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Abstract. This paper proposes a self-configuring middleware that uses a 

context management infrastructure to gather context data from various context 

sources and generate/update a run-time context representation. The high 

demand for reducing the context representation management complexity and 

ensuring a high tolerance and robustness, lead us to considering the self-

configuring autonomic computing paradigm for the context acquisition and 

representation processes. The middleware defines three main layers: the 

acquisition layer that captures the context data from real world contexts, the 

context model layer that represents the context data in a programmatic manner 

and the context model management infrastructure layer. The middleware 

continuously monitors the real context to detect context variations or conditions 

for updating the context representation. The proposed middleware was tested 

and validated within the premises of our Distributed Systems Research 

Laboratory smart environment.  

Keywords: Autonomic Context Management, Self-Configuring, Middleware, 
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1   Introduction and Related Work 

An important challenge in developing context aware systems is the dynamic nature of 

their execution environment, which makes the process of context information 

acquisition and representation extremely difficult to manage. During the context 

information acquisition process, the sources of context information (e.g. sensors) can 

fail or new context information sources may be identified. The context acquisition and 

representation processes need to be reliable and fault tolerant.  For example, a context 

aware system cannot wait indefinitely for an answer from a temporary unavailable 

context resource. On the other hand, many times the payoff for not taking into 

consideration the new available context resources can be very high. To provide an 

efficient context information management, it is necessary to introduce some degree of 

autonomy for the context acquisition and representation processes.  

Another important challenge in the context aware systems development is the task 

of assigning the context management responsibility. Current approaches put the 

system developers in charge with the context management process, making system 



development extremely complicated. Our vision is that a third party context 

management infrastructure must deal with the processes of context information 

acquisition and representation. 

This paper offers a solution for these challenges by introducing a self-configuring 

middleware that uses a context management infrastructure to gather context 

information from various context sources and generate a run-time context 

representation. Therefore, the context management processes are transparent for the 

context aware systems developers, allowing them to concentrate on designing and 

implementing the system desired functionality.  

The research related to the autonomic context management is focused on two 

major directions (i) the development of models and tools for acquiring and formally 

representing the system execution context and (ii) the development of models and 

techniques for analyzing, processing and managing the context representation without 

human intervention.  

The most important research problems related to context information acquisition 

are to identify the features defining the system execution context [1] and to define 

models for capturing context features specific data [2]. In the domain literature [3, 4], 

several system execution context features are considered such as: spatiotemporal 

(time and location), ambiental and facility (the system devices and their capabilities), 

user-system interaction, system internal events, system life cycle, etc. Regarding 

context representation, generic models aiming at accurately describing the system 

execution context in a programmatic manner are proposed. In [5], the authors propose 

the use of key-value models to represent the set of context features and their 

associated values. Markup and object oriented models [6, 7] are also used to structure 

and represent the context information. In [8], context features are represented as 

ontological concepts in design time and instantiated during run-time with sensor 

captured values. The main drawback of these approaches is the lack of semantic 

information encapsulated in the context representation which makes difficult the 

process of inferring new context related knowledge. Our paper overcomes these 

deficiencies by using the set-oriented and ontology based RAP context model [9] to 

represent the context information in a programmatic manner. The set representations 

of the RAP context model are used by the context management middleware to detect 

the context changes while the ontology representation is used to infer new context 

related information through reasoning algorithms. 

In the context management research direction, the efforts are concentrated on 

developing models and techniques for: (i) keeping the context representation 

consistent with the real context and (ii) processing and analyzing the context 

representation for inferring new context related knowledge and evaluate the context 

changes. To ensure the consistency of context representation, models and tools that 

allow for the automatic discovery, installation and configuration of new context 

information sources are proposed. In [10], the authors describe models for capturing 

and updating the context information based on the information type. Fournier [11] 

defines reusable components for updating the context specific data. These 

components provide stable communication channels for capturing and controlling 

context specific data. In [12], the development of context guided behavioral models, 

allowing the detection of only those context data variations that lead their behavior 

modification, is discussed. The main disadvantage of these approaches is the lack of 



efficiency for the context management process that is rather static and difficult to 

adapt to context changes. There is a high demand for reducing the context model 

management complexity while ensuring a higher tolerance and robustness, leading to 

the consideration of the self-configuring autonomic computing paradigm [13]. The 

specification and representation of configuration, discovery and integration 

requirements of resource components have been identified as main research problems 

[14]. In [15], a model for self-configuring the new added components based on 

policies is proposed. The self-configuring policies are stored into a repository, which 

is queried when a new component is added. In [16], the authors present an autonomic 

context adaptive platform based on the closed loop control principle. The novelty of 

this proposal consists in defining and using the concept of application-context 

description to represent the context information. This description is frequently 

updated and used for self-configuring and taking adapting decisions.  For the context 

processing and analyzing research direction, models and techniques that aim at 

determining and evaluating the context changes are proposed. These models are 

strongly correlated with the context representation model. In [17], fuzzy Petri nets are 

used to describe context changing rules. Data obtained from sensors, together with 

user profiles and requests represent the input data for the reasoning mechanism. 

Context analyzing models based on reasoning and learning on the available context 

information are presented in [19, 20]. Context changing rules can be described using 

natural language [18] or first order logic and evaluated using reasoning engines.  

The main contribution of our approach is the definition of a self-configuring 

middleware targeting an efficient and autonomic context management. The 

fundamental element of this middleware is our RAP context model which uses the 

concepts of context Resources, Actors and Policies to formally represent specific 

context data. The context model management infrastructure is implemented by using 

BDI (Believe, Desire, Intention) agents [21] that generate and administrate the context 

model artifacts at run time. The middleware self-configuring feature is implemented 

by monitoring and evaluating the environment changes in order to keep updated the 

context artifacts. The proposed middleware was tested and validated using our 

Distributed Systems Research Laboratory [22] as a smart space infrastructure. 

The rest of the paper is organized as follows: in Section 2, the middleware 

architecture is presented; Section 3 details the self-configuring enhanced middleware; 

Section 4 shows how the middleware is used to manage the context representation of 

an intelligent laboratory environment while Section 5 concludes the paper and shows 

the future work. 

2   The Middleware Architecture  

The middleware architecture defines three main layers (see Fig. 1): the acquisition 

layer that captures the context information from real world contexts, the context 

model layer that represents the context information in a machine interpretable manner 

and the context model management infrastructure layer. In the following sections, we 

detail each of the three middleware architectural layers. 

 



 

Fig. 1. The middleware conceptual architecture 

2.1   The Context Acquisition Layer  

The context acquisition layer collects information from various context sources 

(sensor, intelligent devices, etc.) and makes it available to the context model layer 

(see Fig. 2.a) through a Context Acquisition API. To make sensor information visible 

to the upper layers in an independent way, we have used the web services technology. 

Each sensor has an attached web service for exposing its values. The structure of the 

Context Acquisition API is presented in Fig. 2.b. The communication between a 

sensor attached web service and the Context Acquisition API is managed by the 

WSClient class. It provides methods that: (i) builds a SOAP request, (ii) sends the 

request to the web service and (iii) waits for the sensor value response.  

From middleware perspective, the context acquisition layer defines both push and 

pull mechanisms for sensor information retrieval. The push mechanism uses event 

listeners for gathering context data from sensors while the pull mechanism uses a 

query based approach that allows the context data to be provided on demand. The pull 

information retrieval mechanism is implemented in the SensorTools class by defining 

a method that queries a specific web service to obtain the sensor value. For the push 

mechanism, the Observer design pattern is used. A SensorWSReader instance must be 

created first by specifying the URL of the web service and the time interval at which 

the sensor data will be updated. The SensorWSReader instance also contains a list of 

listeners that are notified when a sensor value has changed. The listeners are created 

by the middleware upper layers by extending the AbstractSensorListener class. To 

verify the sensor value, separate threads that continuously send requests to the web 

service are created using the WSReaderThread. 
 



    
a)                                                                     b)                   

Fig. 2. (a) The context data retrieval flow and (b) the Context Acquisition API class diagram 

2.2   The Context Model Layer 

To represent the real world context in a programmatic manner, the RAP context 

model is used. The RAP model represents the context information as a triple: C = <R, 

A, P>, where R is the set of context resources that captures and /or processes context 

information, A is the set of actors which interact with context resources in order to 

satisfy their needs and P is the set of real world context related policies. The set of 

context resources R is split in two disjunctive subsets: RE - the set of environment 

context resources and RA - the set of actor context resources. 

The accurate representation of the real world contexts is achieved by defining the 

artifacts of (see Fig. 3a): specific context model CS, specific context model instance 

CSI and context – actor instance CIa
t
. 

The specific context model CS = <RS, AS, PS> maps the context model onto real 

contexts and populates the context model sets with context specific actors, resources 

and policies.  A specific context model instance CSI
t
  = < RSI

t
, ASI

t
, PSI

t 
> contains the 

set of context resources with which the middleware interacts, together with their 

values in a specific moment of time t. The context – actor instance CIa
t 
= <Ra

t
, a, P

t
> 

contains the set of context resources with which the actor can interact, together with 

their values in a specific moment of time t.  A context – actor instance represents the 

projection of the specific context model instance onto a certain actor. 

The RAP model also offers an ontological representation of the context model 

artifacts, which allows for learning and reasoning processes in order to obtain context 

knowledge (Fig. 3b). The relationships between the R, A and P context model 

elements are represented in a general purpose context ontology core. The specific 

context model concepts are represented as sub trees of the core ontology. A context 

situation or a context instance is represented by the core ontology together with the 

specific context model sub trees and their individuals in a specific moment of time. 



 

        
a)                                                                     b)                   

Fig. 3. The RAP context model context representation: (a) set-based and (b) ontology-based 

The set-based and ontology-based context representations are equivalent and need 

to be kept synchronized. The set-based context representation is used to evaluate the 

conditions under which the context management agents should execute self-* 

processes in order to enforce the autonomic properties at the middleware level. The 

ontology-based model uses reasoning and learning processes for generating new 

context knowledge. 

2.3   The Context Model Management Infrastructure Layer 

The context model management infrastructure layer is based on four cooperative BDI 

type agents:  Context Model Administering Agents, Context Interpreting Agents, 

Request Processing Agents and Execution and Monitoring Agents. 

The Context Model Administering Agent (CMA Agent) is the manager of the 

specific context model. Its main goal is to synchronize RAP context model artifacts 

with the real context. This agent is also responsible for the negotiating processes that 

take place when an actor or resource is joining the context. The Context Interpreting 

Agent (CI agent) semantically evaluates the information of a context instance and 

identifies the context instance “meaning”. The Request Processing Agent (RP agent) 

processes the actor requests. This agent identifies and generates the action plans that 

must be executed for serving an incoming request. The RP agent uses the specific 

context model instance to identify / generate the adequate plan to be executed by the 

Execution and Monitoring Agent. The Execution and Monitoring Agent (EM agent) 

executes the action plans received from the RP agent using the available services. 

After mapping the action plans onto services, a plan orchestration is obtained and 

executed using transactional principles. 

The context management infrastructure agents are implemented using the Java 

Agent Development Framework platform [23]. When the middleware is deployed, the 

CMA agent is the first running agent. It instantiates the CI, RP and EM agents and 

sends them the context representation.  



3   Enhancing the Middleware with Self-Configuring Capabilities 

The middleware context acquisition and representation processes need to be reliable 

and fault tolerant because the context resources can fail or new resources may be 

identified at run-time. Consequently, the context representation constructed by de 

middleware needs to accurately reflect the real context. To provide an efficient, fault 

tolerant and robust context management, the middleware is enhanced with self-

configuring properties.  

The self-configuring property is enforced by monitoring the real world context to 

detect context variations or conditions for which the context artifacts must be updated. 

We have identified three causes that might generate context variation: (1) adding or 

removing context elements (resources, actors or policies) to / from the context, (2) 

actors’ mobility within the context and (3) changes of the resources property values 

(mainly due to changing the sensors’ captured values). In the following sections we 

discuss each of the context variation sources targeting to determine: (i) the context 

variation degree and (ii) the triggering condition of the self-configuring process. 

3.1   Context Variation Generated by Adding or Removing Context Elements 

During the context data acquisition process, the sources of context data can fail or 

randomly leave / join the context. These changes generate a context variation that is 

detected by the context acquisition layer and sent to the CMA agent which updates 

the RAP specific context model, according to the new real context. Next, we evaluate 

the context variation degree generated by: (1) context resources ΔR, (2) context 

policies ΔP and (3) context actors ΔA against the values of the associated defined 

thresholds TR, TP, and TA
 
. 

The context resources set variation ΔR is generated by adding or removing a 

context resource r (sensor or actuator) to / from the real context. ΔR is calculated 

using the set difference operation applied for two consecutive moments of time: t and 

t+1, where t+1 represent the moment when the resource r became available. The same 

reasoning pattern is applied when the resource r fails or becomes unavailable: 

 

ΔR = {RE
t+1 ∖ RE

t
} ⋃ {RE

t ∖ RE
t+1

}  (1) 

 

 In formula (1) RE
t+1 

\ RE
t

 
 contains the set of context resources that become 

available at t+1 while RE
t 

\ RE
t+1

 
contains the set of context resources that become 

unavailable at t+1. If Card(ΔR) ≥ TR, the RAP specific context model is updated by 

adding or removing the context resources contained in ΔR. 

The variation of the policy set ΔP is generated by adding, removing or updating a 

context policy. Using the same assumptions and conclusions as for context resources, 

the policy set variation is calculated as: 

 

ΔP = {P
t+1 ∖  P

t
} ⋃ {P

t ∖  P
t+1

}  (2) 



The variation of the actors set ΔA is generated by the actors that enter or leave the 

context. Each context actor has an attached context resources set during its context 

interactions. An actor features a large number of actor-context interaction patterns, 

but only two of these patterns may determine the actor set variation: (i) the actor 

enters the context and (ii) the actor leaves the context. The actor’s context variation is:  

 

ΔA = {A
t+1 ∖ A

t
} ⋃ {A

t  ∖ A
t+1

} ⋃ {RA
t ∖ RA

t +1
} ⋃  {RA

t+1
 ∖ RA

t
} (3) 

 

Overall, the RAP model context variation ΔRAP is given by the union of all 

context elements’ variations, as shown below: 

 

                     ΔRAP = ΔR ⋃ ΔA ⋃ ΔP                                     

  Card(ΔRAP) = Card(ΔR) + Card(ΔA) + Card(ΔP) 
(4) 

 

 

The CMA agent starts the execution of the self-configuring process and updates the 

context model when Card(ΔRAP) ≥ TSelf-Configuring where the self-configuring threshold 

is defined as: 

 

TSelf-Configuring = min(TR, TA, TP) (5) 

3.2   Context Variation Generated by Actors Mobility  

Due to their mobility, model actors are changing their context location and implicitly 

the set of context resources with which they may interact. The CMA agent identifies 

this variation and generates a new context-actor instance and updates the specific 

context model instance. To evaluate the context variation generated by actors’ 

mobility we use the isotropic context space concept, as defined in [9]. A context 

space is isotropic if and only if the set of context resources remains invariant to the 

actors’ movement. Usually, a context space is non-isotropic, but it can be split into a 

set of disjunctive isotropic context sub-space volumes, called Context Granules (CG). 

For a given moment of time, an actor can be physically located in a single CG. As a 

result, the space isotropy variation  ΔIZ  is non-zero only when an actor moves 

between two CGs. The isotropy variation for a context actor is calculated as: 

 

ΔIZa  = {RCG
t+1  ∖ RCG

t
} ⋃ {RCG

t  ∖ RCG
t+1

} (6) 

 

The CMA agent continuously monitors the actors’ movement in the real context 

and periodically evaluates the space isotropy variation. If for an actor, the space 

isotropy variation is non-empty, then the self-configuring process executed by the 

CMA agent updates the context-actor instance. It actually represents the specific 

context model instance projection onto a certain actor: 

 



CIa
t+1 

= <Ra
t+1

, a, P
t+1

> | Ra
t+1

 = RCG
t+1

 (7) 

 

The context variation ΔCAM, generated by all actors’ mobility in a context is: 

 

ΔCAM = ⋃a є A ΔIZa (8) 

3.3   Context Variation Generated by Changes of Resources Property Values  

A context resource is a physical or virtual entity that generates and / or processes 

context data. The resource properties, K(r), specify the set of relevant context data 

that a resource can provide. For example, the set of context properties for a 

Hot&Humidity sensor resource is K(Hot&Humidity) = {Temperature, Humidity}. To 

evaluate the context variation generated by the changes in the resource property 

values, we define a function Kval that associates the resource property to its value: 

 

Kval(R) = {(k1,val1),…, (kn,valn)} | k1,…,kn є K(R) (9) 

 

If the values captured by the Hot&Humidity sensor in a moment of time is 5 

degree Celsius for temperature and 60%, for humidity, then 

Kval(Hot&HumiditySensor) = {(Temperature, 5), (Humidity, 60%)}. CMA agent 

calculates the context variation generated by changes of resource properties’ values 

(ΔRPV) as presented in 10. As a result, a new specific context model instance is 

created when Card(ΔRPV) ≥ 0. 

 

ΔRPV = Kval(R
t+1

) - Kval(R
t
)={(k1,val1

t+1
- val1

t
),…,(kn,valn

t+1
-valn

t
)} (10) 

3.4   The Self-Configuring Algorithm 

The CMA agent executes the self-configuring algorithm in order to keep the 

context model artifacts synchronized with the real context (see Fig. 4). The CMA 

agent periodically evaluates the context changes. When a significant context variation 

is determined, the context model ontology artifacts are updated using the 

updateOntologyModel (owlModel, CS
t+1

, CIa
t+1

, CSI
t+1

) method. 

 



 
 

Fig. 4. The CMA agent self-configuring algorithm 

4   Case Study and Results 

For the case study we have considered a real context represented by our Distributed 

System Research Laboratory (DSRL). In the laboratory the students are marked and 

identified by using RFID tags and readers. The students interact with the smart 

laboratory by means of wireless capable PDAs on which different laboratory provided 

services are executed (for example: submit homework services, lesson hints services, 

print services, information retrieval services, etc.). A sensor network captures 

information regarding students’ location and ambiental information such as 

temperature or humidity. In the laboratory, a set of policies like “the temperature 

should be 22 degrees Celsius” or “the loud upper limit is 80 dB” should be respected. 

The DSRL infrastructure contains a set of sensors through which context data is 

collected: two Hot&Humidity sensors that capture the air humidity and the 

temperature, four Orient sensors placed in the upper four corners of the laboratory 

that measure the orientation on a single axis, one Loud sensor that detects sound 

loudness level and one Far Reach sensor that measures distances (see Fig. 5). The 

sensors are connected through a Wi-microSystem wireless network from Infusion 

Systems [24]. The middleware is deployed on an IBM Blade-based technology 

physical server. The IBM Blade technology was chosen because its maintenance 

software offers autonomic features like self-configuring of its hardware resources. 



The context related data captured by sensors is collected through the Wi-microSystem 

that has an I-CubeX WimicroDig analogue to digital encoder as its main part. The 

WimicroDig is a configurable hardware device that encodes up to 8 analogue sensor 

signals to MIDI messages which are real-time wirelessly transmitted, through 

Bluetooth waves, to the server for analysis and / or control purposes. The Bluetooth 

receiver located on the server is mapped as a Virtual Serial Port (VSP). 

 

 

Fig. 5. The DSRL infrastructure 

In order to read/write to/from the VSP we used two sensor manufacture 

applications: (i) BlueMIDI which converts the Bluetooth waves received on the VSP 

into MIDI messages and (ii) MIDI Yoke which creates pairs of input/output MIDI 

ports and associates the output MIDI port with the VSP. The MIDI message 

information is extracted using the Microsoft Windows API multimedia operations and 

published through web services (see Fig. 6). 
 

 
Fig. 6. The context information data path form sensors to their attached web services 

The CMA agent periodically evaluates the context information changes at a 

predefined time interval (we use 1 second time intervals for this purpose). If 

significant variations are detected, the context model artifacts are created or updated 

using the self-configuring algorithm presented in Section 3.4. When the middleware is 

deployed and starts its execution (t=0) there are no context model artifacts constructed 

yet, i.e. the R, A and P sets of the RAP context model are empty. After one second 

(t=1), when two students John and Mary enter the lab, the CMA agent receives the 

updated context information from the Context Acquisition Layer and calculates the 

context elements variation ∆R, ∆P and ∆A as presented in Fig. 7a. By default the self-

configuring thresholds are set to the value 1:  TSelf-Conf = TR = TA = TP = 1. As a result 

of evaluating the context variation at t=1, the CMA agent executes the self – 



configuring algorithm which adds new concepts and updates the context model 

artifacts ontology. The new added concepts (see Fig. 7a) originate from the context 

elements set variations ∆R, ∆P and ∆A. To test the middleware self-configuring 

capabilities we have considered that after 60 seconds the following context changes 

have occurred: (i) student John leaves the laboratory, (ii) Orientation Sensor1 and 

OrientationSensor4 are disabled and (iii) LoudSensor is disabled.  The CMA agent 

calculates the variation in the new context at t = 61 (Fig. 7b), executes the self-

configuring algorithm and updates accordingly the context ontology. 

 

        
a)                                                                     b)                   

Fig. 7. DSRL context variation at: (a) t=1 and (b) t=61 

To test the scalability of our self-configuring algorithm we have implemented an 

application that can simulate the behavior of a large number of sensors that randomly 

generate context data at fixed time periods. The results show that the self-configuring 

algorithm implemented by CMA agent can generate, synchronize and update the 

context model artifacts that change their values simultaneously in a reasonable time 

for up to 20 sensors (Fig. 8). However, it is possible that sensor values change much 

faster than the CMA agent is capable of synchronizing the contexts representation, 

thus requiring a higher ticker interval value.  

 

 

Fig. 8. The self-configuring algorithm scalability results 

 

To assess the overhead of the proposed self-configuring algorithm, a simulation 

editor was developed in which complex test cases can be described by generating sets 

of (simulation time, sensor value) associations. We evaluated the memory and 



processor loading when executing the self-configuring algorithm to update the 

specific context model instance due to sensor values changes. Using the simulator, we 

tested our middleware with 100 sensors changing their values every 100ms for the 

first test case and every 2000ms for the second test case. Even if the sensor values 

change rate is much higher in the first test case than in the second test case, the 

memory and processor loading did not show major differences (see Fig. 9). 

 

 
Fig. 9. The self-configuring algorithm CPU and memory overloading with 100 sensors at (a) 
t2=2000 ms and (b) t1=100 ms 

5   Conclusions 

This paper addresses the problem of managing the context information acquisition 

and representation processes in a reliable and fault tolerant manner by using a self-

configuring middleware. The middleware defines an agent based context management 

infrastructure to gather context data from sensors and generate a RAP model context 

representation at run-time. The self-configuring property is enforced at the 

middleware level by monitoring the context in order to detect context variations or 

conditions for which the context model artifacts must be created / updated. The 

evaluation results are promising showing that the self-configuring algorithm can 

manage in a reasonable time up 20 sensors which change their values simultaneously 

at a high sampling rate. Also we have proved that the memory and processor overload 

induced by executing the self-configuring algorithm is negligible.  
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