a common goal or to solve certain tasks as a group provides 
robustness, scalability and improved fault-tolerance over 
centralized techniques. 

In this paper, by inspiring from the biological behavioral 
strategies of swarms which have ensured the survivability of 
different biological species over time, we describe an algorithm 
for optimal coverage of a region by swarm of agents. The agents 
perform the scanning of the region locally, considering real-
world constraints such as coverage and communication area for 
each agent, failure probability, etc. Each agent has a limited 
scanning range through which it can have a 360 degree view 
with a certain radius, a view similar to infrared sensors placed 
on mobile robots. Also, the agents can communicate within a 
certain communication range and each agent is susceptible to 
transient or permanent failure. The main objective of our 
approach is to maximize the total covered area by the swarm of 
agents and to reduce coverage redundancy in an unknown 
region. 

Our algorithm is based on the Ant Colony Optimization 
heuristic [4] which is a technique for solving optimization 
problems that can be abstracted and specialized for finding 
optimal paths through graphs. Each agent will produce a virtual 
pheromone during its movement through the unknown region, 
either attractor or repellent, represented by a positive or 
negative value, that decays in time. The pheromones influence 
the behavior of other agents which decide to follow or to move 
away from the pheromone trail, depending on the pheromone 

978-1-4799-1494-4/13/$31.00 ©2013 IEEE 7



value. If no pheromones are found, the agent will move in the 
direction of the largest uncovered area of the current location. 

The major contributions throughout this paper are the 
following:  

� A novel stimergy technique for agents’ coordination 
that uses two types of pheromones, repellent and 
attractor, in order to take advantage of the current 
coverage information, to reduce redundancy and to 
increase area coverage. 

� A combination between a greedy and probabilistic 
technique for individual exploitation of an unknown 
area while taking into consideration the physical 
distribution of the swarm, which gives a good heuristic 
at agent level when dealing with complete unexplored 
region. 

� Extensive experimental simulations for comparing our 
solution to state of the art coverage algorithms when 
varying different parameters. The obtained results 
show the effectiveness of our algorithm. 

The rest of the paper is structured as follows: Section 2 
presents relevant background literature; Section 3 describes our 
swarm-based algorithm for optimal spatial coverage of an 
unknown region; Section 4 shows comparative results proving 
the effectiveness of our solution compared with state of the art 
ones, while Section 5 concludes the paper.   

II. RELATED WORK  

The current section presents a critical analysis of relevant 
state of the art solutions for optimal coverage of an unknown 
region given a set of agents. 

In [5] a coverage algorithm is described which considers 
pixel-based grained environment with local communication and 
limited memory, where robots use a wall-following algorithm, 
grouped as a chain directed by a leader. The leader of the 
formation tries to detect a frontier form the neighboring cells 
and in case of failure, it applies breath-first or depth-first 
algorithms for frontier detection. This approach does not take 
into consideration the problems that appear when the 
connectivity of the chain of agents is lost. The costs needed to 
keep the chain of agents connected increases the number of 
steps needed to cover the environment, as opposed to our 
algorithm, where the loss of connectivity in the swarm does not 
significantly influence the overall performance. 

In [6] mobile robots that can detect obstacles and other 
robots through a line of sight, but without any real point-to-
point communication mechanisms are considered. The 
behavior is determined by a combination of simple coverage 
heuristics such as random walking, following a wall in the 
environment, exploring open spaces for fast initial dispersion, 
etc. A fiducial technique which uses wireless signal intensity 
from each robot in order to keep the swarm dispersed is 
proposed in [7]. This technique doesn’t take into consideration 
the problem of coverage redundancy. Ludwig et al. [8] extends 
this work by adding wireless signal intensity as a rough 
approximation of distance between robots. The Clique Intensity 
Algorithm described considers each robot as a node, finds 

maximal cliques and disperses the swarm based on clique 
intensity.  

In [9], a coverage algorithm based on a combination of 
physical forces with a probabilistic behavior for each agent- 
robot is presented. Attraction to open spaces and rejection to 
obstacles are modeled through physical forces. Loss of 
connectivity is minimized by broadcasting signals to neighbors 
and decisions at each step are taken through a probabilistic 
approach. A similar technique is also used in our algorithm; 
however, in our approach, the agents are indirectly influencing 
each other through the virtual pheromone concept making them 
more resilient to failures due to the loss of connectivity. 

Techniques where some knowledge of the environment 
exists a priori are also proposed in the state of the art literature. 
In [10] the terrain is divided in cells using weights based on 
difficulty of traversal and the region is covered using tree 
traversal algorithms. In [11] a similar decomposition is 
performed and a minimum spanning tree-based algorithm is 
used for optimal traversal between the region cells. The major 
difference between this technique and our algorithm is the use 
of a priori knowledge of the region which makes the problem 
simpler and deterministic algorithms can be employed for 
optimal coverage. 

A thorough and detailed presentation of conventional and 
swarm-based coverage algorithms is presented in [12]. The 
authors define for each robot a communication range, in which 
the robots can communicate and exchange information, a 
coverage range, in which the robot can detect the environment 
and memory constraints, to emulate more accurately the actual 
agent executing the algorithm in real world and to prevent from 
keeping a complete map of the entire environment. At each step, 
a robot acts depending on the robots that are present in its 
communication range or in its coverage range as follows: (i) if 
other robots are present within its communication range, the 
robot acts to maximize the distances from them by using a 
probabilistic dispersing algorithm, and (ii) if robots are present 
in its coverage range, the robot will employ a node counting 
algorithm for determining the virtual pheromones of the 
neighboring positions and computes the information gain 
associated with each action defined as the information entropy 
for the robots within the communication range. A probabilistic 
algorithm is used for selecting an action based on this 
information entropy. We have also modeled the agents as 
having a communication and coverage range and the capability 
of leaving a virtual attractor pheromone in the environment; 
however, we have extended this technique, in our case the 
agents being able to leave repellent pheromones in the 
environment. 

Starting from the disadvantages of classical coverage 
algorithms, the distributed, bio-inspired, probabilistic technique 
that we have developed brings a number of clear advantages 
over classical, deterministic approaches. The fault-tolerant 
nature of the algorithm is achieved by the ant colony 
optimization heuristic (i.e. our algorithm is able to cope with 
transient or permanent failures of the agents). Redundancy of 
the scanned regions is minimized using virtual pheromones and 
by employing a greedy exploration technique of the unknown 
region. Our proposed solution is able to perform well even for 
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large number of unknown environments types, where the 
density or placement of the obstacles varies. Finally, our 
algorithm robustly manages a number of conditions that occur 
often in the real world that influence the agent itself, such as the 
sensorial perception or communication. The performance of our 
solution increases linearly with the communication and 
coverage range of the agents.  

III. SWARM-BASED OPTIMAL AREA COVERAGE 

ALGORITHM 

We define the region that needs to be covered as a 
continuous, 2D region that can have any number of obstacles 
and at least on point of entry. In our approach an agent ag

emulates the behavior of a physical robot that is able to move 
and collect information from the region. An agent can 

communicate within a certain communication range, agComR , 

and can scan the region from their current position within a 

certain coverage range, agCovR .  

An exit location is a location situated on the circle with the 
radius equal to the agent’s coverage range, to which the agent 
can physically move from its current location. 

The Coverage Area, agCovA , of a certain agent ag at a 

given position ( , )ag agx y  is defined as the set of points from the 

region that are within the disk centered at ( , )ag agx y and with 

the radius equal to the coverage range agCovR of that agent: 

� � � �� �2 2 2( , ) | (1)� � � � 	ag ag ag agCovA x y x x y y CovR
 

In a similar manner we define the Communication Area

agComA , of an agent ag as: 

 

� � � �� �2 2 2( , ) | (2)� � � � 	ag ag ag agComA x y x x y y ComR  

where agComR is the communication range of that agent. 

The main goal of our swarm-based optimal area coverage 
algorithm is to obtain a maximum coverage of the region over 
minimum time steps, while robustly handling transient and 
permanent failures of the agents and minimizing redundancy of 
covered area by using more than one agent. The algorithm tries 
to keep the swarm connected, meaning that any two agents can 
communicate either directly or by intermediate agents. 
Consequently, each agent has at least one other agent at a 
distance less or equal to the communication range.  As an effect, 
the agents should have the same environment maps and 
pheromone maps at a given time because the information 
exchange can occur between any two agents. 

 

The pseudo code of the algorithm is presented in Fig. 1. 
Starting from its current position, the agent determines the 
positions of the neighbor agents located within its 
communication area and the available exit locations within its 

coverage area (lines 2, 3). While determining its neighbors, the 
agent also exchanges information with them. The local 
environment map and pheromone map are sent to the neighbors. 
Each neighbor sends back its own map. The agent merges its 
local maps with the maps received from the neighbors. The 
maps are merged with the rules: 

i. Environment map: ��������������� �

������	��
�������	��
����� �    

This means that with the encoding presented above, the 
highest priority is given to obstacles, then free space and finally 
unknown area. Even if in an optimal case, the local maps are 
identical in their intersection areas, due to noise and errors they 
might differ. Using the rule presented, the errors are somehow 
eliminated. A more precise approach would be to give some 
credibility to each agent and choose the new element by 
extracting from a probability distribution generated from this 
credibility. Consequently, the agent with higher credibility will 
fill in the map more often. 

ii. Pheromone map:   ��������������� �

������	��
�������	��
����� �    

However, problems might appear when two agents are 
exchanging maps at consecutive time steps, when almost no 
changes are made, having as effect doubling the pheromone 
values. Some communication protocols should be established. 

If the agent is in an unexplored region (i.e. a location that it 
was not visited by any other agent), the decision process to 
select the next exit location in the region to which it will be 
headed is taken by Individual Exploration based on computing 
a rejection vector (see line 6 and sub-section III.B).  Taking into 
account the number of valid exit locations detected on its 
coverage area, the agent will behave as follows:  

i.  If the agent doesn’t find a valid exit location or it reaches 
an obstacle then it will go back to the previous location and 
pick the new direction by probabilistically determining the 
rotation angle using a Gaussian distribution (lines 8-10); 

ii.  If the agent finds exactly one valid exit location it will 
choose this location and will place repellent pheromones on 
its current position to indicate that there is no need for other 
agents to come and explore further (lines 11-14); 

iii.  If the agent finds more than one valid exit, it will always 
choose the one which has the largest unknown area (lines 
15-19). 

If the agent is located in a position where it has some prior 
information in form of pheromone trails left by other agents 
that have been through this location (line 23), it will select the 
next exit location based on a Stimergy Coordination technique. 
The moving direction is selected as the one with the highest 
level of pheromones (i.e. gradient based pheromone trail 
following on line 23) and if there are any valid exits, it will 
choose the one with the largest uncovered area (lines 25, 26) 
and it will decrease the level of pheromones in the connected 
area (line 27) by placing repellent pheromones. The uncovered 
area is referring to the area at an exit location that was not 
already visited by other agents. In the case that no valid exits 
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are available, the agent will perform a probabilistic 
backtracking technique (line 29). 

 

Fig 1. The swarm-based optimal area coverage algorithm 

A. Stimergy Coordination 

The stimergy coordination among the agents is achieved by 
means of pheromones. We consider the pheromone a substance 
left by each agent on the surface of o a location when it passes 
through that location. The pheromone left behind by an agent 
can be detected by any other agent that visits that location. The 
agents do not keep any type of partial or global environment 
map (locations that have been already been visited) or 
pheromone map (the value of pheromones at visited locations).  

We define the value of the pheromone at the location ( , )x y

for the time t  as ( ; ; )Pheromone x y t . We have considered two 

types of pheromones: 

i. Attractor pheromone: defined by a positive value and 
indicates that the agent should continue following this 
trail; 

ii. Repellent pheromone: defined by a negative value and 
indicates that the agent should take another route 
further, away from this location. 

The reason for defining and using two types of pheromones 
can be easily seen in the example from Figure 2. Let us consider 
a simple Y -like corridor that must be explored by an agent. At 
first the yellow agent goes on an unexplored region and until it 

reaches the bifurcation. Then it will place repellent pheromones 
(-), on the bifurcation path it is following since it is currently 
exploring this region and there is no need for other agents to do 
so. In this way the unexplored region are marked for stimulating 
other agents to visit them.  

 

Fig. 2. Example of using attractor and repellent pheromones 

To achieve the stimergy coordination among the swarm of 

agents, the explored regions are marked with pheromones in a 

gradient based manner (i.e. different intensity for the 

pheromone values). The following rules are used to update the 

pheromone values: 

i. ( ; ; 1) 1� � �Pheromone x y t , repellent pheromone 

placed in the scanned area, as long as only one exit is 

encountered; 

ii. ( ; ; 1) ( ; ; )� � �Pheromone x y t Pheromone x y t n , 

attractor pheromone is placed if n  new paths are 

discovered; 

iii. ( ; ; 1) ( ; ; )� � � 
Pheromone x y t Pheromone x y t D � , 

pheromone value is updated based on the distance 

from the agent that has placed the pheromone D , 

multiplied with a small, negative real value close to 0 

( � ). Consequently, the pheromones are placed in a 

descending order from the agent’s position. This way, 
the explored regions are marked with pheromones in a 

Gradient manner. When another agent decides to 

follow the pheromone trail, it will head always for 

higher pheromone values, finally reaching the source 

point of the pheromone trail.  

B. Individual Exploration  

In our approach the individual exploration of an unexplored 
region is based on a combination between a greedy and 
probabilistic technique, while taking into consideration the 
physical distribution of the swarm. The technique is based on 
the dispersion technique presented in [12] which we have 
enhanced with a probabilistic technique for agent backtracking 
when reaching a dead-end and with different decision criteria.    

When an agent is in a yet unexplored region and no stimergy 
information is found, it will decide on the next location in the 
region to which it will be headed by constructing a rejection 
vector. The rejection vector contains on each position the 
rejection value calculated between the agent located in the 
unexplored region and one agent from the set of agents located 
in its communication range (see relation 3).  
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� �( ) ( , ), :1... (3)� i

i ag

RjVector ag RjValue ag ag i n

where ag locatedIn ComR
 

The rejection value is computed by modeling the atomic 

forces that appear between electrically charged particles as a 

rejection mechanism. Each rejection value has an impact 

decaying quadratically with respect to the distance d  between 

the agents 1ag  and 2ag : 

1 2

2
( 1, 2) (4)



�

ag agCR CR
RjValue ag ag

d
 

The rejection vector is used by an agent when deciding to 
go as far away as possible from the other agents in order to 
spread the group (i.e. curiosity approach). The agent computes 
the sum of the rejection values from the vector to find the 
direction that will maximize the distance to each of its 
neighbors. Furthermore, it chooses among the possible valid 
exit locations detected, the one that is closest to this new 
direction. 

When taking a decision based on rejection vector or 
pheromone values, if several exits are at tie, the decision is 
taken on the largest uncovered area criterion. This means that 
for each of the exit points detected, the agent computes how 
much of the coverage area at that exit point was not already 
visited by other agents. After computing these values, the agent 
chooses the exit with the maximum uncovered area, this way 
minimizing the redundancy of covered area by more than one 
agent. 

If an agent reaches an obstacle, it will need to go back to the 
previous position and take another route for exploring the 
region. A simple technique will be always to go back one step, 

rotate 90o in one direction and resume exploration in that 

direction. However, to assure that the agent doesn’t get stuck in 
a local maximum of the search space repeating the same actions 
infinitely we have employed a probabilistic approach.  

 

Fig 3. Gaussian distribution used for selecting the agent rotation angle  

 

In our approach the agent will go back one step when 
encountering an obstacle and will rotate with an angle �  that 

is drawn from Gaussian distribution with the mean 90� o   

and variance 
2 0.2�� (see Fig. 3). In order to generate the 

angle �  as a number with standard normal distribution, we use 

the Box-Muller method [13]. 

Each time an agent gets stuck (Fig 4), it goes back to the 
previous position and chooses a new direction by extracting a 
number from the Gaussian distribution.  

 
Fig 4. Example of handling the situation when the agent gets stuck.  

 

IV. EXPERIMENTAL RESULTS  

The experiments were conducted in a simulated 
environment. We have simulated a swarm of agents, each agent 
modeling the characteristics and behavior of a real robot. An 
agent is capable of performing the following set of operations: 
read distance to obstacles and neighbor agents, compute its 
current and next location, exchange information with the 
neighbor agents and finally change its location by moving 
towards a valid exit location.  

The simulation takes as input the map of an unknown 
region. For our experiments we have constructed three different 
maps presented in Fig. 4. Each map’s dimension is of 900 x 900 
pixels and has obstacles with various shapes that are randomly 
disturbed for the maps’ obstacle density values of 5%, 10% and 
20%. An agent places pheromones on this map by changing the 
intensity of the pixels in the region it explores using the 
pheromone placing rules detailed Section III.A.  

To prove the efficiency of our algorithm, we have compared 

it with two similar state of the art algorithms: classic rejection 

algorithm and rejection vector based algorithm. The classic 

rejection algorithm is based on the characteristics of rejection 

forces from physics. In this case the agents will try to spread as 

much as possible aiming at covering as much of the unknown 

region as possible. The distributed rejection algorithm is 

derived from the previous algorithm. However, at each step, 

besides trying to spread as much as possible from each other, 

the agents give higher priority to unexplored regions in favor of 

previously visited areas.  

During experiments we have tested the algorithms behavior 

in three different situations generated by modifying the 

following simulation parameters: the density of obstacles from 

the unknown region, number of agents composing the swarm 

and the communication range of agents.  

In the first experiment we have evaluated and compared the 

three algorithms on the region maps from Fig. 5. For each map, 

we run one of the algorithms independently with the same 

simulation parameters: swarm dimension of five agents, agents’ 
communication range larger than the map size and the agents’ 
initial position in the left bottom corner. The simulation is run 
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for 300 steps for each algorithm. Figure 6 results show that our 

algorithm has better covered the unknown region when the 

number of obstacles is moderate (a. and b.): coverage with up 

to 30-40% higher than classic rejection algorithm and with up 

to 20-25% than the distributed rejection algorithm. This is due 

to the pheromones effect of guiding the agents through large 

empty spaces between obstacles, thus reducing the coverage 

redundancy. However, if the obstacle density is higher (c.), the 

agents do not have to make a large number of choices when 

choosing a new direction, so the pheromones are not taken into 

consideration and our algorithm produces results similar with 

the distributed rejection one. 

In the second experiment we have compared the algorithms 

behavior on the same map (Fig. 5. b - 10% obstacle density was 

used for tests) but this time we have varied the agents’ 
communication range as follows: 100% of the map size, 40% 

of the map size and finally 20% of the map size. Figure 7 plots 

show that our algorithm performs better when the 

communication range decreases, because of the pheromone 

effect of guiding the agents.  

In the third and final experiment we have evaluated the 

algorithms on the same map (Fig. 5. b - 10% obstacle density 

was used for tests) but this time we have varied swarm’s 

dimension (i.e. number of agents) as follows: 3, 5 and finally 

10 agents. Figure 8 plots show that our algorithm gives good 

results. The ratio environment size / (number of robots * 

coverage area) is quite large. However, in an opposite case the 

algorithm may perform worse than the considered state of the 

art algorithms because of the pheromone effect of guiding 

agents on the same path. 

V. CONCLUSIONS AND FUTURE WORK 

In this paper, we have presented a swarm inspired algorithm 
for optimal coverage of an unknown region. Our algorithm is 
based on Ant Colony Optimization heuristics and brings two 
major contributions to the state of the art:  (i) novel stimergy 
technique that uses two types of pheromones, repellent and 
attractors, in order to take advantage of the current coverage 
information, for reducing redundancy and increasing coverage 
and (ii) a combination between a greedy and probabilistic 
technique, while taking into consideration the physical 
distribution of the swarm, which gives a good heuristic at agent 
level when dealing with complete unexplored region. 

The obtained results are promising showing that our 
solution manages to obtain a coverage ratio in average with up 

to 35% higher than classic rejection algorithm and with up to 
23% that the distributed rejection algorithm. The stimergy 
effect of our implementation presents a clear advantage over 
distributed rejection approach for the case when the 
communication range between the robots is small compared to 
the environment size and the density of obstacles in the 
explored region is medium. However, if the agents’ 
communication range is larger than the environment map size, 
the stimergy effect doesn’t make a significant difference, 
sometimes the algorithm performing worse than the state of the 
art ones.  
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Fig. 5. Maps of unknown regions used in experiments  
(a - obstacle density = 5%, b - obstacle density = 10%, c - obstacle density = 20%) 

 

Fig. 6. Coverage area percentage results for different obstacles density values  
(Red – swarm-based optimal area coverage algorithm, Blue - distributed rejection algorithm, Green - classic rejection algorithm) 

 

Fig. 7. Coverage area percentage results for different agents’ communication ranges  
(Red – swarm-based optimal area coverage algorithm, Blue - distributed rejection algorithm, Green - classic rejection algorithm) 

 

Fig. 8. Coverage area percentage results for different dimension of swarm  
(Red – swarm-based optimal area coverage algorithm, Blue - distributed rejection algorithm, Green - classic rejection algorithm) 
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