
KNOWLEDGE ENGINEERING: PRINCIPLES AND TECHNIQUES
Proceedings of the International Conference on Knowledge Engineering,
Principles and Techniques, KEPT2009
Cluj-Napoca (Romania), July 2–4, 2009, pp. 1–8

A SELF-CONFIGURING MIDDLEWARE FOR DEVELOPING
CONTEXT AWARE APPLICATIONS

TUDOR CIOARA(1), IONUT ANGHEL, IOAN SALOMIE, MIHAELA DINSOREANU,

AND ANCA RARAU

Abstract. This paper introduces a self-configuring middleware that man-

ages the context information acquisition and representation processes target-

ing the development of context aware applications. The context information
is represented in a programmatic manner, readable for the applications build

on top of the middleware, using the RAP context model. An agent based

context model management infrastructure generates and administrates the
context artifacts at run time. The self-configuring property is enforced by

monitoring the real world context in order to detect context variations or

conditions for which the context artifacts must be updated.

1. Introduction related work

The context aware computing refers to the ability of a software application
to detect and respond to changes in their execution environment. An important
challenge in developing context aware applications is the complexity and dynamic
nature of their execution environment which makes the application management
and adaptation processes extremely difficult tasks. Also, the resources variety may
influence the execution of the context aware application thus implying complex
context information acquisition and representation processes. During the context
information acquisition process, the sources of context information (e.g. sensors)
can fail or new context information sources may be identified. The context ac-
quisition and representation processes need to be reliable and fault tolerant. The
context aware application cannot wait indefinitely for an answer from a tempo-
rary unavailable context resource and many times the payoff for not taking into
consideration the new available context resources can be very high.

From our perspective the solution for these problems is to use the self-* auto-
nomic paradigms in the development and integration of self-* enhanced compo-
nents into context aware applications. The goal is to introduce some degree of

2000 Mathematics Subject Classification. 68Q85, 68M14, 68T05, 68W15.

Key words and phrases. Self-Configuring, Context Awareness, Autonomic Computing.

c©2007 Babeş-Bolyai University, Cluj-Napoca

1



2TUDOR CIOARA(1), IONUT ANGHEL, IOAN SALOMIE, MIHAELA DINSOREANU, AND ANCA RARAU

autonomy for the context acquisition and representation processes. In this paper
we address the problems of monitoring, capturing and representing the context
information by proposing and developing a pervasive self-configuring middleware
that manages smart environments using an agent based context management in-
frastructure. The smart environment context information is represented in a pro-
grammatic manner using the RAP context model [10]. The context model man-
agement infrastructure is implemented by BDI (Believe, Desire, Intentions) agents
[12] that generate and administrate the context model artifacts at run time. The
middleware self-configuring feature is implemented by monitoring and evaluating
environment changes in order to keep updated the context artifacts. The middle-
ware was tested in our Distributed Systems Research Laboratory (DSRL) [4].

During the pervasive middleware development process we have identified the
context representation and the context management as the major problems. The
rest of this section presents the state of the art related to these research directions
by highlighting our approach advantages.

For context representation, generic models that aim at accurately describing
the system execution context in a programmatic way are proposed [5]. Key-Value
models represent context information using a set of attributes and their associated
values [1]. Markup models enable structuring context information into a hierarchy.
Tags describe context attributes and their associated values [9]. Object models
structure context into object classes and their implicit relationships [6]. The main
drawback of the above presented approaches is the lack of semantic information
encapsulated in the context model representation which makes the process of in-
ferring new context related knowledge extremely difficult. In the current work we
try to overcome these deficiencies by using our RAP context model to represent
the context information. The RAP context model ontology based representation
is used by the context aware applications to infer new context related information
using reasoning and learning algorithms. The use of ontology representations to
model the context related information is also proposed in [8]. The context prop-
erties are represented as ontological concepts during design time and instantiated
with run-time sensor captured values. The main disadvantage of these approaches
is the high degree of inflexibility determined by the human intervention in the
context representation phase. We solve this problem by defining an agent based
solution that uses the RAP model set based representation to evaluate the real
world context and to automatically construct the context representation.

In the context management direction, the research is concentrated on devel-
oping techniques for (i) keeping the context representation consistent with the
environment and for (ii) automatic discovery and setup of new context resources.
In [2], models for capturing and updating the context information based on the
information type are proposed, while in [5] reusable components which provide
stable communication channels for capturing and controlling context specific data
are defined for updating the context specific data. In [11], Spanoudakis proposes



A SELF-CONFIGURING MIDDLEWARE FOR DEVELOPING CONTEXT AWARE APPLICATIONS3

the development of context guided behavioral models, which allow context aware
applications to detect only those context data variations that lead to the mod-
ification of their behavior. The main disadvantage these approaches is the lack
of efficiency in the context model management process which is rather static and
difficult to adapt to context changes. We overcame this problems by defining and
using the self-* autonomic paradigms for the context acquisition and representa-
tion processes. There is a reduced number of researches regarding the context
aware systems self-* management in the literature and they are focused on the
self-adaptation problem. Models and algorithms that allow computational sys-
tems to execute specific actions according to the context or situation at hand are
proposed [7]. Their objective is to associate a certain degree of intelligence to
the computational systems for context adaptation. In [3], the authors propose a
context adaptive platform based on the closed loop control principle. The novelty
of this proposal consists in defining and using the concept of application-context
description to represent the system knowledge about the context. This description
is used by the system to take reconfiguring and adapting decisions.

2. The pervasive middleware

The pervasive middleware conceptual architecture (see Figure 1a) defines three
main layers: (i) the acquisition layer that captures the context information from
real world contexts, (ii) the context model layer which represents the context in-
formation in a machine interpretable way and (iii) the context model management
infrastructure layer that manages the context representation.

The context information acquisition layer design takes into consideration the
following aspects: (i) the sensor information retrieval mechanism and (ii) the visi-
bility of the sensor information to middleware upper layers. From the middleware
perspective we have defined both push and pull types of sensor information re-
trieval mechanisms. The push mechanism uses event listeners to gather the context
information from sensors while the pull mechanism uses a query based approach
which allows the context information to be provided on demand.

The context representation layer uses the RAP context model to represent a real
world context in a programmatic manner. This model defines two types of context
information representations: (i) set based, used to determine the conditions under
which the middleware executes the self-configuring algorithm and (ii) ontology
based, used to infer new context related information by means of reasoning and
learning algorithms. In the set based approach the context information is modeled
as a triple: C = <R, A, P > where R is the set of context resources that generates
and / or processes context information, A is the set of actors which interact with
context resources in order to satisfy their needs and P is the set of real world
context related policies. In the ontology based representation the relationships
between the context model sets are modeled in a general purpose context ontology
core. The domain specific concepts are represented as sub trees of the core ontology



4TUDOR CIOARA(1), IONUT ANGHEL, IOAN SALOMIE, MIHAELA DINSOREANU, AND ANCA RARAU

by using is-a type relations. A system context situation is represented by the core
ontology together with the domain specific concepts sub trees and their instances
in a specific moment of time. The two ways of representing the context (set based
and ontology based) are equivalent and need to be kept synchronized. In order to

Figure 1. a) The pervasive middleware conceptual architecture
and b) The middleware self-configuring algorithm

provide an accurate representation of the real world context, the following context
representation artifacts are defined: specific context model, specific context model
instance and context - actor instance. The specific context model is obtained by
mapping the context model onto different real contexts and populating the sets
with real context specific elements. A specific context model instance contains the
set of context resources with which the middleware interacts, together with their
values in a specific moment of time t. The specific context model represents the
context situation to which a pervasive application built onto the middleware must
adapt. The context-actor instance contains the set of context resources with which
the actor can interact, together with their values in a specific moment of time.

The context model management infrastructure layer is based on four types of
intelligent, cooperative BDI type agents: Context Model Administering Agent,



A SELF-CONFIGURING MIDDLEWARE FOR DEVELOPING CONTEXT AWARE APPLICATIONS5

Context Interpreting Agent, Request Processing Agent and Execution and Mon-
itoring Agent. The Context Model Administering Agent (CMAA) is the specific
context model manager. Its main goal is the synchronization of the context model
specific artifacts with the system execution environment. The Context Interpret-
ing Agent (CIA) semantically evaluates the information of a context instance and
tries to find the context instance “meaning” for the context aware application.
The Request Processing Agent (RPA) processes the actor requests. It identifies
and generates the action plans that must be executed for serving an incoming re-
quest. The Execution and Monitoring Agent (EMA) processes the plans received
from the RPA agent and executes every plan action using the available services.

3. The middleware self-configuring algorithm

At middleware level the self-configuring feature is implemented by monitoring
the real world context in order to detect the context variations for which the
context artifacts need to be updated and synchronized. We have identified three
causes that generate context variation: (1) adding or removing context sources
(resources, actors, policies) to / from the real world context, (2) actors’ mobility
within the real world context and (3) changes of the resources property values.

Context variation generated by adding or removing context elements. During
the context information acquisition process, the sources of context information
can fail or randomly leave / join the context. These changes generate a context
variation that is detected by the context acquisition layer and sent to CMAA
which creates a new specific context model adapted to the new real world context.
Next, we evaluate the context variation degree generated by context resources ∆R
in relationship with its associated threshold TR . The same reasoning is used to
determine the variation related to the context policies ∆P and the context actors
∆A with their thresholds TP and TA. The context resources set variation ∆R
is generated by adding or removing a context resource r to / from the pervasive
application execution environment. The context resource set variation is calculated
using the set difference operation applied in two consecutive moments of time: t
and t+1 , where t+1 represents the moment when the resource r became available:

∆R = { Rt+1\ Rt } U {Rt\ Rt+1} (1)
If Card(∆R) ≥ TR a new specific context model is generated by adding or

removing the context resources contained in ∆R. The overall real world context
variation ∆ENV is given by the union of all context elements’ variation:

∆ENV = ∆R U ∆A U ∆P (2)
The self-configuring threshold is defined as: TSelf−Configuring= min(TR, TA,

TP ). The CMMA agent should start the execution of the self-configuring process
and generate a new specific context model when Card(∆ENV)≥ TSelf−Configuring.

Context variation generated by actor’s mobility. Due to their mobility, the
actors are changing their environment location and implicitly the set of resources
with which they interact. CMAA identifies this variation and generates (i) a new



6TUDOR CIOARA(1), IONUT ANGHEL, IOAN SALOMIE, MIHAELA DINSOREANU, AND ANCA RARAU

context-actor instance and (ii) a new specific context model instance. In order to
evaluate the context variation generated by actors’ mobility we use the isotropic
context space concept, defined in [10]. A context space is isotropic if and only if the
set of real world context resources is invariant to the actors’ movement. Usually, a
context space is non-isotropic, but it can be split into a set of disjunctive isotropic
context sub-space volumes in which the isotropy degree variation is the empty set.
Such volume is called context granule. The space isotropy variation ∆IZ is non-
zero only when an actor a moves between two context granules. If for an actor
∆IZa 6= ∅, then the self-configuring process executed by CMMA generates a new
context-actor instance.

Context variation generated by changes of resources property values. A context
resource is a physical or virtual entity which generates and / or processes context
information. In order to evaluate the context variation generated by the changes in
the resource property values, we define a function Kval that associates a resource
property to its value. CMAA calculates the context variation generated by changes
of resource properties’ values ∆RPV as presented in (3) and creates a new specific
context model instance when Card(∆RPV) ≥ 0.

∆RPV = Kval(Rt+1) - Kval(Rt) = {(k1,val1t+1- val1t),. . . , (kn,valnt+1- valnt)}(3)
The self-configuring algorithm is executed by CMAA in order to keep the con-

text model artifacts synchronized with the real context (see Figure 1b). CMAA
features a ticker based behavior and periodically evaluating the context changes.
When a significant context variation is determined, the context model artifacts
are updated.

4. Results

For the case study we have used the smart environment represented by our Dis-
tributed System Research Laboratory. In the laboratory the students are marked
using RFID tags and identified using a RFID reader. The students interact with
the smart laboratory by means of wireless capable PDAs on which different labora-
tory provided services are executed (submit homework service, print services, etc.).
A sensor network captures information regarding students’ location or orientation
and also ambient information like the temperature or humidity. The middleware
is deployed on an IBM Blade-based technology Server Center.

In order to test our self-configuring algorithm scalability we have implemented
an application that can simulate the behavior of a large number of sensors that
randomly generate context information at fixed periods of time. To make the
simulated sensor information visible, in an independent manner, to the upper
layers, we have used the web services technology. The results show that the self-
configuring algorithm implemented by CMAA can synchronize and update the
context model artifacts in a reasonable time for up to 200 sensors that change their
values simultaneously (see Figure 2). It is possible that sensor values change much
faster than CMAA can synchronize contexts when the processing time is higher



A SELF-CONFIGURING MIDDLEWARE FOR DEVELOPING CONTEXT AWARE APPLICATIONS7

than the CMAA ticker interval. To test the self-configuring algorithm capacity

Figure 2. The self-configuring algorithm scalability results

to detect the temporary unavailable and the new available context resource we
simulate the sensors using a web service that returns random numbers and a small
program that periodically inserts new entries in a smart environment description
file. The creation time was measured from the moment in which CMAA observes
the new sensor in the smart environment description file until all the changes
were processed, (the new context artifacts were generated). The results show that
the self-configuring algorithm can successfully administrate up to 10 sensors that
simultaneously become available in the DSRL smart environment (see Figure 2).

To assess the performance of the proposed self-configuring algorithm a simula-
tion editor was developed. The evaluation test cases can be described by adding
simulation times together with the corresponding sensor values. We evaluated
the memory and processor overloading when CMAA executes the self-configuring
algorithm in order to update the specific context model instance due to sensor
values changes. Using the simulator, we tested our middleware with 100 sensors

Figure 3. The CMAA self-configuring algorithm CPU and mem-
ory overloading with 100 sensors at t1=100 ms and t2=2000 ms

that change their values at 100 ms and 2000 ms. Even if the sensor values change
rate is much higher at 2000 ms, the memory and processor overloading did not
show major differences (see Figure 3).



8TUDOR CIOARA(1), IONUT ANGHEL, IOAN SALOMIE, MIHAELA DINSOREANU, AND ANCA RARAU

5. Conclusions

In this paper we have provided a solution to the problem of managing the
smart environment context information acquisition and representation processes
in a reliable and fault tolerant manner. In order to achieve our goal we have de-
fined a self-configuring middleware that uses an agent based context management
infrastructure, to gather context information from sensors and generate a con-
text representation at run-time. The self-configuring property is enforced at the
middleware level by monitoring the execution context in order to detect context
variations for which the context artifacts must be updated. The results show that
the proposed solution is viable from the perspective of scalability and processor
/ memory consumption. For future developments we intend to define a generic
formalism for all self-* paradigms in order to enhance the proposed middleware
with complete autonomic capabilities targeting run-time context self-adaptation.

References

[1] K. M. Anderson, F. A. Hansen, and N. O. Bouvin. Templates and queries in contextual
hypermedia. In Proc. of the 17th conf. on Hypertext and hypermedia, page 99110, 2006.

[2] P. Bellavista, A. Corradi, and R. Montanari. Mobile computing middleware for location and

context-aware internet data services. In ACM Trans. on Internet Tech., volume 6, 2006.
[3] M. Cremene, M. Riveill, and C. Martel. Autonomic adaptation based on service-context

adequacy determination. Electronic Notes in Theoretical Computer Science, 2007.

[4] Technical University of Cluj-Napoca Distributed Systems Research Laboratory.
http://dsrl.coned.utcluj.ro.

[5] D. Fournier and S. Ben Mokhtar. Towards ad hoc contextual services for pervasive comput-

ing. In Proc. of the 1st workshop on Middleware for SOC, pages 36–41, 2006.
[6] T. Hofer, W. Schwinger, and M. Pichler. Context-awareness on mobile devices - the hydrogen

approach. In Proc. of the 36th Annual Hawaii Int. Conf. on System Sciences, 2003.
[7] C. Klein, R. Schmid, C. Leuxner, W. Sitou, and B. Spanfelner. A survey of context adapta-

tion in autonomic computing. In Proc. of the Fourth International Conference on Autonomic

and Autonomous Systems, pages 106 – 111, 2008.
[8] K. C. Lee and J. H. Kim. Implementation of ontology based context-awareness framework

for ubiquitous environment. In Conf. on Mult. and Ubiq. Engineering, page 278 282, 2007.

[9] D. Raz, A. Tapani Juhola, J. Serrat-Fernandez, and A. Galis. Fast and Efficient Context-
Aware Services. Wiley Series on Communications Networking & Distributed Systems, 2006.

[10] I. Salomie, T. Cioara, I. Anghel, and M. Dinsoreanu. Rap - a basic context awareness model.

In Proc. of the 4th IEEE Int. Conf. on Intel. Comp Communication and Processing, 2008.
[11] G. Spanoudakis and K. Mahbub. A platform for context aware runtime web service discovery.

In Proceedings of the IEEE Int. Conference on Web Services, pages 233–240, 2007.
[12] J. Thangarajah, L. Padgham, and J. Harland. Representation and reasoning for goals in bdi

agents. In Proc. of the 25th Australasian conf. on Comp. science, pages 259–265, 2002.

(1) Technical University of Cluj-Napoca, 15 Daicoviciu str, Cluj-Napoca, Romania

E-mail address: Tudor.Cioara@cs.utcluj.ro, Phone : 0040264401443


