
978-1-4673-8200-7/15/$31.00 ©2015 IEEE

Tools for Mapping Ontologies to Relational
Databases: A Comparative Evaluation

Dorin Moldovan, Marcel Antal, Dan Valea, Claudia Pop, Tudor Cioara, Ionut Anghel, Ioan Salomie
Computer Science Department

Technical University of Cluj-Napoca
Cluj-Napoca, Romania

{dorin.moldovan, marcel.antal, dan.valea, claudia.pop, tudor.cioara, ionut.anghel, ioan.salomie}@cs.utcluj.ro

Abstract —This paper presents an analysis of the state of the

art solutions for mapping a relational database and an ontology
by adding reasoning capabilities and offering the possibility to
query the inferred information. We analyzed four approaches:
Jena with D2RQ, Jena with R2RML, KAON2 and OWL API. In
order to highlight the differences between the four approaches,
we used a nutrition diagnostics related ontology for the definition
of the concepts and of the rules, and a relational database for the
storage of the individuals. As performance evaluation, we focused
on the time required to map the relational database to the
ontology, and the time required to retrieve the information that is
inferred about the diagnostics of a number of people. The
obtained results show that the best performance in both cases is
given by KAON2.

Keywords—ontologies; relational database; ontology mapping;
semantic reasoning; query.

I. INTRODUCTION
One of the main issues when dealing with a huge amount of

data, like in the case of information related to nutrition
problems and diets is represented by the way in which the data
is stored. Different formats such as relational database records,
xml files or text files may be used in order to save this
information. Even though the databases provide great
scalability and are used widely, there are some limitations: they
store only data that is explicitly known, the performance of the
system is reduced significantly if the number of tables is very
large, and the extraction of meaning from data is slow. There is
a need to use a common language in order to access this data
that comes from different sources. Also, the solution should
provide scalability and the syntax should be as close as
possible to the human language.

Ontologies are a way to represent data about a specific
domain in a semantical and hierarchical manner [1]. They
provide ways to specify properties for the objects involved in
the domain, and the relations among these objects. Ontologies
are seen both as vocabulary, because they provide the means to
represent the data associated to a specific domain, and as
content theory, because they identify the classes of objects and
the relations among these objects. Data represented by the
ontologies can be split in two, as it is shown in [2,20]: TBox
and ABox, based on the fact if the knowledge changes in time
or not. The intentional knowledge (TBox) represents
knowledge that is usually thought not to change, while the
extensional knowledge (ABox) is subject to occasional or

constant change. The TBox, also known as “terminological
component”, represents the conceptualization that is associated
with a set of facts. On the other hand, the ABox, also known as
“assertional component”, represents the facts associated with
the TBox. The TBox contains information such as: definitions
of concepts and of properties, declaration of roles or concept
axioms, classification, and so on. The ABox represents
assertions such as: assertions of membership to concepts or
roles, attributes assertions and linkages assertions. Their main
disadvantage is their lack of scalability when dealing with
queries involving large amounts of data.

To solve the above data representation and management
issues an approach to store information from a specific field of
knowledge is represented by ontologies, while in many cases
the information is stored in a relational database. A
representation of data which uses both an ontology and a
relational database presents as advantages the fact that
reasoning capabilities may be used, in order to infer new
information from information which is already represented in
the ontology, while new information can be inserted easily
using tools that are not specific to ontologies such as Hibernate
[16] or Java Persistence API (JPA) [17]. The importance of
using both an ontology and a database is represented by the
advantages that both representations bring into the mix. On one
hand, the ontologies may be used to represent knowledge
associated to a specific domain semantically, providing
reasoning capabilities and possibilities to query the information
using a language that can be understood more easily than SQL
while, on the other hand, relational databases present features
such as scalability, the fact that they can be accessed using
different tools, and better security.

The purpose of the paper is to present and to compare four
methods of realizing a mapping between a database and an
ontology: Jena [7] and D2RQ [4], Jena and R2RML [9,10],
KAON2 [11,12,21], and finally OWL API [13,14]. The
comparison of these four approaches is not an ideal comparison
because in the case of KAON2 the ontology is not defined in a
specialized tool such as Protégé, as it is the case of the other
three approaches. Also, for the fourth approach, we do not use
a mapping file, and the data is not retrieved using SPARQL
[3,6]. Even though the four approaches differ in some aspects,
one common point is represented by the reasoning capabilities.
In all of the four cases, new data may be produced from data
that already exists, by using reasoning rules. In all of the four
cases we assumed that the database is the same, and each

77

approach used the same set of reasoning rules. Regarding the
results, we expected to get the same functionality related
results, but with varying different ontology loading and
information retrieval times. The obtained results show that
KAON2 has the best performance both for the loading and for
the retrieval of the information, while the OWL API has the
worst retrieval time. The reason why the retrieval time is
significantly greater in the case of the OWL API than in the
other three cases is because the data is not retrieved using
SPARQL. We also concluded that in the case of using Jena and
D2RQ the loading time is smaller than in the case of using Jena
and R2RML, while the retrieval time is greater when using the
first approach.

The rest of the paper is organized as follows: Section II
presents an overview of the ontology mapping approaches,
Section III presents an evaluation scenario, Section IV shows
the results of the evaluation, and finally Section V presents the
conclusions.

II. ONTOLOGY MAPPING APPROACHES
In this section we present four different approaches to map

a relational database to an ontology revealing the most
important technical aspects involved.

A. Jena and D2RQ
 D2RQ is a tool that is used to transform the content which
is stored in a relational database into a read-only RDF [18]
graph. D2RQ offers the possibility to map the tables to
ontology classes, the rows from the tables to ontology
individuals, the columns to datatype properties, and the foreign
keys to object properties. Jena is a tool that is implemented in
the Java programming language. It can be used for the
translation of the constructs and the statements of the semantic
web into Java classes, objects, attributes and methods. Among
the artifacts used by Jena, the following ones are the most
important: subjects, predicates, objects, statements, data,
queries and results, reasoners, and rules. The queries are
written in SPARQL, which is the W3C recommendation query
language for RDF. Jena allows multiple types of reasoners:
internal or external. Also it provides support for SWRL rules.
The rules can be written in Jena or they can come integrated
with the ontology.

 An architecture that uses D2RQ (a system which may be
used to access relational databases as virtual, read-only RDF
graphs) and Jena (a Java API for Ontology Management) is
discussed in [8]. The information is stored in a relational
database, and a mapping file is used to translate the information
that is stored in the database into a read-only RDF (Resource
Description Framework) graph. RDF is too fine-grained and
irrestrictive to describe complex ontologies, and thus
something more complex was developed in order to deal with
this problem. The solution is represented by the OWL (Web
Ontology Language). Fig. 1 describes an architecture that uses
D2RQ as a mapping tool, and Jena as a tool to handle the
content of the ontology.

 The architecture from Fig. 1 explains briefly how to
connect a relational database to an ontology [5]. Data is
retrieved from a relational database using a mapping file, with
the extension .ttl. After this operation, a D2RQ data model is

obtained. This model will contain the individuals together with
their associated properties that will populate the ontology.

Fig. 1. An architecture that uses D2RQ and Jena (adapted from [5])

 The ontology is defined in a tool, such as Protégé, and is
saved under the extension .owl. In the case the ontology
imports other ontologies, an .rdf file that handles these imports
is defined. Information retrieved from these two files will
represent the Ontology Data (the concepts from the ontology)
and, by using a reasoner such as Pellet, an inferred model can
be obtained. Finally, from this inferred model, and ontology
model is created. The ontology model will represent the TBox
component of the ontology, while the D2RQ data will represent
the ABox component of the ontology. Adding the D2RQ data to
the ontology model, allows us to query the information from
the ontology by using SPARQL queries. The queries written in
SPARQL use concepts defined in the ontology, and are easy to
understand by the users of the application.

B. Jena and R2RML
 Another approach that can be used to map a relational
database to an ontology is described in [9]. This approach uses
R2RML (RDB to RDF Mapping Language). More information
about the syntax of R2RML can be found in [10]. As its name
suggests, R2RML is a language that provides the ability to
view a relational database in the RDF data model. The input for
a R2RML mapping is an existing database that contains the
information which will populate the RDF graph. Among the
features provided by R2RML are the following ones: it can
map tables from the database, it can compute a property with
an R2RML view, it can link two tables, and it can translate
database type codes to IRIs, and so on.

 When comparing R2RML with D2RQ one can observe the
fact that there are a lot of similarities between them. In fact the
same logic is applied when the mapping between the relational
database to the ontology data is performed: the tables from the
relational database are mapped to classes from the ontology,
the rows from the tables are mapped to ontology individuals,
the columns that are not foreign keys are mapped to datatype
properties, and also there is the possibility to map a foreign
key to an object property. An R2RML mapping file also offers
the possibility to write an SQL query which will produce a
view of a table, and the table that corresponds to the obtained
view is mapped further to the ontology concepts. Fig. 2
presents the architecture for data integration using R2RML
and Jena.

78

Fig. 2. An architecture that uses R2RML and Jena (

Data is extracted from a relational databa
is represented by an RDF graph. In order t
graph, the following steps are taken: the first
the contents from the database into result set
is performed by the Parser and it consists in g
of instructions according to the mapping fil
generator instantiates an RDF graph ac
instructions.

C. KAON2
KAON2 can be used to manipulate OW

and the queries can be formulated in SPAR
not the entire SPARQL specification is
KAON2 has some limitations, such as
nominals (also known as enumerated class
handle very large numbers in statement
KAON2 distribution contains 10 very
examples that show how to load an ontol
contents, how to create an ontology, how to
it, how to get axioms from an ontology, how
ontology, and how to map a relational databa
A detailed architecture of KAON2 can be se
presented in Fig. 3.

Fig. 3. KAON2 Architecture (adapted fro

The Ontology API is used for the ma
ontology (loaded as OWL RDF or OWL X
the addition and the removal of axioms. As
individuals, ABox assertions, can be store
database (RDBMS). KAON2 provides the p
the entities of the ontology to database
KAON2 can query the database on the fly
The Reasoning API allows the invocation
reasoning tasks, and the retrieval of the
Reasoning Engine. The APIs can be also
through the DL Implementors Group (DIG) A

(adapted from [9])

ase and the output
to obtain the RDF
t step is to convert
ts, the second step
generating of a set
le, and finally the

ccording to these

WL-DL ontologies,
RQL, even though

supported. Also,
it cannot handle
es), and it cannot
ts of cardinality.
well documented
logy and print its
 add statements to

w to add rules to an
ase to an ontology.
een in [12], and is

om [12])

anipulation of the
XML file), thus for
ssertions about the
ed in a relational
possibility to map

tables, and also
during reasoning.

n of a variety of
results from the

invoked remotely
API.

D. OWL API
The OWL API is an A

Interface) that can be used
ontologies. One of the main
represented by the fact that it c
variety of formats. Also the re
separately. The OWL API pr
ontology and data structures t
Also, it offers functionalities s
parsing, rendering and reasonin
 Next we will discuss how
with information that comes fr
from a relational database can b
by using sql queries [15]. The
the paper: mapping tables, m
types, mapping constraints and
represents a sublanguage of th
constraints on the use of the c
the OWL language. A table is m
columns are not foreign keys to
a foreign key, then it is ma
Mapping data types refers to th
from SQL to data types from X
kind of mapping. Also, the pap
the constraints is realized. In th
mapping of the foreign keys. F
instances. Fig. 4 shows how th
using OWL API and a relationa

Fig. 4. An architectu

The ontology that contains
.owl file. The data that is use
stored in a relational databas
translator is used to get the
convert it into ontology infor
populated with the data tha
database, the obtained model c
reasoner that must be asked dir
from the ontology.

PI (Application Programming
for working with the OWL
features of the OWL API is

an load and save ontologies in a
easoning functionality is treated
rovides a uniform view of the
that represent OWL ontologies.
such as: creation, manipulation,
ng.

we can populate the ontology
from a relational database. Data
be used to populate an ontology
following rules are described in
apping columns, mapping data
d mapping rows. The OWL-DL
he OWL which imposes a set of
constructs which are specific to
mapped to a class in the case its
o other tables. If a column is not

apped to a data type property.
he mapping between data types
XSD. We will not insist on this
per presents how the mapping of
his case, we are interested in the
Finally, the rows are mapped to
he information can be retrieved
al database.

re that uses OWL API

the concepts is loaded from an
ed to populate the ontology is
se. The module RDB to RDF
data from the database and to
rmation. After the ontology is
at comes from the relational
can be used in association with a
rectly what individuals to return

79

III. USE CASE EVALUATION
In this section we will describe how the mapping between

instances and concepts is performed by using the four methods
described before, targeting their comparative evaluation. The
ontology will contain reasoning rules written in SWRL, which
means that in each of the four cases proposed by us, a certain
amount of time will be allocated to the process of reasoning.
We are interested in the time to load the instances from the
database in the ontology, and in the time to retrieve
information from the ontology using SPARQL queries, while
reasoning is involved.

As use case ontology we have used the one described in
Fig. 5. The ontology contains information about people
(users), values (weight and height) and diagnostics
(underweight, normal weight, overweight, and obese). The
ontology contains three classes: User, Diagnostic and Values.
A user can have the following data type properties: user id,
first name, last name, gender and age. Users are also
associated to a specific diagnostic by using the object property
hasDiagnostic. Values are related to a user by using the object
property hasUser which has the domain Values and the range
User. The class Values has the following data type properties:
id, weight, height, and BMI (body mass index). The ontology
also contains four individuals that are instances of the class
Diagnostic. These individuals are: Underweight,
NormalWeight, Overweight, and Obese. The structure of the
ontology can be seen below.

Fig. 5. Ontology’s structure

The ontology has reasoning rules for the determination of

the following values: BMI, Underweight, NormalWeight,
Overweight and Obese.

���� � �

��	
���	���
�������

��	
����	�����
�������������������� (1)

��� � ����� � �� !"#!$%&'������������������ (2)

���� (��� �)�� � *+",-./!$%&'���������� (3)

)� (��� � 01 � 23!"#!$%&' (4)

01 (���� � 24!5! (5)

The first equation describes how the value of the body mass

index (BMI) is computed. As we can see in (1), the value of

BMI equals the fraction between the weight (expressed in
kilograms) multiplied by 10000 and the square of height
(expressed in centimeters). If the BMI is less than 18.5, then
the person is classified as underweight (2). If the BMI is
greater than or equal with 18.5 and less than 25, then the
person has normal weight. If the BMI is greater than or equal
with 25 and less than 30 then the person is overweight, and
finally, if the value of the BMI is greater than or equal with 30
then the person is obese.

The database model used for ontology mapping is
composed from two tables that correspond to the ontology
classes: User and Values. The table users has the following
properties associated with a user: first name, last name,
gender, and age. The table values contains information about
the weight and the height of the users. The structure of the
database can be seen in Fig. 6.

Fig. 6. Database model

A. Jena and D2RQ evaluation
The mapping between the relational database and the

ontology is done using a mapping file that has the extension
.ttl. The scope of this file is to specify how the mapping
between the database and the ontology is performed. The file
starts with a declaration of the namespaces. Some of these
namespaces are provided below, in Fig. 7.

@prefix d2rq: <http://www.wiwiss.fu-berlin.de/suhl/bizer/D2RQ/0.1#> .
@prefix elders:
 <http://www.semanticweb.org/ontologies/2015/2/elders#> .
@prefix vcard: <http://www.w3.org/2001/vcard-rdf/3.0#> .
@prefix jdbc: <http://d2rq.org/terms/jdbc/> .

Fig. 7. D2RQ namespaces

 After the namespaces used by the ontology are specified, it
is necessary to show how the connection to the database is
realized. The user has to specify the address at which the
database can be found, the name of the driver which is used to
establish the connection, the username, and the password. An
example which illustrates how the connection is established
can be seen in Fig. 8.

map:database a d2rq:Database;
 d2rq:jdbcDSN "jdbc:mysql://localhost/elders";
 d2rq:jdbcDriver "com.mysql.jdbc.Driver";
 d2rq:username "root";
 d2rq:password "admin";
 jdbc:autoReconnect "true";
 jdbc:zeroDateTimeBehavior "convertToNull"; .

Fig. 8. D2RQ Database Connection

80

A table from the relational database corresponds to a class
from the ontology. The columns that contain primitive data
types correspond to datatype properties, while the foreign keys
correspond to object properties. Fig. 9. shows how to map a
data property using D2RQ.

Data Property age
map:age a d2rq:PropertyBridge;
 d2rq:belongsToClassMap map:users;
 d2rq:property elders:hasAge;
 d2rq:column "users.age";
 d2rq:datatype xsd:int; .

Fig. 9. Map a dataproperty using D2RQ

 Reasoning rules can be written directly in Protégé, or they
can be loaded from an external file. We will study the
behavior of the reasoner Pellet. The rules are written directly
in Protégé in SWRL syntax as shown in Fig. 10.

Values(?x), hasHeight(?x, ?h), hasWeight(?x, ?w), divide(?r, ?w, ?n),
 multiply(?n, ?h, ?h), multiply(?rez, ?r, 10000) -> hasBMI(?x, ?rez)
User(?x), Values(?y), hasUser(?y, ?x), hasBMI(?y, ?b),
 greaterThanOrEqual(?b, 30.0) -> hasDiagnostic(?x, Obese)
User(?x), Values(?y), hasUser(?y, ?x), hasBMI(?y, ?b),
 greaterThanOrEqual(?b, 25.0), lessThan(?b, 30.0) -> hasDiagnostic(?x,
 Overweight)
User(?x), Values(?y), hasUser(?y, ?x), hasBMI(?y, ?b),
 greaterThanOrEqual(?b, 18.5), lessThan(?b, 25.0) -> hasDiagnostic(?x,
 NormalWeight)
User(?x), Values(?y), hasUser(?y, ?x), hasBMI(?y, ?b), lessThan(?b, 18.5)
 -> hasDiagnostic(?x, Underweight)

Fig. 10. Rules written in Protégé

The ontology is queried using SPARQL. The first step
when executing a SPARQL query is to connect the ontology
model with the ontology data. The ontology model includes
the concepts that are used by the ontology such as classes,
definitions of object properties and datatype properties, while
the ontology data contains the individuals that will populate
the ontology. After the connection between these two models
is established, queries written in a language similar with the
language of the ontology can be written. Our scenario aims to
write a SPARQL query that returns results that are inferred by
the reasoner and which are not explicitly included in the
database. An illustrative example (see Fig. 11) is a query that
returns all the users and their diagnostics. Each user can have
one of the following four diagnostics: {Underweight,
NormalWeight, Overweight, Obese}.

SELECT ?firstName ?lastName ?diagnostic
 WHERE { ?user rdf:type elders:User . ?user elders:hasFirstName
 ?firstName . ?user elders:hasLastName ?lastName . ?user
 elders:hasDiagnostic ?diagnostic }

Fig. 11. SPARQL query for the retrieval of the diagnostics

 The ontology can be used with different types of reasoners.
The scenario proposed by us studies the behavior of the Pellet
reasoner (a complete OWL-DL reasoner).

B. Jena and R2RML evaluation
In the case of R2RML, the mapping between the database

and the ontology is realized by using a file that has the
extension .ttl. As in the case of D2RQ, the file starts with a

declaration of the prefixes of the ontology. The database
connection properties are not written explicitly in this file, as
in the case of D2RQ. A feature of R2RML is the fact that it
allows to create table views in the mapping file as in Fig. 12.

<EldersTableView> rr:sqlQuery """
 SELECT CONCAT('User_', user_id) AS userId, user_id, firstName
 , lastName, gender, age FROM elders.USERS; """ .

Fig. 12. R2RML Table View

 R2RML can also be used to map object properties, as we
can see in Fig. 13. In this case the join condition must be
specified, in the form of an equality condition between a
column from the child table and a column from the parent
table. The reasoning rules and the querying of the ontology are
similar with the ones that we used for the evaluation of Jena
and D2RQ.

rr:predicateObjectMap [rr:predicate elders:hasUser ;
 rr:objectMap [a rr:RefObjectMap ;
 rr:parentTriplesMap <TriplesMap1>;
 rr:joinCondition [rr:child "user_id"; rr:parent "user_id";];];]

Fig. 13. Map an object property using R2RML

C. KAON2 evaluation
 In the case of KAON2, the mapping between the database
and the ontology is performed by using an .xml file. The
purpose of this file is to specify how the concepts from the
database (tables, columns, rows) are translated into ontology
concepts. The first step is to specify the prefixes of the
ontology as in Fig. 14.

<db:DBOntology
 db:name="http://www.semanticweb.org/ontologies/2015/2/elders"
 xmlns:db="http://kaon2.semanticweb.org/db#">

Fig. 14. KAON2 namespaces

The next step is to specify how the connection to the
database is achieved. The mapping file should contain
information about the address at which the database may be
found, the credentials required to access that location, and the
specific driver that is used for the connection to the database
(see Fig. 15).

<db:Database db:connectionString="jdbc:mysql://localhost/elders"
 db:userName="root" db:password="admin"
 db:driverClassName="com.mysql.jdbc.Driver"/>

Fig. 15. KAON2 Database Connection

The tables are mapped to ontology classes, the columns
that have primitive data types are mapped to datatype
properties, while the foreign keys that specify relations
between tables are mapped to object properties. Fig. 16 shows
how to map a table to an ontology class.

<db:OWLClass db:name
 ="http://www.semanticweb.org/ontologies/2015/2/elders#User">
<db:Table db:tableName ="users">
<db:IndividualInteger db:fieldname="user_id" db:uriPrefix
 ="http://www.semanticweb.org/ontologies/2015/2/elders#User_"
 db:primaryKey ="true"/> </db:Table>
</db:OWLClass>

Fig. 16. Map a class using KAON2

81

 Reasoning rules are written in the code, and added to the
ontology. The reasoning rules can use standard arithmetic
operators such as: +, -, *, /, %, and so on. Fig. 17 shows the
implementation of rule (3).

Rule rule_normalWeight = KAON2Manager.factory().rule(
 KAON2Manager.factory().literal(true, hasDiagnostic,
 new Term[] { U, normalWeight }), new Literal[] {
 hasUser_M_U, KAON2Manager.factory().literal(true, bmi,
 new Term[] { M, BMI }), KAON2Manager.factory().literal(
 true, KAON2Manager.factory().ifTrue(2), new Term[] {
 KAON2Manager.factory().constant("$1 >= 18.5"), BMI }),
 KAON2Manager.factory().literal(true,
 KAON2Manager.factory().ifTrue(2),
 new Term[] {
 KAON2Manager.factory().constant(
 "$1 < 25.0"), BMI }) });

Fig. 17. KAON2 reasoning rule

This rule states that a person that has the BMI (Body Mass
Index) in the range [18.5, 25.0) has as diagnostic
NormalWeight. The ontology that is obtained from the
mapping to the database does not allow update facilities, and
thus a new ontology is created. The new ontology is the one
obtained from the database and it will also contain the new
rules and individuals that are inserted after the mapping to the
database is achieved.

For querying the ontology our scenario uses a query
written in SPARQL, Fig. 18. For each user, this query should
return the first name, the last name and the diagnostic. The
diagnostic has a value from the set: {Underweight,
NormalWeight, Overweight, Obese}.

SELECT ?y ?z ?d WHERE {?x rdf:type
 <http://www.semanticweb.org/ontologies/2015/2/elders#User> ;
 <http://www.semanticweb.org/ontologies/2015/2/elders#hasFirstName>
 ?y ;
 <http://www.semanticweb.org/ontologies/2015/2/elders#hasLastName>
 ?z . ?x
<http://www.semanticweb.org/ontologies/2015/2/elders#hasDiagnostic>
 ?d . }

Fig. 18. SPARQL query for the retrieval of the diagnostics

D. MySQL and OWL API evaluation
 In the case of OWL API we used another approach to map
the database to the ontology. Instead of using a mapping file
which specifies how the concepts from the database are related
to the concepts from the ontology, we chose a solution which
retrieves the information from the database and inserts the data
in the ontology. The first step in this approach is represented by
the retrieval of the information from the database. This process
can be performed by using sql queries. The next step is
represented by the insertion of the information retrieved from
the database in the ontology. This step will be performed by
retrieving data from the database using sql queries, and
inserting the retrieved information in the ontology using
specific methods which allow the insertion of individuals,
datatype properties, object properties and so on. Each table
from the database will correspond to an ontology class, the
rows from the tables represent individuals that will populate the
ontology, the columns that are not associated with foreign keys
will represent datatype properties, and finally the foreign keys
will represent object properties. The reasoning rules may come

together with the ontology, when the ontology is defined in
Protégé. For testing purposes we will use the reasoner Pellet.

To query the ontology we will call the reasoner directly in
order to get the desired information. The reasoner will return
all the individuals from the ontology that have the type User,
and for each individual of this type, it will retrieve the first
name, the last name, and the weight diagnostic. This approach
does not use SPARQL as OWL API does not provide support
for SPARQL. However, by using another framework, such as
Jena, and inserting the model created in OWL API in a Jena
model, the information can be retrieved using SPARQL.

IV. EVALUATION RESULTS
In order to compare the above presented alternatives we

have considered 10 cases and varied the number of users that
are stored in the database as {100, 200, …, 1000}. The users
will be generated randomly in the database, together with the
measurements associated with them. The height of the user will
be a random number between 165 and 184, and the weight of
the user will be a random number between 50 and 100. As
output, we want to retrieve for each user the first name, the last
name and the diagnostic. We aim to measure the time required
to initialize the ontology with the users and their corresponding
measurements that are taken from the relational database, and
the time required to retrieve the information about the users.

 The time required to load the information from the
database to the ontology in all of the 4 cases is presented in
Fig. 19 while the time required to retrieve the information
from the ontology is shown in Fig. 20.

Fig. 19. Loading time in milliseconds (ms)

Fig. 20. Retrieval time in milliseconds (ms)

82

V. CONCLUSIONS
In this paper we presented different approaches for mapping

the content stored in a relational database to ontology: Jena
and D2RQ, Jena and R2RML, KAON2, and OWL API. We
focused on three main aspects: how the mapping between the
database and the ontology is performed, how the reasoning
facilities are introduced and how data is retrieved. We
concluded that the smallest loading time of the individuals
from the relational data base in the ontology is obtained in the
case of KAON2, followed by OWL API, and finally the
approaches which use Jena. In the case of the retrieval of the
information, the best performance is also given by KAON2,
but the approaches that use Jena performed better than the
approach that uses OWL API. This is justified by the fact that
in the cases that use Jena (D2RQ and R2RML) SPARQL is
used for retrieving data, while in the case of OWL API Pellet
reasoner is used.

ACKNOWLEDGMENT
 This work has been carried out in the context of the
Ambient Assisted Living Joint Programme project
DIET4Elders [19] and was supported by a grant of the
Romanian National Authority for Scientific Research, CCCDI
– UEFISCDI, project number AAL16/2013. This document is
a collaborative effort. The scientific contribution of all authors
is the same.

REFERENCES

[1] B. Chandrasekaran, J. R. Josephson, V. R. Benjamins, “What are
Ontologies, and Why Do We Need Them?”, IEEE Intelligent Systems
and their Applications, vol. 14, pp. 20-26, January/February 1999

[2] M. Bergman, “The Fundamental Importance of Keeping an ABox and a
TBox Split”, AI3 Adaptive Information, Sunday 2009

[3] SPARQL, http://www.w3.org/TR/rdf-sparql-query/
[4] D2RQ, http://d2rq.org/

[5] M. G. Skjaeveland, “Tutorial on Semantic Technology at Semantic Days
2010”, D2R, May 2010

[6] J. Perez, M. Arenas, C. Gutierrez, “Semantics and Complexity of
SPARQL”, ACM Transactions on Database Systems (TODS), vol. 34,
no. 16, August 2009

[7] Apache Jena, https://jena.apache.org/
[8] C. Bizer, A. Seaborne, “D2RQ Treating Non-RDF Databases as Virtual

RDF Graphs”, 3rd International Semantic Web Conference
(ISWC2004), Hiroshima, Japan, November 2004

[9] N. Konstantinou, D. Kouis, N. Mitrou, “Incremental Export of
Relational Database Contents into RDF Graphs”, 4th International
Conference on Web Intelligence, Mining and Semantics (WIMS’14),
June 2014

[10] R2RML, http://www.w3.org/TR/r2rml/
[11] KAON2, http://kaon2.semanticweb.org/
[12] B. Motik, U. Sattler, “A Comparison of Reasoning Techniques for

Querying Large Description Logic ABoxes”, LPAR’06 Proceedings of
the 13th international conference on Logic for Programming, Artificial
Intelligence, and Reasoning, pp. 227-241, November 2006

[13] M. Horridge, S. Bechhofer, “The OWL API: A Java API for OWL
Ontologies”, Semantic Web, vol. 2, pp. 11 – 21, January 2001

[14] S. Bechhofer, N. Matentzoglu, “The OWL API: An Introduction”,
COMP60421: Ontology Engineering for the The Semantic Web,
November 2014

[15] I. Astrova, N. Korda, A. Kalja, “Rule Based-Transformation of SQL
Relational Databases to OWL Ontologies”, In Proceedings of the 2nd
International Conference on Metadata & Semantics Research, 2007

[16] Hibernate, http://hibernate.org/
[17] Java Persistence API,

http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-
140049.html

[18] RDF, http://www.w3.org/RDF/
[19] DIET4Elders AAL Project, www.diet4elders.eu
[20] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, P. F. Patel-

Schneider, “The description logic handbook: theory, implementation,
and applications”, Cambridge University Press New York, NY, USA,
2003, ISBN:0-521-78176-0

[21] B. Motik, “KAON2 – Scalable Reasoning over Ontologies with Large
Data Sets”, ERCIM News 2008(72), 2008

83

