
978-1-4673-8200-7/15/$31.00 ©2015 IEEE

M2O: A Library for Using Ontologies in Software
Engineering

Claudia Pop, Dorin Moldovan, Marcel Antal, Dan Valea, Tudor Cioara, Ionut Anghel, Ioan Salomie
Computer Science Department

Technical University of Cluj-Napoca
Cluj-Napoca, Romania

{claudia.pop, dorin.moldovan, marcel.antal, dan.valea, tudor.cioara, ionut.anghel, ioan.salomie}@cs.utcluj.ro

Abstract— In this paper we propose an extensible framework
over Jena and OWL API that maps complex Java data models
onto semantic models based on some custom annotations in order
to benefit from the advantages of ontologies in software
engineering. Furthermore, it facilitates the implementation of
basic CRUD operations for the domain classes and objects, also
allowing the definition of new custom operations. We have
performed tests on the Stanford Wine ontology, obtaining a code
complexity reduction of up to 85% compared to the classical
approaches using Jena or OWL API without noticeable
performance reduction.

Keywords—ontology, data models, mapping, class library,
software engineering

I. INTRODUCTION
In the last two decades, the Internet had a spectacular

growth especially due to the development of the World Wide
Web (WWW or W3). Primarily, WWW was based on simple
web pages containing only formatted documents in the HTML
standard. However, in a short time, content was added to these
pages, such as images, videos, embedded links, and new
technologies emerged. A huge leap was represented by the
integration of relational databases with the web pages in order
to store the continuously increasing amount of online
information in a structured way. Even though relational
databases were developed about four decades ago, their
popularity increased only recently with the WWW. As a
consequence, specialized software companies started to
develop frameworks to ease the development of web
applications. These became more and more complex and their
structure became cumbersome. Even if Object Relational
Mapping (ORM) frameworks were developed to hide the
complexity of the SQL databases in the back-end of the web
applications, in order to perform specific or complex
operations programmers still have to write SQL queries and to
design databases. Thus, the Database Comprehension
Problem appears in the case of complex diagrammatic
modeling of the real world making the conceptual models too
large for a designer to understand and to manage.
Furthermore, the un-natural mode of writing queries on these
databases, different from the human language, makes the
programmers life even more difficult. A possible solution for
these problems is offered by semantic domain modeling.

Since the development of artificial intelligence, in 1970s,
researchers have recognized that capturing knowledge is the

key of creating an intelligent and autonomous system.
Furthermore, ontologies were developed as computational
models that enabled reasoning. The new concept of ontology
emerged in the field of computer science as a new way of
representing knowledge closer to humans. Ontology is a graph
of knowledge. It addresses some of the most common needs
when talking about representing and describing concepts from
a domain. Furthermore, among the numerous advantages
brought by the ontologies, we begin with their expressivity,
due to the resemblance with the human knowledge
representation. Some other important characteristics of the
ontologies are their extensibility and flexibility to changes.
Adding or removing concepts and individuals is easier
compared to the classic relational mapping, where tables and
relationships between them must be altered. Last but not least,
they offer the possibility of reasoning, leading to an
enhancement of the information already stored.

For reducing the database comprehension problem in
software development it comes naturally to use ontologies as
semantic data models. Many frameworks have been developed
in order to provide the possibility of accessing, manipulating
and querying ontologies. Among these frameworks the most
used and notable ones are: Jena [7] and OWL API [4]. Both
APIs provide reliable and scalable implementations for
accessing and operating on ontologies. Even if they allow
modeling the data in a manner close to the natural language
and the developer, it is very complicated from the
development point of view, having a very slow learning curve,
due to their complex model and functionalities. Furthermore,
in order to perform basic operations (for example retrieving
data from the ontology) complex code needs to be written,
specific to each OOP class and the mapping between the
ontology properties and OOP classes attributes needs to be
done manually.

We propose a library that allows using the ontology in a
similar way with the ORM programming technique in
software engineering. It provides a very light interface for
accessing the ontology and reduces the code complexity, by
providing one line methods for performing basic operations
(create, update, delete, find). It uses reflection to parse the
Java entities, hiding in this way the code complexity needed
by APIs like Jena and OWL API to perform operations on
ontologies, at the same time, benefitting from the performance
and scalability properties offered by these. Furthermore, it is
the first open-source tool that offers the functionality of

69

generating semantic ontological model from an object-
oriented model design.

The rest of the paper is structured as follows: Section II
shows related work, Section III presents the proposed
framework for mapping an object oriented domain model to a
semantic model, Section IV presents numerical simulation
based experiments and results, while Section V concludes the
paper and presents the future work.

II. RELATED WORK
In order to integrate semantic models into software

applications, special frameworks that manipulate ontologies
were designed. One of the most used tools in software
engineering that allow working with ontologies are the Web
Ontology Language Application Programming Interface
(OWL API) , described in [4,5,6] and the Jena Semantic web
development framework that can be consulted in [7,
8,9,10,11]. One of the disadvantages of using OWL API is
represented by the fact that this framework supports the
manipulation of the OWL ontologies only at a specific level of
abstraction, different from the Resource Description
Framework (RDF) level. This problem does not exist in Jena,
which contains an API that can be used for the extraction and
for the insertion of data in RDF graphs and OWL ontologies
and it provides different ways to query the information such as
RDQL for RDF and SPARQL for OWL.

Furthermore, because the frameworks presented above
need an identical copy of the semantic domain model in the
software domain model, some special libraries started to
emerge. They can be classified in three main categories: the
first category is represented by the frameworks that are trying
to map an object oriented (OOP) model to an existing
semantic model, or reverse. However, a major disadvantage of
this category is the existence of both models at the beginning
of the development. The second category is represented by
those frameworks which generate the object oriented code
from existing ontologies. And finally, the third category is
represented by software tools that generate ontologies from
OOP code, thus easing the development of semantically
enhanced software applications.

Most of the frameworks from the first category define a
mapping between existing Java object oriented models and an
existing ontology, having the major disadvantage of model
duplication. One of such frameworks is the MOOT framework
[12], an approach which allows the transformation of abstract
ontological concepts into everyday programming languages.
The authors propose the following reasons why such a
mapping between ontologies and everyday programming
languages is needed: the transformation of the concepts from
the ontologies into every-day programming languages would
increase the adoption of the ontologies in the solving of many
engineering tasks [13] and the large number of similarities
between the ontological world and object-oriented world [14]
is an inspiration for the researchers to find other solutions to
access the data which is represented semantically. The MOOT
framework maps some of the components of OWL 2 to the
Java programming language. The model is universal as it
supports multiple ontological languages and multiple
programming languages. Another such approach is presented

in [16], where the authors show a method of object-ontology
mapping. The paper presents how to map ontologies to object-
oriented representations and how to map object-oriented
representations to ontologies. One of the most important
elements of the architecture for object-ontology mapping is
represented by CRUD support. The classes from the ontology
correspond to classes from the object-oriented programming
language. Furthermore, in [17] it is described how to map
OWL individuals to pre-generated Java ontology classes. The
mapping process is unidirectional as it shows how to map
from OWL to object-oriented concepts only. The other
direction of mapping (from object oriented concepts to OWL
classes) is not discussed. JOM (Java Ontology Mapper) uses
Jena framework and Java programming language. Paper [19]
presents Java2OWL, a system that can be used for the
synchronization of Java class hierarchies with OWL concept
hierarchies, by using some extra annotations in the Java class
files. By combining Java and OWL, Java may be used for the
computation while OWL can be used for the retrieval of the
individuals that correspond to some OWL concept
expressions. Java2OWL assumes that there exists a
“background ontology”. Java classes that will be mapped to
the ontology classes must be annotated.

Frameworks classified in the second category generate
Java code from OWL ontologies in order to facilitate
development by eliminating model duplication. However, the
generated code may be incomplete because of the complex
semantic relationships such as multiple inheritances. One
framework from the second category that generates Java code
from OWL ontologies is he Ontology Bean Generator [18]. It
may create Java class source files which illustrate the logical
structure of the ontology designed in Protégé. Another such
framework is Sapphire [21], a tool that can be used for the
generating of Java Runtime artifacts from OWL Ontologies.
The Sapphire tool is used to generate byte code for a
collection of Java interfaces which correspond to a collection
of OWL ontologies. Some of the challenges related to the
mapping between OWL and Java are the following ones: the
mapping of OWL classes to Java interfaces is a technique for
the approximation of the OWL’s multiple inheritance, OWL
properties have rich descriptions, the OWL models make
open-world assumptions, and OWL classes may be defined as
union, intersection or complement of other classes. In the case
of Sapphire, the OWL classes are mapped to Java interfaces.

Regarding the third software category, there are some
approaches to try to generate ontologies from Java code, but
they rely on comments or they try to generate only partial
ontologies, not complete domain models identical to the OOP
Java model. One such approach is Semlet presented in [15],
which is a customizable doclet for ontology extraction. OWL
ontologies are extracted from Java libraries by using Javadoc
technology (a tool for automatic extraction of documentation)
and Jena (a Java framework that can be used for the
construction of semantic web applications). Some of the
assumptions used in the construction of this framework are the
following ones: a class is always a class (a Java class must
correspond always to an ontology class), two classes from
Java which have the same name but correspond to different
packages must have different names in the ontology (this

70

problem can be solved by using namespaces), access level
modifiers (public, protected, and private) indicate which
elements participate in the construction of the ontology,
interfaces from Java are treated as OWL classes, methods
correspond to object properties, fields are translated into either
data type properties or object properties and so on. Another
framework is presented in [20]. The authors discuss how to
generate the ontology from the Java source code. The
framework’s aim is to extract the methods from a project and
to store metadata associated to these methods in the ontology.
The metadata is extracted from the code by using QDox code
generators, and the information is stored in OWL using the
Jena framework. Information which is stored in OWL
includes: classes, methods, return type and parameters. QDox
may be used for the extraction of classes, interfaces and
method definitions from source code, while the metadata
extracted by QDox may be stored by using the Jena
Framework.

As opposed to the presented state of the art work, the
framework proposed by us eases the integration of ontologies
into software applications by allowing the generation of a
semantically enhanced model from an existing annotated Java
model, thus belonging to the third category of frameworks. As
result, a complete ontological model from the Java model is
generated, thus reducing development time. Furthermore, it
generates methods for basic CRUD access of the ontology,
decreasing the complexity of the application. Last but not
least, for manipulating the ontology it offers support for Jena,
OWL API and other library that can be easily integrated
because of the extensibility of the design. As far as we know,
this is the first framework that offers these complete features
of generating ontologies from Java models.

III. THE M2O LIBRARY
When creating a data model using data from ontology, the

process of mapping Java classes to the Ontology classes can
be very complex. M2O library is designed to ease the process
of integration in Java, providing direct access to the ontology
data by mapping directly the data model (Java beans) to the
ontology classes. Contrary to the existent libraries presented in
section II, M2O purpose is to map the object-oriented model
to ontology. It offers the possibility of creating an ontology
code-first, or mapping the classes to an existent corresponding
ontology and then applying basic operations on the classes of
this ontology (create, update, delete, select all individuals,
select specific individual). All the available operations are
implemented based on existing API’s such as Jena and OWL
API. The proposed library is a wrapper over these APIs,
providing a generalized way of accessing the ontology.

TABLE I. OOP TO ONTOLOGY MAPPING

OOP Ontology

Class Class

Instance Individual

Field Data Property

Annotated fields :
@ObjectProperty (*)

Object Property

(*) The annotated field is the range and the current object is the domain

In order to be able to map the object oriented paradigms to
ontology, some rules are applied (see TABLE I), which are
meant to find the equivalence between the OOP principles and
the ontology principles.

A. Arhitecture
The application (M2O library) is implemented using a well

modularized architecture. The library architecture is presented
in Fig. 1. It was designed to ensure reliability and scalability.
Furthermore, due to its low coupled modules, the application
can be easily extended, by plugging in other ontology APIs
(similarly to the ones already used: Jena and OWL API).

Object Abstraction - An abstraction layer is needed
between the POJO classes and the ontology APIs. In order to
achieve this level of abstraction, intermediate classes have
been defined by implementing the OntologyModel interface.
The ontology object parser, OntologyEntityReflectionParser is
a utility class responsible to create OntologyModel instances
based on the Java class received as input. Depending on the
operations performed, there are two types of OntologyModel
objects.

Firstly, the OntologyClass contains all the information
necessary for creating a class in the ontology. The ontology
object parser receives a Java class as input, and extracts all the
information regarding the classname, the fields –String, and
their type – Object (Map<String,Object> fields), the object
properties – String, and their range- Object , and stores them
in key-value data structures(Map<String,Object>
objectProperties). A list of OntologyClass objects is created
from all the ontology classes defined in Java, containing the
representation of all the ontology entities which are then
passed to the OntologyAccessManager for generating code-
first ontology.

Secondly, the OntologyIndividual contains all the
information for creating an individual in ontology. The
ontology object parser is responsible for creating an
OntologyIndividual object, from a Java object received as
parameter. The created object contains all the information
regarding the java object’s classname, fields and their values
(Map<String,List<Object>> fieldsValues) together with the
object properties associated to existing instances from the
ontology(Map<String,List<Range>>
objectPropertiesValues). This OntologyIndividual object is
then used by the OntologyAccessManger to perform
operations like: create and update individual in ontology.

TABLE II. OPERATIONS EXPOSED BY M2O

Return type Method

void create(T entity)

void update(T entity)

T findByIdentifier(V identifier)

List<T> findAll()

void delete(V identifier)

Ontology Repository - The OntologyRepository provides
the interface to the M2O library. The basic operations (see

71

TABLE II) are defined at this level. The operations are
defined on the generic type T and V. The type T represents the
entity and the type V represents the identifier of the individual
(the name of the individual, or an ID if entities are also
mapped to a database). These types will be specified by the
user of the library by extending the OntologyRepository class.
Each method that receives an entity object as a parameter uses
the OntologyEntityReflectionParser to obtain the equivalent
OntologyModel object. This object is then passed to the
OntologyAccessManager object to perform the actual
operation. A creational design pattern (factory design pattern)
is used to instantiate the OntologyAccessManger. Based on the
API specified in the configuration file, the
OntologyAccessManagerFactory returns a JenaAccessManger
object or a OwlAPIAccessManger object.

Access Manager - The OntologyAccessManger interface
defines the basic operations (see Table III) needed to be
implemented by each API’s access manger class. Different
implementations of access manager are required for each API
(Jena and OWL API).

TABLE III. ONTOLOGY ACCESS OPERATIONS

Return type Method

void addIndividual(OntologyIndividual individual)

void updateIndividual(OntologyIndividual individual)

T getIndividual(Class<T> cls, V identifier)

List<T> getIndividuals(Class<T> class)

void deleteIndividual(V identifier)

void insertOntologyClasses()

void insertOntologyClass(OntologyClass class)

The OntologyAccessManger provides a generalized
mechanism in order to perform the basic operations, using the
previously defined abstract data model (OntologyClass and
OntologyIndividual). For example, by calling the
addIndividual method on the JenaAccessManager object, a
com.hp.hpl.jena.ontology.Individual object will be created and
stored in the ontology, using the fields and the object
properties contained in the OntologyIndividual class received
as parameter. Similarly, OwlAPIAccessManager will create an
org.semanticweb.owlapi.model.OWLNamedIndividual object.
This is possible due to the abstract data model used

(OntologyIndividual). In this way the access manager classes
do not need any concrete information regarding the entities
that are stored in the ontology, all the operations being
executed in a generic way. Each OntologyAccessManager
implementation class (JenaAccessManger and
OwlAPIAccessManager) is implemented using the Singleton
Design Pattern. In this way, a single point of access to the
ontology is provided. Some utility classes are defined to
provide functionalities like: load ontology, save ontology, save
snapshot (the state of the ontology at a given time), etc. The
OntologyUtility interface provides a contract for these
operations. The ontology utility classes (JenaUtility and
OwlAPIUtility) are used by the access manager
(OntologyAccessManger implementing classes), but can also
be used by the library’s user in order to save and make
snapshots of the ontology.

B. Custom Defined Annotations
Similarly with the Hibernate [1] model, the ontology

entities will need a way to specify the metadata needed in
order to perform the mapping between the Java model and the
ontology. The method used for this library is annotation-based
mapping metadata. In order to achieve this, the following
annotations are defined:

@OntologyEntity - It is a class annotation that will be
used for every class that needs to be mapped to the ontology.

@InstanceIdentifier - It is a field annotation specifying
the field that will be used to identify individuals. Similarly to
the data base approach, this identifier will ensure the
uniqueness of the individual and in the same time will allow
the user to load the individual based on this identifier.

@ObjectProperty(value = “objProp”, range =
Some.class)- This field annotation will be used in order to
specify an object property of the current class. The “value”
field will contain the name of the object property and using the
“range” field, the class of the range object will be specified.

@OntologyIgnore- In order to ignore a field, this
annotation will be used. As a result, this field will not be
considered when mapping the class/instance to the ontology
class/individual.

As an example we will use classes from the well-known
Wine ontology proposed by Stanford University [3]. The

Fig. 1 M2O architeture

72

ontology entity class represented in Fig. 2 is
has different object properties like: WineG
WineBody, WineFlavor, WineSugar, Win
which are all represented in the Wine
@OntologyEntity annotation is exemplified
as a class annotation on the Wine class
@InstanceIdentifier is exemplified, the win
by its name. The object properties are enume
while the last annotation (line 25) exemp
field.

Fig. 2. Wine Ontology Entity

IV. USE CASE AND VALIDAT

In order to demonstrate how the library
scenario based on the Wine ontology is
section. Due to the complexity of the W
scenario considers the following classe
PortableLiquid, PinotNoir, Region, WineB
Descriptor, WineTaste, WineFlavor, WineG
Winery. The basic operations on the ontolo
using the defined entities.

Fig.3 Java Model class diagram

The setup of this library is done via a
(ont-config.config). The following param
setup in order to ensure the correct functiona

s the wine class. It
Grape, WineColor,
nery, and Region;

Java class. The
d on the first line,
s. At line 4, the
ne being identified
erated (lines 7-22),
plifies an ignored

TION
is used a use case
presented in this

Wine ontology the
es (see Fig. 3):
Body, WineColor,

Grape, WineSugar,
ogy are presented

configuration file
meters need to be
ality of the library.

1. ONT_FILE= path to the o
to be specified. If the ont
loaded from this path; ot
containing an ontology cor

2. ONT_URI = ontology
Ontology (Uniform Resour

3. API_TYPE=JENA or O
preferences, the API needs
API’s that are available so

4. ENTITIES_PACKAGE=
s. The user must specify
classes that are going to be

5. AUTO_GEN=true or fal
ontology will be created
specified package. Otherw
be loaded from the file.

In order to prove the accur

functionality, a snippet of the e
based on the above mentione
created ontology is presented in

Fig. 4. Wine Ontol

In Fig. 5, the basic opera
Wine entity. In order to achiev
defined for each entity of the m
entities corresponding to the
inserted in the ontology.

Fig. 5. Basic Operations defin

owl file. The ontology file needs
tology already exists, it will be
therwise a file will be created
rresponding to the Java model -

URI .The identifier of the
rce Identifier)

OWLAPI. Based on the user
s to be specified in this file. The
far are : JENA and OWL API

=ro.tuc.dsrl.m2o.example.entitie
y the package that contains the
e mapped to the ontology
lse. According to this flag, an
based on the entities from the

wise the specified ontology will

racy of the code first generation
entire Wine Ontology is created

ed entities. The diagram of the
n Fig. 4.

ogy diagram snippet

ations are implemented on the
ve this, repository classes were
model. It is assumed that all the
object properties were already

ned on a Wine Ontology Entity

73

A. Code complexity reduction
Considering that a data model l

implemented (containing all the modeled cla
the code complexity of the basic operations o
Let us consider a scenario where individual
classes are already inserted in the onto
WineColor, WineFlavor, Region, Winery,
WineGrape. In order to insert a Wine en
ontology, we will provide the code snippets
this operation in all of the following libraries
and M2O. In Fig. 6, lines 1-13 represent th
insert the Wine individual in ontology usin
library. Lines18-24, the association for one
depicted.

Fig. 6 OWL API: Insert operation for Win

Similarly, in Fig. 7 the Jena code is prese
a Wine individual into ontology associating
seven object properties.

Fig. 7 Jena: Insert operation for Win

In Fig. 8, the insertion of the Wine entity
M2O library. As a result, in order to perfo
operation on the Wine entity (considering
properties) from Jena, 32 lines of code were
for OWL API, 56 lines of code were neces
M2O this was possible by writing 3 lines of c

Fig. 8 M2O: Insert operation for Wine

We will measure how much the code c
reduced using our API, by considering
regarding the wine entity. Table IV shows h
code are required in order to perform the b
the case of using OWL API, JENA and M2O

ayer is already
asses) we evaluate
on the Wine class.
s of the following
logy: WineBody,
, WineSugar and
ntity from Java in
needed to achieve

s: OWL API, Jena,
he code needed to
ng the OWL API
object property is

ne entity

ented for inserting
g only one of the

ne entity

y is done using the
orm a basic insert
g all seven object
written. Similarly,
ssary, while using
code.

entity

complexity will be
the information

how many lines of
basic operations in
O.

TABLE IV. CODE COMPLEXITY IN

 OWL API
CREATE 56

GET BY ID 45
GET ALL

INDIVIDUALS
48

UPDATE 62
DELETE 6

We show how much the co
case of an entire project base
ontology contains: 150 classe
subclasses and 17 properties
complexity reduction, let us
similar to the Wine class in t
object properties, but consideri
ontology). We computed the n
on the results obtained in Tabl
of classes from 1 to 20 classes,
between the three APIs. Accor
9, the code is reduced with 80
API.

Fig. 9. Code com

B. Performance evaluatio
information

In order to realistically eva
the time of execution for the op
as well. We will measure the
retrieve information from th
concepts. The statistics addres
and retrieving wine objects tha
concepts already existing in
Winery, Region, etc.).

Fig. 10. Insertion

N OWL API VERSUS JENA VERSUS M2O

JENA M2O
32 3
38 1
41 1

37 3
5 1

ode complexity is reduced in the
ed on the wine ontology. The
es out of which, 74 are wine
s. In order to test the code

consider having more classes
the ontology (classes having 7
ing these already inserted in the
number of lines of codes based
le IV. We will vary the number
, and we will compare the result
rding to results presented in Fig.
0% for Jena and 85% for OWL

mplexity statistics

on for insertion and retrieval of

aluate the implemented library,
perations needs to be considered
time necessary to insert and to
he ontology related to wine
ss the time needed for inserting
at contain all their fields set with
n the ontology (Descriptors,

time for wine entities

74

First, we will test the insertion time for different numbers
of Wine entities. We vary the number of entities between 1000
wine entities and 10000 wine entities. The tests are run both
using the M2O library, first as a wrapper over the OWL API
library, and then as a wrapper over the Jena library. The
results presented in Fig. 10 show better results for Jena,
although the differences are small between the two libraries
regarding the insertion time.

Next we will measure the time necessary to retrieve
information about the wine individuals from the ontology by
using again the two alternatives: OWL API and JENA.

Fig. 11. Retrieval time for wine entities

The overall retrieval time is greater in the case of using
JENA than in the case of using OWL API. But as the results
show in Fig. 11, the OWL API shows a more abrupt rising in
execution time, once the number of entities increases. For the
retrieval process, an eager loading approach is used. This
means that together with the wine entity all the other entities
are loaded (Descriptors, Winery, Region, etc.).

V. CONCLUSION
In this paper we have presented a novel framework for

integrating semantic modeling into complex software projects.
Our framework will allow software engineers to benefit from
the semantic advantages brought by ontologies in data
modeling while eliminating the major problems encountered
with integrating ontologies into object oriented applications,
such as cumbersome development, high code complexity and
slow learning curve for developers. We have tested the
framework on the Wine Ontology, obtaining promising
results. The code was reduced with up to 85% compared to the
classical approaches using Jena or OWL API while the
performance of the application remained the same. As future
development we propose to design a generic approach for
generating custom queries based on the syntax of a method’s
name (e.g. generate the query for retrieving entities named X
for the method named findByName(String X)).

ACKNOWLEDGEMENTS
This work has been carried out in the context of the

Ambient Assisted Living Joint Programme project Elders-Up!
[2] and was supported by a grant of the Romanian National
Authority for Scientific Research, CCCDI – UEFISCDI,

project number AAL26/2014. This document is a
collaborative effort. The scientific contribution of all authors
is the same.

REFRENCES
[1] Hibernate - http://hibernate.org/
[2] Elders UP! EU AAL Project– http://www.eldersup-aal.eu
[3] Natalya F. Noy and Deborah L. McGuinness. ``Ontology Development

101: A Guide to Creating Your First Ontology''. Stanford Knowledge
Systems Laboratory Technical Report KSL-01-05 and Stanford Medical
Informatics Technical Report SMI-2001-0880, March 2001.

[4] Matthew Horridge, Sean Bechhofer, “The OWL API: A Java API for
OWL Ontologies”, Journal Semantic Web, Volume 2 Issue 1, January
2011, pp. 11-21

[5] Sean Bechhofer, Raphael Volz, Phillip Lord, “Cooking the Semantic
Web with the OWL API”, The Semantic Web – ISWC 2003, Lecture
Notes in Computer Science, Volume 2870, 2003, pp. 659 – 675

[6] Sean Bechhofer and Nicolas Matentzoglu, University of Manchester,
“The OWL API: An Introduction”

[7] Ayesha Ameen, Khaleel Ur Rahman Khan and B. Padmaja Rani,
“Reasoning in Semantic Web Using Jena”, Computer Engineering and
Intelligent Systems, Vol. 5, No. 4, 2014

[8] Kruti Jani, Dr. V.M. Chavda, “A Study on Semantic Web Framework:
Jena and Protege”, Indian Journal of Applied Research, Volume 4, Issue
1, Jan 2014, pp. 143-145

[9] Jeremy J. Carroll, Ian Dickinson, Chris Dollin, “Jena: Implementing the
Semantic Web Recommendations”, HP Laboratories Bristol, December
24th, 2003

[10] G. Klyne, J.J. Carroll, “RDF Concepts and Abstract Syntax”, 2003,
W3C

[11] Max Volkel, “RDFReactor – From Ontologies to Programmatic Data
Access”

[12] Rok Zontar, Ivan Rozman, Vili Podgorelec, “Mapping Ontologies to
Objects using a Transformation based on Description Logics”,
INFORMATION TECHNOLOGY AND CONTROL, 2014, T. 43, Nr.
3, pp. 230-243

[13] V. Podgorelec, M. Gresak, “Supporting the Study Process using
Semantic Web Technologies”, Electronics and Electrical Engineering,
2011, Vol. 116, No. 10, pp. 105-108

[14] R. Zontar, M. Hericko, “Adoption of object-oriented software metrics
for ontology evaluation”, In: Proceedings of the Fifth Balkan
Conference in Informatics, Novi Sad, Serbia, 2012, pp. 298-301

[15] Davide Ancona, Viviana Mascardi, Ombretta Pavarino, “Automatic
ontology extraction from Java libraries for machine-readable API
documentation”, 9th May 2010

[16] Peter Bartalos, Maria Bielikova, “An approach to object-ontology
mapping”, 2007

[17] Hanno-Felix Wagner, “JOM – The Java Ontology Mapper, Mapping
OWL individuals to pre-generated Java ontology classes”, Essen, 30th
July 2012

[18] Protégé Wiki: OntologyBeanGenerator
http://protegewiki.stanford.edu/index.php/OntologyBeanGenerator,

[19] Hans Jurgen Ohlbach, “Java2OWL A System for Synchronizing Java
and OWL Version 1.1”, Research Report PMS-FB-2012-2, March, 2012

[20] Gopinath Ganapathy, S. Sagayaraj, “To Generate the Ontology from
Java Source Code OWL Creation”, (IJACSA) International Journal of
Advanced Computer Science and Applications, Vol. 2, No. 2, Feb. 2011

[21] Graeme Stevenson, Simon Dobson, “Sapphire: Generating Java Runtime
Artefacts from OWL Ontologies”, Advanced Information Systems
Engineering Workshops, CAiSE 2011 International Workshops,
London, UK, June 20-24, 2011, pp. 425-436

75

