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Abstract. This paper addresses two fundamental research problems in the domain of context aware autonomic systems: 

the development of a generic context model that can be used to represent general purpose contexts in a system 
interpretable way and the autonomic context model management. The proposed context model uses two equivalent and 
synchronized ways of representing the context: a set based representation and an ontology based representation. The set 
based representation is used to evaluate the conditions under which the self-* processes should be executed in order to 
enforce the autonomic properties. The ontology representation is used by context aware applications for reasoning and 
learning purposes. The increasing complexity of execution environments of the context aware systems and the  difficulties 
of their management have headed us towards the necessity of defining and integrating the self-configuring autonomic 
paradigm in the context model management process. The self–configuring property is enforced by monitoring the real  
world context in order to detect context variations or conditions for which the context artifacts must be updated. 

 

Categories and Subject Descriptors 

H.1.1 [Models and Principles]: Systems and Information Theory - general systems theory, information theory.  

General Terms 
Algorithms; Management; Design; Reliability; Languages; Theory. 

Keywords: Self-Configuring; Pervasive Middleware; Context Awareness; Autonomic Computing; 
 
 

1. Introduction and related work 
 
An important challenge in developing context aware systems is the dynamic nature of their execution environment which 
makes the processes of context information acquisition and representation extremely difficult to manage. During the context 
information acquisition process, the sources of context information (e.g. sensors) can fail or new context information sources 
may be identified. The context acquisition and representation processes need to be reliable and fault tolerant.  For example,  a 
context aware system cannot wait indefinitely for an answer from a temporary unavailable context resource. On the other 
hand, many times the payoff for not taking into consideration the new available context resources can be very high. To 
provide an efficient context information management, it is necessary to introduce some degree of autonomy for the context 
acquisition and representation processes. 
 
The objective of this paper is to define a self-configuring context model that accurately captures and  represents general 
purpose real contexts, targeting the development of context aware autonomic systems.  The researches efforts in the context 
aware autonomic systems domain are concentrated on two directions: (i) the development of generic context models that can 
be used to represent the system environment and (ii) the development and integration of context aware systems self-* 
enhanced components. 
 
In the real world context modeling research direction many approaches have been proposed. In [Rarau, 2006] the concept of 
multi-faceted entity is defined for modeling the set of context properties. A facet is represented as the effective values of 
context properties, at a particular moment, to which the context sensitive application has access. The main drawback of this 
approach is the lack of semantic information encapsulated in the facet concept. As a result, inferring new context related 
knowledge is difficult. An original approach to the context modeling problem is the use of parametric state machines to 
represent a context aware system [Chen, 2006]. The context is modeled using context functions that modify the context aware 
system’s state. The complexity of a real system’s associated parametric state machine, in terms of number of states and 
transitions, is the main disadvantage of this approach. The use of ontologies is a another direction for context representation. 



The context properties are represented as ontological concepts during design time and instantiated with actual values, 
captured by sensors, during execution [Lee, 2007][Feruzan Ay, 2007]. In this way, context properties relations are easily 
modeled. The main disadvantage is the high degree of inflexibility determined by the human factor intervention in context 
representation. In [O’Connor, 2007] the authors propose the construction of a system situation space where system execution 
context is represented as group in this space. A function can be defined taking values in the context set of situations, with 
values in the system’s action set. Using learning algorithms, the system may infer the action to be executed when a new 
situation appears by placing it in a situation space group.  
 

Regarding the context aware self-* systems, most of the researches reported in the literature are focused on the self-
adaptation problem.  Research efforts are made to create new models and algorithms that allow computational systems to 
execute specific actions according to the context or situation at hand. The objective is to associate a certain degree of 
intelligence to the computational systems for context adaptation. In [Cremene, 2007], the authors propose a context adaptive 
platform based on the closed loop control principle. The novelty of this proposal consists in defining and using the concept of 
application-context description to represent system knowledge about the context. This description is frequently updated and 
used for system control allowing it to reconfigure and take adapting decisions. [Desmet, 2007], [Santos, 2007] and [Seyler, 
2007] propose context adaptation models based on defining the system behavior in a certain situation using a set of context 
adapting rules. A rule consists of a context condition and an associated action. The main disadvantage of these approaches 
is given by the fact that new rules can not be learned or inferred during run time. In [Bellavista, 2006], a model for capturing 
and updating the context information based on information type are proposed. The authors classify the context information in 
three types: user context information, physical context information and computational context information. Another approach 
[Fournier, 2006] is to define reusable components for updating the context specific data. These components provide stable 
communication channels for capturing and controlling context specific data. [Spanoudakis, 2007] proposes the development 
of context guided behavioral models, which allow context aware applications to detect only those context data variations that  
lead to the modification of their behavior. 
 
To conclude, we can state that none of the research approaches provide a unitary and complete solution for the development 
of pervasive autonomic systems. In this paper we try to overcome this deficiency by:  (i) defining a generic context model that 
can be used to accurately represent general purpose real contexts, (ii) enhancing the context model with new concepts that 
allow specifying the self-* autonomic properties, (iii) defining the context model self-configuring property and (iv) proposing a 

self-configuring algorithm used to monitor and evaluate the environment changes in order to keep updated the context model 
artifacts. 
 
The rest of the paper is organized as follows: in Section 2, the context model and its main elements are presented; in Section 
3 we detail the context model management processes; Section 4 introduces the grounding concepts used to enhance the 
context model with autonomic features; Sections 5 defines the context model self-configuring property and presents a generic 
self-configuring algorithm; Sections 6 shows how the self-configuring context model is used to represent and manage context 
representation of our  intelligent laboratory environment [DSRL], while Section 7 concludes the paper and shows the future 
work. 

 
2. The context model 

 
Let’s consider a pervasive system used to guide the tourists into a museum. The museum is an intelligent space where the 
visitors are identified by RFID readers, while their location and orientation is determined using a sensor network. The tourists 
can interact with the pervasive system if they have a wireless capable PDA on which an application can be downloaded and 
executed. In the museum, the visitors must follow a set of rules such as the minimum distance to the artifacts, the loud limits, 
etc.   
 
By studying and analyzing similar real world relevant scenarios we define the context model as a triple:  

 

C R,A,P                                           (1) 

 

where: R  is a set of context resources, A  is a set of actors which interact with context resources and  P  is a set of real 
context related policies. In our model the context abstraction is represented by the set of all context properties in terms of 
relevant information provided by context resources. 
 
In order to provide an accurate representation of the real world context, the following context representation artifacts are 
defined: specific context model, specific context model instance and context – actor instance. 
 
The context model is mapped onto different real contexts by populating the sets with real context specific elements. The 
mapping result is a specific context model that is defined as follows: 
 

S S S SC R ,A ,P                                                    (2) 



 
Using the above presented scenario, we have identified the following context specific elements  (see Figure 1) that populate 
the context model sets: (i) the context resource set  contains the tourist attached resources such as PDA or RFID tags and 
the intelligent museum resources such as location sensors; (ii) the set of context actors contains the tourists and the 
executable context aware applications; (iii) the set of context policies contains the constraints used to drive the tourist - 
museum interaction such as the minimum distance to the artifacts or loud limits. 

 

 
 

Figure 1. Context model elements 

 

A specific context model instance, SI SI SI SIC R ,A ,P ,
 
contains the set of context resources with which the middleware 

interacts, together with their values in a specific moment of time. The specific context model represents the context situation 
to which a context-aware application must adapt. 
 

The context – actor instance, t t t
a aCI R ,a,  P  , contains the set of context resources with which the actor can interact, 

together with their values in a specific moment of time.  A context–actor instance represents the projection of the specific 
context model instance onto a certain actor.  
 
The relationships between the context model sets can be modeled in a general purpose context ontology core (see Figure 2). 
The domain specific concepts are represented as sub trees of the core ontology by using is-a type relations. A system context 
situation is represented by the core ontology together with the domain specific concepts sub trees and their instances in a 
specific moment of time. The two ways of representing the context (set based and ontology based) are equivalent and need 
to be kept synchronized. The set based context model is used to evaluate the conditions under which the context 
management agents should execute self-* processes in order to enforce the autonomic properties at the middleware level 
(self-configuring, self-healing, self-optimizing and self-protection). The ontology based model will be used by the context 
aware applications for reasoning and learning. The following sections detail the context model main concepts 
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Figure 2. The context model ontology representation  

. 

2.1. Resources   
 
A context resource is a physical or virtual entity which generates and / or processes context information. In a real context, we 
have identified passive and active resources. The passive context resources such as sensors, aim at capturing and storing 
context specific data while the active context resources such as actuators, can interact directly with the context and modify 
the context state. 
 

The set of context resources R  can be separated in two disjunctive subsets: (i) the set of context resources attached to the 

physical space / environment SR  in which actor-context interactions occur and (ii) the set of context resources attached to 

the actors AR  that provide information related to actor-context interactions:  

 

A SR R R                                                                  (3) 

 
A context resource has a unique identity, can be annotated with semantic information and is characterized by its properties, 

services and influence zone. Resource Properties, K(r) , specify the set of relevant context information provided by the 

resource. For example, K(PDA)= {Bluetooh, Wireless} . Resource Services, S(r) , specifies the resource functionality as a set 

of services (for example a service that locates / updates an object). The resource services are exposed by publishing them in 
a public registry (UDDI). The actors interact with a context resource through its attached services. Resource Influence Zone, 

Z(r) , represents the 3D physical space in which a resource captures / provides context information or in which the resource 

presence can be sensed (in other words, it becomes visible for an actor or for another resource). The influence zone of a 

context resource attached to an actor is the zero volume space: A Vr R Z(r) 0 . The influence zone for a context 

resource that is attached to the physical space is a non-zero volume space: S Vr R Z(r) 0 . A physical space resource 

is considered an immobile resource so the influence zone is specified by using the resource position in the real space and the 
resource range.  

 

2.2. Actors  
 

An actor represents a physical or virtual entity that interacts directly with the context or uses the context resources to fulfill its 
needs. The actor is a context information generator, has a unique identity and can be annotated with semantic information. 
An actor is characterized by its: (i) specific resources, (ii) context related requirements and (iii) actor-context contract. Actor 



Resources, aR , specifies the set of actor associated resources such as position elements, RFID tags and / or augmented 

reality elements. Context Related Requirements, Req(a) , specifies actor context related preferences. Context Contract, 

SCtr(a,C ) , stipulates the actor’s rights and responsibilities within a specific context.  

 

2.3. Policies 

 
A policy represents a set of rules that must be followed by the actors or resources located in the context influence zone. 

The process of evaluating the policy complying degree is calculated by considering the complying degree of all policy rules. If 
a rule is broken an exception is thrown determining the elimination from the context of the actor or the resource that 
committed the fault. According to the context resources classification passive context resources and active context resources 
we have defined two types of context policies: metric constraints policies and action policies. The metric constraints policies 
are defined for the set of passive context resources in order to impose some restrictions to the captured context specific data. 
The context aware application needs to automatically determine what actions or plans of actions should be executed in order 
to enforce and maintain these constraints. The action policies are defined for the context elements that can directly modify the 
context state (active resources or actors) and specify the actions that should be performed to satisfy the policy constraints. 
 

 

3. The context model management  
 

The context model management infrastructure layer is based on four types of intelligent, cooperative BDI type agents [Rao, 
1995]:  Context Model Administering Agents, Context Interpreting Agents, Request Processing Agents and Execution and 
Monitoring Agents. The Context Model Administering Agent (CMAA) is the specific context model manager. Its main goal is 
the synchronization of the context model specific artifacts with the system execution environment. This agent is also 
responsible for negotiating processes that take place when an actor or resource is joining the context. The Context 
Interpreting Agent (CIA) semantically evaluates the information of a context instance and tries to find the context instance 
“meaning” for the pervasive application. The Request Processing Agent (RPA) processes the actor requests. This agent 
identifies and generates the action plans that must be executed for serving an incoming request. The RPA agent uses the 
specific context model instance to identify the proper plan to be executed by the Execution and Monitoring Agent or for 
generating a new plan. The Execution and Monitoring Agent (EMA) processes the plans received from the RPA agent and 
executes every plan action using the available services. After mapping action plans onto services, a plan orchestration (smart 
workflow) which can be executed using transactional principles is obtained. 
 
The context management infrastructure agents are implemented using the Java Agent DEvelopment Framework platform 
[JADE]. Figure 3 shows how the four context management infrastructure agents communicate and coordinate their actions in 
order to manage the context representation process.  
 

 
 

Figure 3. The cooperative agents intercommunication 



 

When the middleware is deployed, CMAA is the first running agent. It instantiates the CIA, RPA and EMA context 
management agents and sends them the real world context representation. Also CMAA agent keeps the context model 
synchronous with the real world context by executing the self-configuring algorithm presented in section 5.4. CIA agent uses 
reasoning and learning algorithms and the context model ontological representation provided by CMAA agent to infer high 
level context information. When a context actor issues a request, the RPA agent is activated. It uses the context information 
provided by CIA agent, to construct / find a plan that can be executed as a response to the actor’s request. The plan is then  
forwarded for execution to the EMA agent. 

4. Towards an autonomic context model 
 
To enhance the basic context model with autonomic capabilities we have introduced three new concepts: isotropic context 
space, context granule and context model entropy. Each of these concepts is discussed below. 

 

4.1. Isotropic context space 
 

A context sub-space (part of the whole context space) is isotropic if and only if the set of sub-space attached resources SR  is 

invariant to the movements of all actors in the context sub-space. In other words, in an isotropic context sub-space, the SR  

set is the same for all the actors that are physically located in sub-space influence zone.  It should be noted that if 

SCard(R )=1, the context sub-space is isotropic. From now on, the context sub-space will be also considered and referred as 

a context space. Given a non-isotropic context space, the variation degree of the space isotropy IZΔ  is defined as the 

variation of the SR  set, while the actor moves in the context space.  

 

4.2. Context granule 
 
Usually, a context space is non-isotropic but it can be split in a set of disjunctive isotropic context space volumes. We define 

the Context Granule ( GC ) as the maximum volume of a context space where the space isotropy degree variation is zero: 

GC-GCIZΔ = . In a given moment of time, an actor can be physically located in a single context granule. As a result, IZΔ is 

non-zero only when an actor moves between context granules. Considering two context granules GC1 and GC2, the space 
isotropy degree variation is determined as:  

 

GC1 GC2IZ GC1 GC2 GC2 GC1{R \ R } {R \ R }                      (4) 

 

If GC1-GC2IZΔ =  GC1 GC2R =R , the actor remains in the same context granule.  

 

4.3. Specific context model entropy 
 

SE(C )  is defined as the specific context model entropy (the level of disorder) reflecting the degree of fulfilling the context 

policies ( SE(C )=0 , all context policies are respected).  

 

If Rf , is a function over the policy rules that evaluates whether a certain rule is broken or not and Pf  measures the policy 
fulfilling degree then the entropy is defined as: 
 

SE : C , S ij

i 0 j 0

E(C ) Pf(Rf(rule ))                                        (5)

The entropy SE(C ) is used to globally determine the autonomic capabilities of the specific context model: 

 

S SE(C ) 0  C  is in an autonomic state                    (6) 

S SE(C ) 0  C  is in a non - autonomic state                   (7) 

t t 1
S SE (C ) *E (C ) 0                                                          (8) 

 
A specific context model features autonomic behavior if the autonomy invariant (relation 8) is always true. 

 



5. The self-configuring algorithm  
 
In order to provide an efficient context information management, we enhanced the context model with self-configuring 
properties. The self – configuring property is enforced by monitoring the real world context in order to detect context variations 
or conditions for which the context artifacts must be updated. We have identified three causes that generate context variation: 
(1) adding or removing context elements (resources, actors, policies) to / from the real world context, (2) the actors’ mobility 
within the real world context and (3) changes of the resources property values (mainly due to changing the sensors’ captured 
values). In the following sections we discuss each of these context variation causes targeting to determine (i) the context 
variation degree and (ii) the starting condition of the self-configuring process. 
 

5.1. Context variation generated by adding or removing context elements 
 
During the context information acquisition process, the sources of context information can fail or randomly leave / join the 
context. These changes generate a context variation that is detected by the context acquisition layer and sent to the CMMA 
agent which creates a new specific context model adapted to the new real world context.  
 

Next, we evaluate the context variation degree generated by context resources ( RΔ ), context policies ( PΔ ) and context 

actors ( AΔ ) using a set of associated thresholds RT , PT  and AT respectively. 

 
The context resources set variation is generated by adding or removing a context resource r (sensor or actuator) to / from the 
pervasive application execution environment. The context resource set variation is calculated using the set difference 

operation applied in two consecutive moments of time t  and t 1 ( t 1represents the moment when the resource r becomes 

available). The same reasoning can be applied when the resource r  fails or becomes unavailable: 

 

S S S S
t 1 t t t 1

R {R \ R } {R \ R }                    (8)
 

 
 

In relation 8 S S
t+1 t R \R  contains the set of context resources that become available and S S

t t+1 R \R contains the set of 

context resources that become unavailable. If RRCard(  ) T a new specific context model is generated by adding or 

removing the context resources contained in R . 

 
The policy set variation is determined by adding, removing or updating an execution environment policy. The update 
operation is always achieved by removing the old context policy followed by adding a new one. Using the same assumptions 
and conclusions as for context resources, the policy set variation is defined below: 

 
t 1 t t t 1

P {P \ P } {P \ P }                    (9) 

 

The actors set variation is generated by the actors that enter or leave the execution context. Each context actor has an 
attached context resources set during its context interactions. In a given context, an actor is characterized by a large number 
of actor-context interaction patterns, but only two of these patterns determine a variation of the actor context resources set 

AR : (i) the actor enters the context and (ii) the actor leaves the context. The actors related context variation is:  

 

A A A A
t 1 t t t 1 t 1 t t t 1

A {A \ A } {A \ A } {R \ R } {R \ R }               (10)     

 

Overall, the real world context variation ENV is given by the union of all context elements’ variation as shown below: 

 

ENV R A P                      (11) 

ENV R A PCard(  ) Card(  ) Card(  ) Card(  )                  (12) 

 
The self-configuring threshold is defined as:

 
 

Self Configuring R, A, PT min(T T T )                  (13) 

The CMMA agent should start the execution of the self-configuring process and generate a new specific context model when 

Self ConfiguringENVCard(  ) T . 

 



5.2. Context variation generated by actor’s mobility 
 
Due to their mobility, the actors are changing their environment location and implicitly the set of resources with which they 
interact. The CMMA agent identifies this variation and generates (i) a new context – actor instance and (ii) a new specific 
context model instance. 
 
In order to evaluate the context variation generated by actors’ mobility we use the isotropic context space concept . The 
CMMA agent continuously monitors the actors’ movement in the real world context and periodically evaluates the space 

isotropy variation. If for an actor, the space isotropy variation is a non empty set ( IZΔ ) then the self-configuring process 

executed by the CMMA agent generates a new context – actor instance. It actually represents the specific context model 
instance projection onto a certain actor: 

 
t 1 t 1 t 1

a aCI R ,a,  P  , t 1 t 1
a GCR  = R                 (14)  

 
The context variation generated by all actors’ mobility in a context space is given by the union of space isotropy degree 
variation in a certain moment of time for each actor: 

 

aCAM a A IZ                    (15) 

 

5.3. Context variation generated by changes of resources property values 
 

To evaluate the context variation generated by the changes in the resource property values, we define a function valK  that 

associates the resource property to its value: 

 

val 1 1 n n 1 nK (R)= {(k ,val ), ..., (k ,val )}, k , ...,k  K                (16) 

 
If the values captured by the Hot&Humidity sensor in a moment of time are for temperature 5 degree Celsius and for humidity 

60%, then valK (Hot&HumiditySensor)= {(Temperature, 5), (Humidity, 60%)} . CMAA agent calculates the context variation 

generated by changes of resource properties’ values RPV  as presented in relation 17.  

t 1 t t 1 t t 1 t
val val 1 1 1 n n n 1 nRPV K (R )  K (R )= {(k ,val val ), ..., (k ,val val )}, k , ...,k  K            (17) 

If t 1 tval val 0 then the property value hasn’t changed from t  to t 1and that property is ignored when the variation is 

calculated. As a result, we conclude that a new specific context model instance should be created when RPVCard(  ) 0 . 

 

5.4. The self-configuring algorithm  
 
The self-configuring algorithm is executed by CMMA agent in order to keep the context model artifacts synchronized with the 
real context. The CMMA agent features a ticker based behavior by periodically evaluating the context changes. When a 
significant context variation is determined, the context model artifacts are updated using the self-configuring algorithm 
detailed in Figure 4. 
 

Algorithm CMAA_Self_Configuring  

input:   (1) new real world context elements: R
n
, A

n
 , P

n
   

             (2) thresholds for context elements variation: TR, TA, TP 

output: new context artifacts: < CS
n
 , CIa

n
 , CSI

n
 > 

resources: current context artifacts set representation: < CS, CIa , CSI > 

                    current context artifacts ontology representation: owlModel 

begin 

    // CMAA evaluates the context variation  

    ΔR = {RS
n

 \ RS} U {RS \ RS
n
} 

    ΔA = {A
n 

\ AS} U {AS \ A
n
} U {RA

n
 \ RA} U {RA \ RA

n
} 

    ΔP = {P
n 

\ PS}U{P
n 

\ PS} 
    ∆CAM = Ua є A ΔIZa

                                                 

 

    ∆RPV = Kval(R
n
) - Kval(R) 

  



    TSelf-Conf = min (TR, TA, TP) 

    if  (Card (∆ENV) ≥ TSelf-Conf ) 

        //CMAA tries to create a new specific context model 

        if  (Card (∆R) ≥ TR )  

            if (RS ∩ ∆R = Ø)  

                CS
n 

 = CS + ∆R = (RS, AS, PS) + ∆R = (RS U ∆R, AS, PS) 

            else  

                CS
n 

 = CS - ∆R = (RS, AS, PS) - ∆R = (RS \ ∆R, AS, PS) 

        if (Card (∆A) ≥ TA ) 

            if (AS ∩ ∆A = 0) 

                CS
n

 = CS + ∆A = (RS, AS, PS) + ∆A = (RS, AS U ∆A, PS) 

            else  

                CS
n

 = CS - ∆A = (RS, AS, PS) - ∆A = (RS, AS \ ∆A, PS) 

        if (Card (∆P) ≥ TP ) 

            if (PS ∩ ∆P = 0)  

                CS 
n 

= CS + ∆P = (RS, AS, PS) + ∆P = (RS, AS, PS U ∆P) 

            else  

                CS
n

 = CS - ∆P = (RS, AS, PS) - ∆P = (RS, AS, PS \ ∆P) 

    else    
        // CMAA tries to create a new context-actor instance 
        TSelf-Conf  =  0 

        if (Card (∆CAM) > TSelf-Conf ) 

            foreach a € A    

                if (∆IZ a ≠ 0)   CIa
n

  =  <Ra, a, P> 

        else  
            // CMAA tries to create a new specific context model instance 

            if (Card (∆RPV) > TSelf-Conf )    

                CSI
n

 = <Ra, a, P> 
     
    updateOntology (owlModel, ∆R, ∆A, ∆P) 
    return < CS

n
 , CIa

n
 , CSI

n
 > 

end 

 

Figure 4. The Self-Configuring algorithm 

 

6. Case Study 
 
For the case study we have used a intelligent closed environment represented by our Distributed System Research 
Laboratory. In the laboratory the students are marked using RFID tags and identified using a RFID reader. The students 
interact with the smart laboratory by means of wireless capable PDAs on which different laboratory provided services are 
executed (submit homework service, print services, information retrieval services, etc.). A sensor network captures 
information regarding students’ location or orientation and also ambient information like the temperature or humidity.  
 
The DSRL infrastructure contains a set of sensors through which the real context information is collected: two Hot&Humidity 
sensors that capture the air humidity and the temperature, four Orient sensors placed in the four corners of the laboratory that 
measure the orientation on a single axis, one Loud sensor that detects sound loudness level and one Far Reach sensor that 
measures distances (see Figure 5). The sensors are connected using a Wi-microSystem wireless network produced by 
Infusion Systems Ltd [Infusion]. The middleware is deployed on an IBM Blade-based technology Server Center. The IBM 
Blade technology was chosen because its maintenance software offers autonomic features like self-configuring of its 
hardware resources. The CMMA agent periodically evaluates the context information changes at a predefined time interval 
(we use 1 second time intervals for this purpose). If significant variations are detected, the context model artifacts are created 
or updated using the self-configuring algorithm presented in section 5.4. 
 



 
 

Figure 5. The DSRL infrastructure 

 
When the middleware is deployed and starts execution ( t 0 ) there are no context model artifacts constructed (the R, A, P  

sets of the context model are empty). After one second ( t 1 ), when two students John and Mary enter the lab, the Context 

Model Administering Agent receives the updated context information from the Context Acquisition Layer and calculates the 

context elements variation RΔ , PΔ and AΔ  as shown in Figure 6. By default the self-configuring thresholds are set to the 

value 1:  Self Configuring R A PT T T T 1 . As a result of evaluating the context variation at t 1 , the CMMA agent 

executes the self–configuring algorithm which adds new concepts/ populates the context model artifacts. The new added 

concepts originate from the context elements set variations RΔ , PΔ and AΔ calculated in Figure 6.  
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 = {FarReachSensor, RFIDReader, HotHumiditySensor1&2, LoudSensor,   
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RS

0
 = Ø 

∆R = (RS
1 

\ RS
0
) U (RS

0 
\ RS

1
)  

∆R = {FarReachSensor, RFIDReader, HotHumiditySensor1&2, LoudSensor,     
          OrientationSensor1&2&3&4} 
 

A
1
 = {StudentJohn, StudentMary} 

A
0
 = Ø 

∆A = (A
1 

\ A
0
) U (A

0 
\ A

1
)  

∆A = {StudentJohn, StudentMary} 
 

P
1
 ={LoudLimit, TemperatureLimit} 

P
0
 = Ø 

∆P = (P
1 

\ P
0
) U (P

0 
\ P

1
) 

∆P = {LoudLimit, TemperatureLimit} 
 

Card(∆ENV) = Card(∆R) + Card(∆A) + Card(∆P) = 13  
Card(∆ENV) > TSelf-Configuring  

Figure 6. DSRL context variation at t=1 

 
The CMMA agent dynamically updates / populates the context model artifacts ontology by invoking ontology management 
methods defined by the Protégé-OWL API. In order to test the middleware self-configuring capabilities we have considered 
that after 60 seconds the following context changes occurred: (i) student John leaves the laboratory, (ii) OrientationSensor1 
and OrientationSensor4 are disabled and (iii)  LoudSensor is disabled. The CMAA agent calculates the variation in the new 

context at t 61(Figure 7) and executes the self-configuring algorithm. 
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Figure 7. The DSRL context variation at t=61 

 
7. Conclusions and future work 
 

This paper addresses the problem of representing and managing the context information in a reliable and fault  tolerant 
manner, targeting the development of context aware autonomic systems. In order to achieve our goal we have defined a self -
configuring context model that accurately captures and represents general purpose real contexts, in a programmatic manner. 
The proposed context model uses two equivalent and synchronized ways of representing the context: a set based 
representation and an ontology based representation. The set based representation is used to evaluate the conditions under 
which the self-* processes should be executed in order to enforce the autonomic properties. The self-configuring property is 
enforced  by monitoring the execution context in order to detect context variations or conditions for which the context artifacts 
must be constructed or updated. The proposed context model was tested and validated using our Distributed Systems 
Research Laboratory as a smart space infrastructure. For future development, we intend to enhance the pervasive 
middleware with new self-* capabilities like self-healing and self-optimizing. 
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