
A Self-configuring Middleware Solution for

Context Management

Tudor Cioara, Ionut Anghel, Ioan Salomie

Computer Science Department, Technical University of Cluj-Napoca, 15 Daicoviciu Street,

400020 Cluj-Napoca, Romania

{Tudor.Cioara, Ionut.Anghel, Ioan.Salomie}@cs.utcluj.ro

Abstract. This paper proposes a self-configuring middleware that uses a

context management infrastructure to gather context data from various context

sources and generate/update a run-time context representation. The high

demand for reducing the context representation management complexity and

ensuring a high tolerance and robustness, lead us to considering the self-

configuring autonomic computing paradigm for the context acquisition and

representation processes. The middleware defines three main layers: the

acquisition layer that captures the context data from real world contexts, the

context model layer that represents the context data in a programmatic manner

and the context model management infrastructure layer. The middleware

continuously monitors the real context to detect context variations or conditions

for updating the context representation. The proposed middleware was tested

and validated within the premises of our Distributed Systems Research

Laboratory smart environment.

Keywords: Autonomic Context Management, Self-Configuring, Middleware,

Context Model

1 Introduction and Related Work

An important challenge in developing context aware systems is the dynamic nature of

their execution environment, which makes the process of context information

acquisition and representation extremely difficult to manage. During the context

information acquisition process, the sources of context information (e.g. sensors) can

fail or new context information sources may be identified. The context acquisition and

representation processes need to be reliable and fault tolerant. For example, a context

aware system cannot wait indefinitely for an answer from a temporary unavailable

context resource. On the other hand, many times the payoff for not taking into

consideration the new available context resources can be very high. To provide an

efficient context information management, it is necessary to introduce some degree of

autonomy for the context acquisition and representation processes.

Another important challenge in the context aware systems development is the task

of assigning the context management responsibility. Current approaches put the

system developers in charge with the context management process, making system

development extremely complicated. Our vision is that a third party context

management infrastructure must deal with the processes of context information

acquisition and representation.

This paper offers a solution for these challenges by introducing a self-configuring

middleware that uses a context management infrastructure to gather context

information from various context sources and generate a run-time context

representation. Therefore, the context management processes are transparent for the

context aware systems developers, allowing them to concentrate on designing and

implementing the system desired functionality.

The research related to the autonomic context management is focused on two

major directions (i) the development of models and tools for acquiring and formally

representing the system execution context and (ii) the development of models and

techniques for analyzing, processing and managing the context representation without

human intervention.

The most important research problems related to context information acquisition

are to identify the features defining the system execution context [1] and to define

models for capturing context features specific data [2]. In the domain literature [3, 4],

several system execution context features are considered such as: spatiotemporal

(time and location), ambiental and facility (the system devices and their capabilities),

user-system interaction, system internal events, system life cycle, etc. Regarding

context representation, generic models aiming at accurately describing the system

execution context in a programmatic manner are proposed. In [5], the authors propose

the use of key-value models to represent the set of context features and their

associated values. Markup and object oriented models [6, 7] are also used to structure

and represent the context information. In [8], context features are represented as

ontological concepts in design time and instantiated during run-time with sensor

captured values. The main drawback of these approaches is the lack of semantic

information encapsulated in the context representation which makes difficult the

process of inferring new context related knowledge. Our paper overcomes these

deficiencies by using the set-oriented and ontology based RAP context model [9] to

represent the context information in a programmatic manner. The set representations

of the RAP context model are used by the context management middleware to detect

the context changes while the ontology representation is used to infer new context

related information through reasoning algorithms.

In the context management research direction, the efforts are concentrated on

developing models and techniques for: (i) keeping the context representation

consistent with the real context and (ii) processing and analyzing the context

representation for inferring new context related knowledge and evaluate the context

changes. To ensure the consistency of context representation, models and tools that

allow for the automatic discovery, installation and configuration of new context

information sources are proposed. In [10], the authors describe models for capturing

and updating the context information based on the information type. Fournier [11]

defines reusable components for updating the context specific data. These

components provide stable communication channels for capturing and controlling

context specific data. In [12], the development of context guided behavioral models,

allowing the detection of only those context data variations that lead their behavior

modification, is discussed. The main disadvantage of these approaches is the lack of

efficiency for the context management process that is rather static and difficult to

adapt to context changes. There is a high demand for reducing the context model

management complexity while ensuring a higher tolerance and robustness, leading to

the consideration of the self-configuring autonomic computing paradigm [13]. The

specification and representation of configuration, discovery and integration

requirements of resource components have been identified as main research problems

[14]. In [15], a model for self-configuring the new added components based on

policies is proposed. The self-configuring policies are stored into a repository, which

is queried when a new component is added. In [16], the authors present an autonomic

context adaptive platform based on the closed loop control principle. The novelty of

this proposal consists in defining and using the concept of application-context

description to represent the context information. This description is frequently

updated and used for self-configuring and taking adapting decisions. For the context

processing and analyzing research direction, models and techniques that aim at

determining and evaluating the context changes are proposed. These models are

strongly correlated with the context representation model. In [17], fuzzy Petri nets are

used to describe context changing rules. Data obtained from sensors, together with

user profiles and requests represent the input data for the reasoning mechanism.

Context analyzing models based on reasoning and learning on the available context

information are presented in [19, 20]. Context changing rules can be described using

natural language [18] or first order logic and evaluated using reasoning engines.

The main contribution of our approach is the definition of a self-configuring

middleware targeting an efficient and autonomic context management. The

fundamental element of this middleware is our RAP context model which uses the

concepts of context Resources, Actors and Policies to formally represent specific

context data. The context model management infrastructure is implemented by using

BDI (Believe, Desire, Intention) agents [21] that generate and administrate the context

model artifacts at run time. The middleware self-configuring feature is implemented

by monitoring and evaluating the environment changes in order to keep updated the

context artifacts. The proposed middleware was tested and validated using our

Distributed Systems Research Laboratory [22] as a smart space infrastructure.

The rest of the paper is organized as follows: in Section 2, the middleware

architecture is presented; Section 3 details the self-configuring enhanced middleware;

Section 4 shows how the middleware is used to manage the context representation of

an intelligent laboratory environment while Section 5 concludes the paper and shows

the future work.

2 The Middleware Architecture

The middleware architecture defines three main layers (see Fig. 1): the acquisition

layer that captures the context information from real world contexts, the context

model layer that represents the context information in a machine interpretable manner

and the context model management infrastructure layer. In the following sections, we

detail each of the three middleware architectural layers.

Fig. 1. The middleware conceptual architecture

2.1 The Context Acquisition Layer

The context acquisition layer collects information from various context sources

(sensor, intelligent devices, etc.) and makes it available to the context model layer

(see Fig. 2.a) through a Context Acquisition API. To make sensor information visible

to the upper layers in an independent way, we have used the web services technology.

Each sensor has an attached web service for exposing its values. The structure of the

Context Acquisition API is presented in Fig. 2.b. The communication between a

sensor attached web service and the Context Acquisition API is managed by the

WSClient class. It provides methods that: (i) builds a SOAP request, (ii) sends the

request to the web service and (iii) waits for the sensor value response.

From middleware perspective, the context acquisition layer defines both push and

pull mechanisms for sensor information retrieval. The push mechanism uses event

listeners for gathering context data from sensors while the pull mechanism uses a

query based approach that allows the context data to be provided on demand. The pull

information retrieval mechanism is implemented in the SensorTools class by defining

a method that queries a specific web service to obtain the sensor value. For the push

mechanism, the Observer design pattern is used. A SensorWSReader instance must be

created first by specifying the URL of the web service and the time interval at which

the sensor data will be updated. The SensorWSReader instance also contains a list of

listeners that are notified when a sensor value has changed. The listeners are created

by the middleware upper layers by extending the AbstractSensorListener class. To

verify the sensor value, separate threads that continuously send requests to the web

service are created using the WSReaderThread.

a) b)

Fig. 2. (a) The context data retrieval flow and (b) the Context Acquisition API class diagram

2.2 The Context Model Layer

To represent the real world context in a programmatic manner, the RAP context

model is used. The RAP model represents the context information as a triple: C = <R,

A, P>, where R is the set of context resources that captures and /or processes context

information, A is the set of actors which interact with context resources in order to

satisfy their needs and P is the set of real world context related policies. The set of

context resources R is split in two disjunctive subsets: RE - the set of environment

context resources and RA - the set of actor context resources.

The accurate representation of the real world contexts is achieved by defining the

artifacts of (see Fig. 3a): specific context model CS, specific context model instance

CSI and context – actor instance CIa
t
.

The specific context model CS = <RS, AS, PS> maps the context model onto real

contexts and populates the context model sets with context specific actors, resources

and policies. A specific context model instance CSI
t
 = < RSI

t
, ASI

t
, PSI

t
> contains the

set of context resources with which the middleware interacts, together with their

values in a specific moment of time t. The context – actor instance CIa
t
= <Ra

t
, a, P

t
>

contains the set of context resources with which the actor can interact, together with

their values in a specific moment of time t. A context – actor instance represents the

projection of the specific context model instance onto a certain actor.

The RAP model also offers an ontological representation of the context model

artifacts, which allows for learning and reasoning processes in order to obtain context

knowledge (Fig. 3b). The relationships between the R, A and P context model

elements are represented in a general purpose context ontology core. The specific

context model concepts are represented as sub trees of the core ontology. A context

situation or a context instance is represented by the core ontology together with the

specific context model sub trees and their individuals in a specific moment of time.

a) b)

Fig. 3. The RAP context model context representation: (a) set-based and (b) ontology-based

The set-based and ontology-based context representations are equivalent and need

to be kept synchronized. The set-based context representation is used to evaluate the

conditions under which the context management agents should execute self-*

processes in order to enforce the autonomic properties at the middleware level. The

ontology-based model uses reasoning and learning processes for generating new

context knowledge.

2.3 The Context Model Management Infrastructure Layer

The context model management infrastructure layer is based on four cooperative BDI

type agents: Context Model Administering Agents, Context Interpreting Agents,

Request Processing Agents and Execution and Monitoring Agents.

The Context Model Administering Agent (CMA Agent) is the manager of the

specific context model. Its main goal is to synchronize RAP context model artifacts

with the real context. This agent is also responsible for the negotiating processes that

take place when an actor or resource is joining the context. The Context Interpreting

Agent (CI agent) semantically evaluates the information of a context instance and

identifies the context instance “meaning”. The Request Processing Agent (RP agent)

processes the actor requests. This agent identifies and generates the action plans that

must be executed for serving an incoming request. The RP agent uses the specific

context model instance to identify / generate the adequate plan to be executed by the

Execution and Monitoring Agent. The Execution and Monitoring Agent (EM agent)

executes the action plans received from the RP agent using the available services.

After mapping the action plans onto services, a plan orchestration is obtained and

executed using transactional principles.

The context management infrastructure agents are implemented using the Java

Agent Development Framework platform [23]. When the middleware is deployed, the

CMA agent is the first running agent. It instantiates the CI, RP and EM agents and

sends them the context representation.

3 Enhancing the Middleware with Self-Configuring Capabilities

The middleware context acquisition and representation processes need to be reliable

and fault tolerant because the context resources can fail or new resources may be

identified at run-time. Consequently, the context representation constructed by de

middleware needs to accurately reflect the real context. To provide an efficient, fault

tolerant and robust context management, the middleware is enhanced with self-

configuring properties.

The self-configuring property is enforced by monitoring the real world context to

detect context variations or conditions for which the context artifacts must be updated.

We have identified three causes that might generate context variation: (1) adding or

removing context elements (resources, actors or policies) to / from the context, (2)

actors’ mobility within the context and (3) changes of the resources property values

(mainly due to changing the sensors’ captured values). In the following sections we

discuss each of the context variation sources targeting to determine: (i) the context

variation degree and (ii) the triggering condition of the self-configuring process.

3.1 Context Variation Generated by Adding or Removing Context Elements

During the context data acquisition process, the sources of context data can fail or

randomly leave / join the context. These changes generate a context variation that is

detected by the context acquisition layer and sent to the CMA agent which updates

the RAP specific context model, according to the new real context. Next, we evaluate

the context variation degree generated by: (1) context resources ΔR, (2) context

policies ΔP and (3) context actors ΔA against the values of the associated defined

thresholds TR, TP, and TA

.

The context resources set variation ΔR is generated by adding or removing a

context resource r (sensor or actuator) to / from the real context. ΔR is calculated

using the set difference operation applied for two consecutive moments of time: t and

t+1, where t+1 represent the moment when the resource r became available. The same

reasoning pattern is applied when the resource r fails or becomes unavailable:

ΔR = {RE
t+1 ∖ RE

t
} ⋃ {RE

t ∖ RE
t+1

} (1)

 In formula (1) RE
t+1

\ RE
t

 contains the set of context resources that become

available at t+1 while RE
t

\ RE
t+1

contains the set of context resources that become

unavailable at t+1. If Card(ΔR) ≥ TR, the RAP specific context model is updated by

adding or removing the context resources contained in ΔR.

The variation of the policy set ΔP is generated by adding, removing or updating a

context policy. Using the same assumptions and conclusions as for context resources,

the policy set variation is calculated as:

ΔP = {P
t+1 ∖ P

t
} ⋃ {P

t ∖ P
t+1

} (2)

The variation of the actors set ΔA is generated by the actors that enter or leave the

context. Each context actor has an attached context resources set during its context

interactions. An actor features a large number of actor-context interaction patterns,

but only two of these patterns may determine the actor set variation: (i) the actor

enters the context and (ii) the actor leaves the context. The actor’s context variation is:

ΔA = {A
t+1 ∖ A

t
} ⋃ {A

t ∖ A
t+1

} ⋃ {RA
t ∖ RA

t +1
} ⋃ {RA

t+1
 ∖ RA

t
} (3)

Overall, the RAP model context variation ΔRAP is given by the union of all

context elements’ variations, as shown below:

 ΔRAP = ΔR ⋃ ΔA ⋃ ΔP

 Card(ΔRAP) = Card(ΔR) + Card(ΔA) + Card(ΔP)
(4)

The CMA agent starts the execution of the self-configuring process and updates the

context model when Card(ΔRAP) ≥ TSelf-Configuring where the self-configuring threshold

is defined as:

TSelf-Configuring = min(TR, TA, TP) (5)

3.2 Context Variation Generated by Actors Mobility

Due to their mobility, model actors are changing their context location and implicitly

the set of context resources with which they may interact. The CMA agent identifies

this variation and generates a new context-actor instance and updates the specific

context model instance. To evaluate the context variation generated by actors’

mobility we use the isotropic context space concept, as defined in [9]. A context

space is isotropic if and only if the set of context resources remains invariant to the

actors’ movement. Usually, a context space is non-isotropic, but it can be split into a

set of disjunctive isotropic context sub-space volumes, called Context Granules (CG).

For a given moment of time, an actor can be physically located in a single CG. As a

result, the space isotropy variation ΔIZ is non-zero only when an actor moves

between two CGs. The isotropy variation for a context actor is calculated as:

ΔIZa = {RCG
t+1 ∖ RCG

t
} ⋃ {RCG

t ∖ RCG
t+1

} (6)

The CMA agent continuously monitors the actors’ movement in the real context

and periodically evaluates the space isotropy variation. If for an actor, the space

isotropy variation is non-empty, then the self-configuring process executed by the

CMA agent updates the context-actor instance. It actually represents the specific

context model instance projection onto a certain actor:

CIa
t+1

= <Ra
t+1

, a, P
t+1

> | Ra
t+1

 = RCG
t+1

 (7)

The context variation ΔCAM, generated by all actors’ mobility in a context is:

ΔCAM = ⋃a є A ΔIZa (8)

3.3 Context Variation Generated by Changes of Resources Property Values

A context resource is a physical or virtual entity that generates and / or processes

context data. The resource properties, K(r), specify the set of relevant context data

that a resource can provide. For example, the set of context properties for a

Hot&Humidity sensor resource is K(Hot&Humidity) = {Temperature, Humidity}. To

evaluate the context variation generated by the changes in the resource property

values, we define a function Kval that associates the resource property to its value:

Kval(R) = {(k1,val1),…, (kn,valn)} | k1,…,kn є K(R) (9)

If the values captured by the Hot&Humidity sensor in a moment of time is 5

degree Celsius for temperature and 60%, for humidity, then

Kval(Hot&HumiditySensor) = {(Temperature, 5), (Humidity, 60%)}. CMA agent

calculates the context variation generated by changes of resource properties’ values

(ΔRPV) as presented in 10. As a result, a new specific context model instance is

created when Card(ΔRPV) ≥ 0.

ΔRPV = Kval(R
t+1

) - Kval(R
t
)={(k1,val1

t+1
- val1

t
),…,(kn,valn

t+1
-valn

t
)} (10)

3.4 The Self-Configuring Algorithm

The CMA agent executes the self-configuring algorithm in order to keep the

context model artifacts synchronized with the real context (see Fig. 4). The CMA

agent periodically evaluates the context changes. When a significant context variation

is determined, the context model ontology artifacts are updated using the

updateOntologyModel (owlModel, CS
t+1

, CIa
t+1

, CSI
t+1

) method.

Fig. 4. The CMA agent self-configuring algorithm

4 Case Study and Results

For the case study we have considered a real context represented by our Distributed

System Research Laboratory (DSRL). In the laboratory the students are marked and

identified by using RFID tags and readers. The students interact with the smart

laboratory by means of wireless capable PDAs on which different laboratory provided

services are executed (for example: submit homework services, lesson hints services,

print services, information retrieval services, etc.). A sensor network captures

information regarding students’ location and ambiental information such as

temperature or humidity. In the laboratory, a set of policies like “the temperature

should be 22 degrees Celsius” or “the loud upper limit is 80 dB” should be respected.

The DSRL infrastructure contains a set of sensors through which context data is

collected: two Hot&Humidity sensors that capture the air humidity and the

temperature, four Orient sensors placed in the upper four corners of the laboratory

that measure the orientation on a single axis, one Loud sensor that detects sound

loudness level and one Far Reach sensor that measures distances (see Fig. 5). The

sensors are connected through a Wi-microSystem wireless network from Infusion

Systems [24]. The middleware is deployed on an IBM Blade-based technology

physical server. The IBM Blade technology was chosen because its maintenance

software offers autonomic features like self-configuring of its hardware resources.

The context related data captured by sensors is collected through the Wi-microSystem

that has an I-CubeX WimicroDig analogue to digital encoder as its main part. The

WimicroDig is a configurable hardware device that encodes up to 8 analogue sensor

signals to MIDI messages which are real-time wirelessly transmitted, through

Bluetooth waves, to the server for analysis and / or control purposes. The Bluetooth

receiver located on the server is mapped as a Virtual Serial Port (VSP).

Fig. 5. The DSRL infrastructure

In order to read/write to/from the VSP we used two sensor manufacture

applications: (i) BlueMIDI which converts the Bluetooth waves received on the VSP

into MIDI messages and (ii) MIDI Yoke which creates pairs of input/output MIDI

ports and associates the output MIDI port with the VSP. The MIDI message

information is extracted using the Microsoft Windows API multimedia operations and

published through web services (see Fig. 6).

Fig. 6. The context information data path form sensors to their attached web services

The CMA agent periodically evaluates the context information changes at a

predefined time interval (we use 1 second time intervals for this purpose). If

significant variations are detected, the context model artifacts are created or updated

using the self-configuring algorithm presented in Section 3.4. When the middleware is

deployed and starts its execution (t=0) there are no context model artifacts constructed

yet, i.e. the R, A and P sets of the RAP context model are empty. After one second

(t=1), when two students John and Mary enter the lab, the CMA agent receives the

updated context information from the Context Acquisition Layer and calculates the

context elements variation ∆R, ∆P and ∆A as presented in Fig. 7a. By default the self-

configuring thresholds are set to the value 1: TSelf-Conf = TR = TA = TP = 1. As a result

of evaluating the context variation at t=1, the CMA agent executes the self –

configuring algorithm which adds new concepts and updates the context model

artifacts ontology. The new added concepts (see Fig. 7a) originate from the context

elements set variations ∆R, ∆P and ∆A. To test the middleware self-configuring

capabilities we have considered that after 60 seconds the following context changes

have occurred: (i) student John leaves the laboratory, (ii) Orientation Sensor1 and

OrientationSensor4 are disabled and (iii) LoudSensor is disabled. The CMA agent

calculates the variation in the new context at t = 61 (Fig. 7b), executes the self-

configuring algorithm and updates accordingly the context ontology.

a) b)

Fig. 7. DSRL context variation at: (a) t=1 and (b) t=61

To test the scalability of our self-configuring algorithm we have implemented an

application that can simulate the behavior of a large number of sensors that randomly

generate context data at fixed time periods. The results show that the self-configuring

algorithm implemented by CMA agent can generate, synchronize and update the

context model artifacts that change their values simultaneously in a reasonable time

for up to 20 sensors (Fig. 8). However, it is possible that sensor values change much

faster than the CMA agent is capable of synchronizing the contexts representation,

thus requiring a higher ticker interval value.

Fig. 8. The self-configuring algorithm scalability results

To assess the overhead of the proposed self-configuring algorithm, a simulation

editor was developed in which complex test cases can be described by generating sets

of (simulation time, sensor value) associations. We evaluated the memory and

processor loading when executing the self-configuring algorithm to update the

specific context model instance due to sensor values changes. Using the simulator, we

tested our middleware with 100 sensors changing their values every 100ms for the

first test case and every 2000ms for the second test case. Even if the sensor values

change rate is much higher in the first test case than in the second test case, the

memory and processor loading did not show major differences (see Fig. 9).

Fig. 9. The self-configuring algorithm CPU and memory overloading with 100 sensors at (a)
t2=2000 ms and (b) t1=100 ms

5 Conclusions

This paper addresses the problem of managing the context information acquisition

and representation processes in a reliable and fault tolerant manner by using a self-

configuring middleware. The middleware defines an agent based context management

infrastructure to gather context data from sensors and generate a RAP model context

representation at run-time. The self-configuring property is enforced at the

middleware level by monitoring the context in order to detect context variations or

conditions for which the context model artifacts must be created / updated. The

evaluation results are promising showing that the self-configuring algorithm can

manage in a reasonable time up 20 sensors which change their values simultaneously

at a high sampling rate. Also we have proved that the memory and processor overload

induced by executing the self-configuring algorithm is negligible.

References

1. Wang K.: Context awareness and adaptation in mobile learning. In: Proc. of the 2nd
IEEE Int. Wshop. on Wireless and Mobile Tech. in Education, pp. 154-158, ISBN:0-
7695-1989-X (2004)

2. Yu Z., Zhou X., Park J.H.: iMuseum: A scalable context-aware intelligent museum
system. Computer Communications, Volume 31, Issue 18, pp. 4376-4382 (2008)

3. Pareschi L.: Composition and Generalization of Context Datafor Privacy Preservation.
6th IEEE Int. Conf. on Perv. Comp. and Comm., ISBN: 0-7695-3113-X, 429-433 (2008)

4. Grossniklauss M.: Context Aware Data Management, 1st ed. VDM Verlag, ISBN 978-3-
8364-2938-2 (2007)

5. Anderson K., Hansen F.: Templates and queries in contextual hypermedia. In: Proc. of
the 17th Conf. on Hypertext and hypermedia, ISBN:1-59593-417-0, pp. 99 – 110 (2006)

6. Raz D., Juhola A. T.: Fast and Efficient Context-Aware Services. Wiley Series on
Comm. Networking & Distributed Systems, ISBN-13: 978-0470016688, pp. 5-25 (2006)

7. Hofer T.: Context-awareness on mobile devices – the hydrogen approach. In: Proc. of the
36th Hawaii Int. Conf. on System Sciences, USA, ISBN:0-7695-1874-5, pp. 292 (2003)

8. Cafezeiro I., Hermann E.: Ontology and Context. In: Proc. Of the 6th Annual IEEE Int.
Conf. on Pervasive Comp. and Comm., ISBN: 978-0-7695-3113-7, pp. 417-422 (2008)

9. Salomie I., Cioara T., Anghel I.: RAP-A Basic Context Awareness Model. In: Proc. Of

The 4th IEEE Int. Conf. on Intelligent Comp Comm. and Proc., ISBN: 978-1-4244-

2673-7, pp. 315-318, Cluj-Napoca, Romania (2008)

10. Bellavista P.: Mobile Computing Middleware for Location and Context-Aware Internet

Data Services. ACM Trans. on Internet Tech., ISSN:1533-5399, pp. 356 - 380 (2006)

11. Fournier D., Mokhtar S.B.: Towards Ad hoc Contextual Services for Pervasive

Computing. In: IEEE Middleware for S.O.C., pp 36 - 41, ISBN:1-59593-425-1 (2006)

12. Spanoudakis G., Mahbub K.: A Platform for Context Aware Runtime Web Service

Discovery. In: IEEE Int. Conf. on Web Services, pp 233-240, USA (2007)

13. Calinescu R.: Model-Driven Autonomic Architecture. In: Proc. of the Fourth

International Conference on Autonomic Computing, ISBN: 0-7695-2779-5, pp. 9 (2007)

14. Patouni E., Alonistioti N.: A Framework for the Deployment of Self-Managing and Self-

Configuring Components in Autonomic Environments. In: Proc. of the Int. Symp. on a

World of Wireless, Mobile and Multimedia, ISBN:0-7695-2593-8, pp. 484-489 (2006)

15. Bahati R.: Using Policies to Drive Autonomic Management. In: Proc. of the Int. Symp.

on a World of Wireless, Mob. and Multimedia, ISBN:0-7695-2593-8, pp. 475-479 (2006)

16. Cremene M, Riveill M.: Autonomic Adaptation based on Service-Context Adequacy

Determination. In: Electronic Notes in Theoretical Comp. Sc., ISSN:1571-0661, pp. 35-

50, Elsevier (2007)
17. Huaifeng Q.: Integrating Context Aware with Sensornet. In: Proc. of 1st Int Conf. on

Semantics, Knowledge, Grid, ISBN:0-7695-2534-2, Beijing, China (2006)

18. Bernstein A.: Querying the Semantic Web with Ginseng:A Guided Input Natural
Language Search Engine. 15th Workshop. on Inf. Tech. and Syst., pp. 112-126 (2005)

19. Sirin E., Parsia B.: Pellet: A practical OWL-DL reasoner. In: Web Semantics: Science,
Services and Agents on the World Wide Web, Vol. 5, No. 2, pp. 51-53, Elsevier (2007)

20. Amoui M., Salehie M.: Adaptive Action Selection in Autonomic Software Using
Reinforcement Learning. In: Proc. of the 4th Int. Conf. on Aut. and Autonomous Sys.,
pp. 175-181, ISBN 0-7695-3093-1 (2008)

21. Thangarajah J., Padgham L.: Representation and reasoning for goals in BDI agents. In:

Proc. of the 25 th Australasian Conf. on Comp. Sci., pp. 259-265, ISSN:1445-1336 (2002)

22. Distributed Systems Research Laboratory, dsrl.coned.utcluj.ro

23. Jade-Java Agent DEvelopment Framework, http://jade.tilab.com

24. Infusion Systems Ltd., http://www.infusionsystems.com

