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Foreword 
 

 

 

 

The Laboratory Works are intended for 3rd year undergraduate students of Automation 

and Computer Science Faculty to help implement several practical applications in the domain 

of Image Processing, which are tightly connected with the Image Processing lectures. They 

are also useful for anyone who wishes to get familiar with several traditional image processing 

techniques. 

The works are organized in 11 chapters with a technical presentation and gradual 

difficulty level. Each subject is explained through a theoretical formalism aiming to define 

the particular steps required for practical implementation. The reader is encouraged to 

approach the chapters in the present order because they may contain particular elements, 

which are studied, designed and implemented in the previous ones. 

The present edition studies a series of fundamental image processing techniques which 

have been successfully used in the research activity developed by the Image Processing and 

Pattern Recognition Research Center (IPPRRC) from the Computer Science Department. 

Based on the experience gained with most research topics in the domain of image processing, 

some of the most basic techniques have been selected with a large application and 

straightforward approach, in both the theoretical aspect and practical implementation. 

Additionally, the development process is facilitated by using the OpenCV library integrated 

in a specially designed software framework. The authors are thankful to their colleagues for 

the constructive observations which lead to the improvement of the content.  

The information presented in each chapter follows a constructive approach starting 

with an introduction into the topic and its objectives. The next phase is the presentation of the 

theoretical formalism required for implementation. The practical details are listed at the end 

of the chapter. In several cases the same objectives are implemented using different 

techniques, which leads to a comparative study of the results similar to a research activity. In 

order to get familiar with the tasks and specific concepts it is recommended to read the 

contents before attending the laboratory class.  

 

 The authors wish you a pleasant reading!  
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1. Introduction to the OpenCV library 
 

1.1. Introduction 
 

The purpose of this laboratory is to acquaint the students with the framework application 

which will be used in the practical works related to the Image Processing course. 

 

The background knowledge necessary to successfully complete the image processing 

laboratory are: 

● Compulsory: C, Computer Programming, Data Structures and Algorithms. 

● Optional (recommended): C++, Visual C++ (Visual Studio), Object Oriented Methods, 

Fundamental Algorithms, Programming Techniques, Linear Algebra and Geometry, Discrete 

Mathematics, Numerical Calculus, Special Mathematics.  

 

1.2. The bitmap image format 
 

The bmp format is used to store images in uncompressed form. It uses raster graphics to store 

digital images independently of the display device. It is capable of storing monochrome and color 

images with different encoding depth. The depth determines the number of possible colors and 

determines the image size. The file itself has the following structure: 

 

● a bitmap file header - which contains a signature field, the file size and the offset to the pixel 

array;  

● DIB header - which stores various information such as image dimension, bits per pixel;  

● color table (or look-up table) - for images with a color palette;  

● the pixel array - contains the actual image information stored in a linearized manner and 

padded. 

 

The following image illustrates the bitmap format for a 24bit color image. The image height 

and width are denoted dwHeight and dwWidth, respectively. 

  

 
Fig. 1.1 Bitmap image format 
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1.3. Overview of the OpenCV framework 
 

The framework on which you will be working on contains the OpenCV library bundled 

together with a Visual Studio solution. Most settings have been preconfigured, all static and dynamic 

libraries are included within the solution.  

 

Your task is to create new functions and call them from the main function. You should group 

your work according to laboratory sessions and give suggestive names to functions. All code 

examples assume that you have included the cv namespace (using namespace cv), otherwise 

prepend cv:: to all OpenCV classes and methods. A guideline for introducing new functions is 

given in the following code snippet (gray text indicates what you need to introduce): 

 
void negative_image(){ 

 // implement function 

} 

int main(){ 

 int op; 

 do{ 

  printf("Menu:\n"); 

  // ... 

  printf(" 7 - L1 Negative Image \n"); 

  //... 

  printf(" 0 - Exit\n\n"); 

  printf("Option: "); 

  scanf("%d",&op); 

  switch (op) 

  { 

   // ... 

   case 7: 

    negative_image(); 

    break; 

  } 

 } 

 while (op!=0); 

 return 0; 

} 

 

You should save your work from each session. The project can be cleaned with the clean.bat 

executable which deletes all build outputs and reduces the project size considerably. Alternatively, to 

save space, just backup the main cpp file since the project solutions should not change. 
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1.4. The Mat class 
 

Images are stored as Mat objects in OpenCV. It is class for a generic matrix that can be used 

to hold other data as well, such as a normal 2x2 matrix or higher dimensional matrices. 

 

Important fields of the Mat class are: 

● rows - the number of rows of the matrix = the height of the image; 

● cols - the number of columns of the matrix = the width of the image; 

● data - pointer to the memory location of the actual image; it is of type unsigned char *, 

so it must be cast to the correct type for accessing operations. 

 

The simplest and cleanest way to create a Mat object called img is to use the 3-parameter 

constructor: 

 
 Mat img(rows, cols, type); 

 

The last parameter encodes the type of data that is stored in the matrix. An example type 

would be CV_8UC1, which it represents: 8-bit, unsigned char, single channel. In general, the first 

number after CV_ represents the number of bits required; the letter indicates the data type; and Cx 

shows the number of channels. 

 

Type code Data type Used for 

CV_8UC1 unsigned char grayscale image (8bits/pixel) 

CV_8UC3 Vec3b color image (3x8bits/pixel) 

CV_16SC1 short data storage 

CV_32FC1 float data storage 

CV_64FC1 double data storage 
Table 1. Common OpenCV data type codes 

Example 1 - create a grayscale matrix of size 256x256: 

 
 Mat img(256,256,CV_8UC1); 

 

Example 2 - create a color image of dimension with 720 rows and 1280 columns: 

 
 Mat img(720,1280,CV_8UC3); 

 

Example 3 - create a 2x2 real matrix with values [1 2; 3 4], and print it: 

 
float vals[4] = {1, 2, 3, 4}; 

Mat M(2,2,CV_32FC1,vals); //4 parameter constructor 

std::cout << M << std::endl; 

 

Notice you can use the standard output stream with a Mat object. 

 

For a detailed description of the Mat class see the official documentation at: 

https://docs.opencv.org/4.5.1/d3/d63/classcv_1_1Mat.html 

  

https://docs.opencv.org/4.5.1/d3/d63/classcv_1_1Mat.html


Technical University of Cluj-Napoca, Computer Science Department 

 

 

 

12 

1.5. Opening/reading an image 
 

To open an image and to store it as a Mat object use the imread function: 

 
 Mat img = imread("path_to_image", flag); 

 

The first parameter contains the relative or absolute path to the image file; the second flag 

parameter can be: 

● IMREAD_UNCHANGED (-1) - load the image in the same format as it was saved; 

● IMREAD_GRAYSCALE (0) - load the image as a grayscale image; loading converts it to 

CV_8UC1 (1 channel unsigned char) image and performs grayscale conversion if required; 

● IMREAD_COLOR (1) - load the image and convert it to CV_8UC3 (3 channel unsigned char) 

image; it copies the grayscale channel to all color channels if required. 

 

Example 1 - open an image in the current folder in the format it was saved: 

 
 Mat img = imread("cameraman.bmp", -1);  

 

1.6. Accessing the data from an image  
 

Matrix elements are indexed according to standard mathematical matrix notation. This means 

that the origin will be positioned at the top left corner of the image. The first index will indicate the 

row (increasing downwards) and the second index will indicate the column (increasing to the right). 

The following figure illustrates the indexing scheme: 

 

 

 

 
Fig 1.2 Indexing scheme for images 

Always follow this convention to avoid indexing mistakes. When processing an image, first 

loop over the rows then over the columns.  

 

To access the data from a grayscale image at row i and column j use the at method: 
 unsigned char pixel = img.at<unsigned char>(i,j); 

 

Notice that you need to provide the data type which is stored in the matrix (unsigned char). 

 

For faster access, we can use the data pointer and the step field directly: 

j, x, width, cols 

i,  

y,  

height,  

rows 
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 unsigned char pixel = img.data[i*img.step[0] + j]; 

 

All data is stored in a linearized manner, row after row and from left to right, starting from 

the data pointer. Padding may be introduced so avoid accessing via i*img.cols+j because it 

might give wrong results for padded images. 

 

You can also use a pointer to the data from the i-th row: 
 unsigned char pixel = img.ptr(i)[j]; 

 

To access the 3-component color at row i and column j from a color image, use the proper 

type: 
Vec3b pixel = img.at< Vec3b>(i,j); 

unsigned char B = pixel[0]; 

unsigned char G = pixel[1]; 

unsigned char R = pixel[2]; 

 

Vec3b is a vector with 3-byte (unsigned char) components. It is recommended for 

manipulating color images. 

 

The code can be simplified by using the Mat_<T> templated subclass of the Mat class, which 

enables omitting the type for access operations. At the creation of a Mat_<T> object you must 

provide the underlying type that is stored in the matrix. 

 
Mat_<uchar> img = imread("fname",IMREAD_GRAYSCALE); 

uchar pixel = img(i,j); 

 

Here we have also used the type definition uchar which stands for unsigned char. 

Accessing a value from a certain position permits both reading and writing operations. 

 

1.7. Viewing an image 
 

To view a loaded image use the imshow function followed by a waitKey call: 

 
imshow("image", img); 

waitKey(0); 

 

This shows the image in a new window titled image and waits for the user to input a key 

indefinitely. The waitKey function has only one parameter: how long it waits for a user input 

(measured in milliseconds). Zero means to wait forever. 

 

Always follow each imshow operation with a waitKey command. Image windows can be 

moved and resized, which is desirable if you want to illustrate input and output side by side in the 

same configuration many times. 

 

1.8. Saving/writing an image 
 

To save an image to the disk use the imwrite function: 
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 imwrite("fname", img); 

 

The file name contains the path, the name and the extension, which determines the format of 

the image. You can save in multiple formats such as: bmp, jpg, png.  

 

1.9. Sample function  
 

The following sample code loads a grayscale image and transforms it into its negative image: 

 
void negative_image(){ 

 Mat img = imread("Images/cameraman.bmp",     

         IMREAD_GRAYSCALE); 

 for(int i=0; i<img.rows; i++){ 

  for(int j=0; j<img.cols; j++){ 

   img.at<uchar>(i,j) = 255 - img.at<uchar>(i,j); 

  } 

 }  

 imshow("negative image",img); 

 waitKey(0); 

} 

 

The image file must reside in the Images folder next to the project solution file. 

 

1.10. Practical work 
 

1. Download and build the OpenCVApplication. 

2. Test the negative_image() function. 

3. Implement a function which changes the gray levels of an image by an additive factor. 

4. Implement a function which changes the gray levels of an image by a multiplicative factor. Save 

the resulting image. 

5. Create a color image of dimension 256 x 256. Divide it into 4 squares and color the squares from 

top to bottom, left to right as: white, red, green, yellow. 

6. Create a 3x3 float matrix, determine its inverse and print it. 

7. Save your work. Use the same application in the next laboratories. At the end of the image 

processing laboratory, you should present your own application with the implemented 

algorithms!!! 

 

1.11. Bibliography 
 

[1] https://docs.opencv.org/4.5.1/index.html 

https://docs.opencv.org/4.5.1/index.html
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2. Color spaces 
 

2.1. Introduction 
 

The purpose of the second laboratory work is to teach the basic color manipulation techniques 

applied to the bitmap digital images. 

 

2.2. The RGB color space 
 

The color of each pixel, either in image acquisition devices such as cameras, and in image 

displaying devices such as the computer monitor and the TV screen, is obtained by combining three 

primary colors: Red, Green and Blue (additive color space – Fig. 2.1 and 2.2).  

 

 
Fig. 2.1 Additive mixing of colors. When the primary colors are superposed, the secondary colors appear. When all 

three primary colors are superposed, the white color is obtained [1] 

 

 
Fig. 2.2 The color image is obtained by pixel level combination of the primary colors. The three-color channels are 

displayed 

 

Each image pixel will be defined by a triplet, containing a numerical value for each primary 

color. The color can be regarded as a point in a 3D RGB color space (Fig. 2.3). The origin of the 

coordinate axes corresponds to the color Black (0, 0, 0), and the opposite corner of the color space 

cube corresponds to the color White (255, 255, 255). The cube’s diagonal, between black and white, 

corresponds to levels of gray (grayscale), defined by (R=G=B). Three of the corners correspond to 

the primary colors Red, Green and Blue.  The other corners correspond to the complementary colors 

of Cyan, Magenta and Yellow. If the origin of the color space is moved to the White point, and the 

axes of the system are renamed as C, M and Y, one gets the complementary CMY color space, which 

is used in color printing devices. 
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Fig. 2.3 The RGB color space mapped on a cube. Here, each color axis is represented on 8 bits (256 levels) (RGB24 

bitmap images). The total number of colors is 28x28x28 = 224 = 16.777.216  

 

For RGB24 images, all possible color combinations can be displayed simultaneously. If the 

image contains a palette, and the color of a pixel is an index in the palette, only a subset of the colors 

can be displayed. In this context, the number of bits/pixel (the number of bits used to encode a color) 

is called “color depth” (Table 2.1): 

 

Table 2.1. Color depth and image type 

Color depth Number of 

colors 

Color mode Palette (LUT) 

1 bit 2 Indexed Color Yes 

4 bits 16 Indexed Color Yes 

8 bits 256 Indexed Color Yes 

16 bits 65536 True Color No 

24 bits 16.777.216 True Color No 

32 bits 16.777.216 True Color No 

 

There are other color models [2], which will not be discussed here. 

 

2.3. Conversion of a color image to grayscale 
 

In order to convert a color pixel to a grayscale pixel, its color components must be made equal. 

A widely used conversion method is to compute the intensity as the average of the three channels: 

 

3

SrcSrcSrc
DstDstDst

BGR
BGR

++
===          (2.1) 
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2.4. Conversion of a grayscale image to binary (black and white) 
 

A binary image, having only two pixel values (black and white) is obtained from a grayscale 

image through an operation called thresholding. This operation involves the comparison of the 

graylevel pixels with a value called “threshold”. Thresholding is the simplest segmentation technique, 

which allows the separation of foreground objects from the background (Fig. 2.4). 

 

 
Fig. 2.4 Thresholding 

 

In this laboratory work you will implement the thresholding operation using a fixed, user 

defined threshold, for grayscale 8-bit images. The pixels from the source image will be compared to 

the threshold value, and the destination will be set to: 

 

𝐷𝑠𝑡(𝑖, 𝑗) = {
0 (𝑏𝑙𝑎𝑐𝑘) , 𝑖𝑓 𝑆𝑟𝑐(𝑖, 𝑗) < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

255 (𝑤ℎ𝑖𝑡𝑒) , 𝑖𝑓 𝑆𝑟𝑐(𝑖, 𝑗) ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
  (2.2) 

 

2.5. The HSV (Hue Saturation Value) color space 
 

This color space tries to mimic the way the humans perceive color. The H component (hue) 

is the color itself, independent (invariant) of illumination, the S component (saturation) is the color’s 

“purity” (how well defined the color is), and V (value, or intensity) is the brightness. This space is 

represented as a pyramid with a hexagonal base, or as a cone. 

 
Fig. 2.5 The HSV color space 

 

Using the pyramid representation, the significance of the components is:  
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H – the angle between the current color and the ray corresponding to the color Red. 

S – the distance from the current color to the central axis of the pyramid/code. 

V – the height of the current color in the pyramid/cone. 

 

2.6. The RGB → HSV transform 
 

The equations for obtaining the HSV components from RGB are [3]: 

 

r = R/255;  // r : the normalized R component  

g = G/255; // g : the normalized G component 

b = B/255; // b : the normalized B component 

// Attention: please declare all variables as float 

// If you have declared R as uchar, you have to use a cast: r = (float)R/255 !!! 

 

M = max (r, g, b); // Attention: there is a default macro in Visual C for max and min, but 

m = min (r, g, b);  // it only takes two parameters (no compiler error if you provide three) 

C = M - m; 

    

Value: 

V = M; 

 

Saturation: 

 If (V!=0) 

  S = C / V; 

 Else // black 

S = 0;  

Hue:   

If (C!=0) { 

  if (M == r) H = 60 * (g - b) / C; 

  if (M == g) H = 120 + 60 * (b - r) / C; 

  if (M == b) H = 240 + 60 * (r - g) / C; 

  } 

Else  // grayscale 

  H = 0;  

If (H < 0)   

H = H + 360;   

 

The values for H, S and V computed with the previous equations will have the following 

range:  

H = 0 .. 360 

S = 0 .. 1 

V = 0 .. 1 

 

In order to display them as 8-bit grayscale images, you will need to scale them to the 0…255 

interval: 

H_norm = H*255/360 

S_norm = S*255 

V_norm=V*255 
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2.7. Practical work 
 

1. Create a function that will copy the R, G and B channels of a color, RGB24 image (CV_8UC3 

type) into three matrices of type CV_8UC1 (grayscale images). Display these matrices in three 

distinct windows. 

2. Create a function that will convert a color RGB24 image (CV_8UC3 type) to a grayscale 

image (CV_8UC1) and display the result image in a destination window. 

3. Create a function for converting from grayscale to black and white (binary), using (2.2). Read 

the threshold from the console. Test the operation on multiple images and using multiple 

thresholds.  

4. Create a function that will compute the H, S and V values from the R, G, B channels of an 

image, using the equations from section 2.6. Store each value (H, S, V) in a CV_8UC1 matrix. 

Display these matrices in distinct windows. Check the correctness of your implementation 

using the example below. 

5. Implement a function called isInside(img, i, j), which checks if the position indicated by the 

pair (i,j) (row, column) is inside the image img. 

6. Save your work. Use the same application in the next laboratories. At the end of the 

image processing laboratory, you should present your own application with the 

implemented algorithms!!! 

 

 
a) Results on flowers_24bits.bmp (24 bits/pixel) 

 
b) Results on Lena_24bits.bmp (24 bits/pixel) 

Fig. 2.6 Examples of RGB to HSV conversion 

 

2.8. Bibliography 
 

[1] http://en.wikipedia.org/wiki/RGB_color_model 

[2] http://en.wikipedia.org/wiki/Color_models 

[3] Open Computer vision Library, Reference guide, cvtColor() function, 
https://docs.opencv.org/4.5.1/d8/d01/group__imgproc__color__conversions.html#ga397ae87e1288a81d2363b61574eb8cab  

http://en.wikipedia.org/wiki/RGB_color_model
http://en.wikipedia.org/wiki/Color_models
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3. The histogram of image intensity levels 
 

3.1. Introduction 
 

 

This laboratory work presents the concept of image histogram together with an algorithm for 

dividing the image histogram into multiple bins and reducing the number of image gray levels (gray 

levels quantization).  

 

3.2. The histogram of intensity levels  
 

 

Given a grayscale image with the highest intensity value L (for an image with 8 bits/pixel 

L=255), the intensity (gray) level histogram is defined as a function h(g) that is equal to as value the 

number of pixels in the image (or in the region of interest) that have intensity equal to g, for each 

intensity level g  [0 … L]. 

gN=h(g)        (3.1) 

Ng – the number of pixels in the image or in the region of interest that have the intensity equal to g. 
 

Fig. 3.1 Example: the histogram of a grayscale image  

 

The function obtained by normalizing the histogram with the number of pixels in the image (in 

the ROI) is called the probability density function1 (PDF) of the intensity levels.  

 

M

gh
gp

)(
)( =            (3.2) 

where: 

M = image_height × image_width 

 

PDF has the following properties: 

 

{
𝑝(𝑔) >= 0

∫ 𝑝(𝑔)𝑑𝑔 = 1, ∑
ℎ(𝑔)

𝑀
=

𝑀

𝑀
= 1𝐿

𝑔=0
∞

−∞

    (3.3) 
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3.3. Application: Multilevel thresholding 
 

In the following we describe an algorithm which determines multiple thresholds for reducing 

the number of image intensity (gray) levels.  

Its first step is to determine the local maxima of the histogram. Then, each gray level is assigned 

to the closest maximum. 

The following steps must be performed in order to determine the histogram maxima: 

1. Normalize the histogram (transform it into a PDF) 

2. Choose a window width 2*WH+1 (a good value for WH is 5) 

3. Choose a threshold TH (a good value is 0.0003) 

4. For each position (middle of the window) k from 0+WH to 255-WH 

- Compute the average v of normalized histogram values in the interval [k-WH, k+WH]. 

Remark: the value v is the average of 2*WH+1 values. 

- If PDF[k]>v+TH and PDF[k] is greater or equal than all PDF values in the interval 

[k-WH, k+WH] then k corresponds to a histogram maximum. Store it and then 

continue from the next position. 

5. Insert 0 at the beginning of the maxima position list and 255 at the end (this allows the 

colors black and white to be represented exactly).   

 The second step is thresholding. Thresholds are located at equal distances between the maxima. 

Therefore, the algorithm for thresholding is simply to assign to each pixel the color value of the 

nearest histogram maximum. 
 

    

           a)         c) 

   

     b)         d)             e)  

Fig. 3.2  a) The initial image; b) The histogram of the initial image; c) The obtained multilevel thresholded image; d) 

The histogram of the multilevel thresholded image; e) The histogram maxima computation algorithm 
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3.4. Floyd-Steinberg dithering  
 

 As seen in Fig. 3.3b, the results are visually unacceptable when the number of gray levels is 

small. To correct this, a dithering algorithm can be applied. Such an algorithm spreads the 

quantization error to multiple pixels. An example of a dithering algorithm is the Floyd-Steinberg 

algorithm: 

 for i from [0, rows-1] 

    for j from [0, cols-1] 

       oldpixel := img(i,j) 

       newpixel := find_closest_histogram_maximum(oldpixel) 

       img(i,j) := newpixel 

       error := oldpixel - newpixel 

       if (i,j+1) inside img then 

        img(i,j+1)   := img(i,j+1)   + 7*error/16  

       if (i+1,j-1) inside img then 

        img(i+1,j-1) := img(i+1,j-1) + 3*error/16 

       if (i+1,j) inside img then 

        img(i+1,j)   := img(i+1,j)   + 5*error/16 

       if (i+1,j+1) inside img then 

        img(i+1,j+1) := img(i+1,j+1) + error/16 
 

This algorithm computes the quantization error and spreads it to the neighboring pixels according to 

the following fraction matrix (X = current pixel’s location): 

0 0 0 

0 X 7/16 

3/16 5/16 1/16 
 

  

                      a)                  b) 

 

c) 

Fig. 3.3 a) The initial image; b) The obtained multilevel thresholded image; c) Dithering on the initial image using the 

Floyd-Steinberg algorithm 



Technical University of Cluj-Napoca, Computer Science Department 

 

 

24 

3.5. Implementation details 
 

3.5.1. Displaying the histogram as an image 
 

The histogram can be viewed as an image by making a bar plot. For each gray level draw a 

bar with height proportional to the number of appearances. The function below showHistogram 

plots a histogram (available in the OpenCVApplication framework). You need to provide the 

computed histogram, the number of bins, and the height of the desired output image. Bars/lines are 

automatically rescaled to fit the image, but they remain proportional to the histogram values. 
 

void showHistogram(const string& name, int* hist, const int  hist_cols,  

    const int hist_height) { 

Mat imgHist(hist_height, hist_cols, CV_8UC3, CV_RGB(255, 255, 255));  

                 // constructs a white image 

 // computes histogram maximum 

 int max_hist = 0; 

 for (int i = 0; i<hist_cols; i++) 

  if (hist[i] > max_hist) 

   max_hist = hist[i]; 

 double scale = 1.0; 

 scale = (double)hist_height / max_hist; 

 int baseline = hist_height - 1; 

 for (int x = 0; x < hist_cols; x++) { 

  Point p1 = Point(x, baseline); 

  Point p2 = Point(x, baseline - cvRound(hist[x] * scale)); 

   line(imgHist, p1, p2, CV_RGB(255, 0, 255)); // histogram bins  

                 // colored in magenta 

 } 

 imshow(name, imgHist); 

} 
 

3.5.2. Histogram with custom number of bins 
 

The image histogram can be computed using a custom number of bins m ≤ 256. This entails 

dividing the range 0-255 into m equal parts, then counting all the gray levels falling into each of the 

m bins or buckets. Such a representation is useful since it is lower dimensional. 
 

3.6. Practical work 
 

1. Compute the histogram for a given grayscale image (in an array of integers having 

dimension 256).  

2. Compute the PDF (in an array of floats of dimension 256).  

3. Display the computed histogram using the provided function. 

4. Compute the histogram for a given number of bins m ≤ 256. 

5. Implement the multilevel thresholding algorithm from section 3.3. 

6. Enhance the multilevel thresholding algorithm using the Floyd-Steinberg dithering from 

section 3.4. 

7. Perform multilevel thresholding on a color image by applying the procedure from section 

3.3 on the Hue channel from the HSV color-space representation of the image. Modify only 

the Hue values, keeping the S and V channels unchanged or setting them to their maximum 

possible value. Transform the result back to RGB color-space for viewing.  

8. Save your work. Use the same application in the next laboratories. At the end of the 

image processing laboratory, you should present your own application with the 

implemented algorithms!!! 
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4. Geometrical features of binary objects 
 

4.1. Introduction 

 
This lab work presents some important geometric properties of binary images and the 

algorithms used for computing them. The properties described are the area, the center of mass, the 

elongation axis, the perimeter, the thinness ratio, the aspect ratio and the projections of the binary 

image.  

 

4.2. Theoretical considerations 
  

After applying segmentation and labeling algorithms, we obtain a new image where each object 

can be referred separately: 

 

𝐼𝑖(𝑟, 𝑐) = {
1,      if 𝐼(𝑟, 𝑐) ∈ object labeled 'i'
0,      otherwise 

 

 

where 𝑟 ∈ [0. . . 𝐻𝑒𝑖𝑔ℎ𝑡 − 1] and 𝑐 ∈ [0. . . 𝑊𝑖𝑑𝑡ℎ − 1]  
 

An object ‘i’ in the image is described by the function:  

The geometric properties of the objects can be classified into two categories:  

• position and orientation properties: the center of mass, the area, the perimeter, the 

elongation axis; 

• shape properties: aspect ratio, thinness ratio, Euler’s number, the projections, the Feret 

diameters of the objects. 

 

4.2.1. Area 

𝐴𝑖 = ∑ ∑ 𝐼𝑖(𝑟, 𝑐)

𝑊−1

𝑐=0

𝐻−1

𝑟=0

 

 

The area Ai is measured in pixels and it indicates the relative size of the object. 

 

4.2.2. The center of mass 
 

�̄�𝑖 =
1

𝐴𝑖
∑ ∑ 𝑟𝐼𝑖(𝑟, 𝑐)

𝑊−1

𝑐=0

𝐻−1

𝑟=0

 

�̄�𝑖 =
1

𝐴𝑖
∑ ∑ 𝑐𝐼𝑖(𝑟, 𝑐)

𝑊−1

𝑐=0

𝐻−1

𝑟=0

 

 

The equations above correspond to the row and column where the center of mass is located. 

This attribute helps us locate the object in a bi-dimensional image. 

 

4.2.3. The axis of elongation (the axis of least second order moment) 

 

𝑡𝑎𝑛( 2𝜑𝑖) =
2 ∑ ∑ (𝑟 − �̄�𝑖)(𝑐 − �̄�𝑖)𝐼𝑖(𝑟, 𝑐)𝑊−1

𝑐=0
𝐻−1
𝑟=0

∑ ∑ (𝑐 − �̄�𝑖)2𝐼𝑖(𝑟, 𝑐) − ∑ ∑ (𝑟 − �̄�𝑖)2𝑊−1
𝑐=0 𝐼𝑖(𝑟, 𝑐)𝐻−1

𝑟=0
𝑊−1
𝑐=0

𝐻−1
𝑟=0

 



Technical University of Cluj-Napoca, Computer Science Department 

 

 

28 

If both the nominator and the denominator of the above equation are equal to zero, then the 

object has a circular symmetry, and any line that passes through the center of mass is a symmetry 

axis. 

For finding the direction of the line (the angle) one must apply the arctangent function. The 

arctangent is defined on the interval (-∞, +∞) and it takes values in the interval  

(-π/2, π/2). The evaluation of the arctangent becomes unstable when the denominator of the fraction 

tends to zero.  

The signs of the numerator and of the denominator are important for determining the right 

quadrant in which the result lays. The arctangent function does not make the difference between 

directions that are opposed. For this reason, the usage of the function “atan2” is suggested. The 

“atan2” function has as arguments the numerator and the denominator of such fraction, and it returns 

a result in the interval (-π, π). 

The axis of elongation gives information about how the object is positioned in the field of 

view, more exactly, its orientation. The axis corresponds to the direction in which the object (seen as 

a plane surface of constant width) can rotate most easily (has a minimum kinetic moment).  

 After the i  angle is found, the correctness of the resulted value can be validated by drawing 

the axis of elongation. The axis of elongation will correspond to the line that passes through the center 

of mass and determines the i  angle with Ox axis.  

   

4.2.4. The perimeter  

 

 The perimeter of the object helps us determine the position of the object in space and it also 

gives information about the shape of the object. The perimeter can be computed by counting the 

number of pixels on the contour (pixels of value 1 and having at least one neighbor pixel of value 0). 

 A first approach to contour detection is the scanning of the image, line by line and counting 

the number of pixels in the object that satisfy the condition mentioned above. A main disadvantage 

of this method is that we cannot distinguish the exterior contour from the interior contours (if they 

exist, they are generated by the holes in the object). As the pixels of digital images represent 

distributions on a rectangular raster, the length of curves and oblique lines in the image cannot be 

correctly estimated by counting the pixels. A first correction is given by the multiplication by π/4 of 

the perimeter that resulted in the previous algorithm. There are other methods for length correction. 

These methods take into account the type of neighborhood used (4 neighbors, 8 neighbors etc.). 

 Another method for detecting the contour of an object involves the usage of an existing 

algorithm for edge detection, the thinning of the edges until they become 1 pixel thick and in the end 

the counting of the resulted edge pixels. 

 Methods of type “chain-codes” represent complex methods for contour detection and offer a 

high accuracy. 

 

4.2.5. The thinness ratio (circularity) 

 

 

 The function above has the maximum value equal to 1, and for this value we obtain a circle. 

The thinness ratio is used for determining how “round” an object is. If the value of T is close to 1, the 

object tends to be round. 









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 The value of the thinness ratio also offers information on how regular an object is. The objects 

that have a regular contour have a greater value of T than the objects of irregular contours. The value 

1/T is called irregularity factor of the object (or compactness factor). 

 

 

4.2.6. The aspect ratio 

 

 This property is found by scanning the image and keeping the minimum and maximum 

values of the lines and columns that form the rectangle circumscribed to the object. 

 

 

 

4.2.7. The projections of the binary object 

 

 The projections give information about the shape of the object. The horizontal projection 

equals the sum of pixels computed on each line of the image, and the vertical projection is given by 

the sum of the pixels on the columns.  

 

 

ℎ𝑖(𝑟) = ∑ 𝐼𝑖(𝑟, 𝑐)𝑊−1
𝑐=0       𝑣𝑖(𝑐) = ∑ 𝐼𝑖(𝑟, 𝑐)𝐻−1

𝑟=0  

 

 

 The projections are used in applications of text recognition in which the interest object can be 

normalized.  

 

4.3. Implementation details 
 

In order to distinguish between the various objects present in an image, we will suppose that 

each one of them is painted using a different color. These colors may be the result of a previous 

labeling step or may be generated manually (see Fig. 4.1). 

 

 
Fig. 4.1 Example of a labeled image on which the described algorithms could be tested 
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There are various approaches for implementing the geometrical properties extractors:  

 

4.3.1. Compute the geometrical features for all objects in an image at once 

 

For each object, the compound pixels are selected based on the object unique label (color) and 

the corresponding geometrical features are computed. This procedure is applied to each object from 

the input labeled image. 

 

4.3.2. Compute the geometrical features for a specific object selected with the mouse 

 

The user should position the mouse pointer over a pixel belonging to the desired object and 

click on it. In response to this action, the geometrical features of the desired object should be 

computed and displayed in the standard output. 

 

In order to add an event handler, we will use the setMouseCallback function from OpenCV, 

which has the role to set a handler for the mouse in a specific window.  

 
void setMouseCallback(const string& winname, MouseCallback onMouse, void* userdata=0) 

winname – window title, 

onMouse – callback function name that is called when a mouse event occurs on the winname 

window, 

userdata – optional parameter that may be passed to the callback function. 

 
The computation of the desired features will be implemented in onMouse function. 

 
void onMouse (int event, int x, int y, int flags, void* param) 

event – is the mouse event and can take the following values: 

- EVENT_MOUSEMOVE 

- EVENT_LBUTTONDOWN 

- EVENT_RBUTTONDOWN 

- EVENT_MBUTTONDOWN 

- EVENT_LBUTTONUP 

- EVENT_RBUTTONUP 

- EVENT_MBUTTONUP 

- EVENT_LBUTTONDBLCLK 

- EVENT_RBUTTONDBLCLK 

- EVENT_MBUTTONDBLCLK 

x, y – are the x and y coordinates where the event occurred, 

flags – specific condition whenever a mouse event occurs, 

param – corresponds to the userdata pointer passed through setMouseCallback function. 
 

In OpenCVApplication framework, an example of event handler is presented in the 

testMouseClick() function.  
 

In order to draw the elongation axis, use the line function from OpenCV to draw the line: 
  

void line( Mat img,  Point pStart, Point pEnd, Scalar color, int thickness ) 

 img – image where the line segment is drawn 

 pStart, pEnd – the two points that define the line segment 

 color – line color 

 thickness – line thickness 
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4.4. Practical work 
 

1. For a specific object in a labeled image selected by a mouse click, compute the object’s area, 

center of mass, axis of elongation, perimeter, thinness ratio and aspect ratio.  

a. Display the results in the standard output 

b. In a separate image (source image clone): 

o Draw the contour points of the selected object 

o Display the center of mass of the selected object 

o Display the axis of elongation of the selected object by using the line function from 

OpenCV. 

c. Compute and display the projections of the selected object in a separate image (source 

image clone). 

2. Create a new processing function which takes as input a labeled image and keeps in the output 

image only the objects that: 

a. have their area < TH_area 

b. have a specific orientation phi, where phi_LOW < phi < phi_HIGH  

where TH_area, phi_LOW, phi_HIGH are given by the user.  

3. Save your work. Use the same application in the next laboratories. At the end of the image 

processing laboratory, you should present your own application with the implemented 

algorithms!!! 

 

4.5. Bibliography 
 

[1] Umbaugh Scot E., Computer Vision and Image Processing, Prentice Hall, NJ, 1998, ISBN 0-13-

264599-8.  



Technical University of Cluj-Napoca, Computer Science Department 

 

 

32 

 



Image Processing - Laboratory 5: Connected-component labeling 

 

 

33 

5. Connected-component labeling 
 

5.1. Introduction 
 

 This laboratory work presents algorithms for labeling distinct objects from a black and white 

image. As a result, every object will be assigned a unique number. This number, or label, can be used 

to process the objects separately. 

 

5.2. Theoretical foundations 
 

 We will present several algorithms for labeling. The input for the algorithms is a binary image. 

The output is a label matrix which has the same dimensions as the input image. It should be capable 

of storing sufficiently large label values.  

 In the input binary image, the objects are represented as connected components of color black 

(0), the background is assigned the color white (255). To define what a connected component is, we 

need to introduce different neighborhood types. 

 The 4-neighborhood of a position (i,j) is defined to be the set of positions:  

N4(i,j)={(i-1,j), (i,j-1), (i+1,j), (i,j+1)}, 

i.e., the upper, left, lower and right neighbors.  

 The 8-neighborhood consists of all neighboring positions differing by at most 1: 
N8(i,j) = {(k,l) | |k-i|≤1, |l-j|≤1, (k,l)≠(i,j) }, 

so, it includes the 4-neighborhood and the neighbors situated diagonally. 

 When traversing the image in a particular direction we can define the previous neighbors with 

regard to this traversal. The previous neighbors for normal top-down, left-right traversal for a position 

(i,j) is:  

Np(i,j)={(i,j-1), (i-1,j-1), (i-1,j), (i-1,j+1)}. 

 

The presented definitions are illustrated below.  

 

           

 x    x    x  

           
             a) 4-neighborhood          b) 8-neighborhood     c) previous neighbors 

 

We will define a graph generated by a binary image. The set of vertices is formed by all object 

pixel positions. The neighboring object pixels determine the edges of the graph. Two positions are 

neighboring if one is part of the other's neighborhood. We will use N4 and N8, so the generated graph 

is undirected. In this setting a connected component is a set of vertices in which for each pair there is 

path from vertex 1 to vertex 2.  

 

5.2.1. Algorithm 1 - Breadth first traversal 

 

We start the description with a straightforward method for labeling, which relies on breadth 

first traversal of the graph defined on the image. The first step is to initialize the label matrix to zeroes 

which indicates that everything is unlabeled. Then algorithm searches for an unlabeled object pixel. 

If it finds one, it gives it a new label and propagates the label to its neighbors. We repeat this until all 

object pixels are given a label. In the following we present the steps of the algorithm:  
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label = 0    

labels = zeros(height, width) // height x width matrix with 0  

for i = 0:height-1 

 for j = 0:width-1 

  if img(i,j)==0 and labels(i,j)==0 

   label++ 

   Q = queue()  

   labels(i,j) = label 

   Q.push( (i,j) ) 

   while Q not empty 

    q = Q.pop()     

    for each neighbor in N8(q) 

     if img(neighbor)==0 and labels(neighbor)==0 

      labels(neighbor) = label 

      Q.push( neighbor ) 

Algorithm 1. Breadth first traversal for connected-component labeling 

 

The queue data structure maintains the list of points that need to be labeled. Since the queue 

uses a FIFO policy we obtain a breadth first traversal. We mark visited nodes by setting the label for 

their position. Changing the data structure to a stack would result in a depth first traversal of the image 

graph. 

 

5.2.2. Algorithm 2 - Two-pass with equivalence classes 

 

Labeling can be achieved by performing two linear passes over the image and some additional 

processing on a smaller graph. This approach uses less memory. In the previous algorithm we needed 

the store a list of points. If there is a large connected component, the size of the list is roughly the 

same as the size of the image.  

The current algorithm performs the first pass and labels all object pixels with initial labels. 

For each pixel we need to consider the previously visited and labeled pixels, so we use the Np 

neighborhood defined above. After inspecting the labels of the previous positions, we can have the 

following cases: 

• If no previous neighbor was labeled, we create a new label. 

• Otherwise, we take the smallest label, called x, from the neighbors. Afterwards, we mark each 

neighboring label y as equivalent to x. 

We assign the label found in the previous step to the current position and continue. After the 

first pas we have assigned initial labels to each position. However, several labels are equivalent, so 

we need to assign new ones to each equivalence class.  

The equivalence relations define an undirected graph on the labels. This graph is usually much 

smaller than the original graph defined on the whole image. It consists of nodes labeled from 1 to the 

maximum label value. The edges of the graph indicate the equivalence relations. We can apply 

Algorithm 1 on this smaller graph to obtain a new list of labels. All labels equivalent to label 1 get 

relabeled to 1. The next connected component not equivalent to 1 gets relabeled to 2, and so on. A 

new pass over the labels’ matrix is necessary to update the labels. 
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label = 0 

labels = zeros(height, width) 

vector<vector<int>> edges(1000) 

for i = 0:height-1 

 for j = 0:width-1 

  if img(i,j)==0 and labels(i,j)==0 

   L = vector() 

   for each neighbor in Np(i,j) 

    if labels(neighbor)>0 

     L.push_back(labels(neighbor)) 

   if L.size() == 0  // assign new label 

    label++ 

    labels(i,j) = label 

   else     // assign smallest neighbor 

    x = min(L) 

    labels(i,j) = x 

    for each y from L 

                    if (y <> x)  

     edges[x].push_back(y) 

     edges[y].push_back(x) 

 

newlabel = 0     

newlabels = zeros(label+1)   // an array of zeroes of length label+1 

for i = 1:label 

 if newlabels[i]==0 

  newlabel++ 

  Q = queue() 

  newlabels[i] = newlabel 

  Q.push( i ) 

  while Q not empty 

   x = Q.pop() 

   for each y in edges[x] 

    if newlabels[y] == 0 

     newlabels[y] = newlabel 

     Q.push( y ) 

           

for i = 0:height-1 

 for j = 0:width-1 

  labels(i,j) = newlabels[labels(i,j)]    

Algorithm 2. Two-pass connected-component labeling 

 

 

 

 

 
Fig. 5.1 Example of a case when the previous neighbors have different labels.  

Labels 1 and 2 are marked as equivalent at this step 

 



Technical University of Cluj-Napoca, Computer Science Department 

 

 

36 

5.3. Implementation details 
 

The following code illustrates how to visit the 4-neighborhood of a pixel. It can be easily 

modified to 8-neighborhood, or to only consider the upper and left neighbors of the pixel. 

 
int di[4] = {-1,0,1,0}; 

int dj[4] = {0,-1,0,1}; 

uchar neighbors[4]; 

for(int k=0; k<4; k++) 

neighbors[k] = img.at<uchar>(i+di[k], j+dj[k]); 

 

Pay attention to stay within the bounds of the image!  

 

Store the labels in a matrix capable of holding the maximum number of labels: 

 

28
 = 256 - uchar (CV_8UC1)  

216 = 65536 - short (CV_16SC1)  

232 ~ 2.1e9 - int (CV_32SC1)  

 

You can use the std∷stack and std∷queue container for storing points for Algorithm 1 

to obtain DFS and BFS traversal, respectively. The points can be instances of structure 

pair<int,int>. Sample code for initializing and performing operations on a queue: 

 
#include <queue> 

queue<pair<int,int>> Q; 

Q.push( pair<int,int>(i,j) ); // add as tail of the queue (newest) 

pair<int,int> p = Q.front();  // access the front element (oldest) 

Q.pop(); // remove the front element 

// access position of p 

i = p.first; j = p.second; 

 

The equivalence relations that define the edges of the smaller graph can be stored using 

adjacency lists in a vector<vector<uchar>>.  Sample code to initialize and insert edges: 

 
// ensure that edges has the proper size 

vector<vector<int>> edges(1000); 

// if u is equivalent to v 

edges[u].push_back(v); 

edges[v].push_back(u); 

 

To display the label matrix as a color image you need to generate a random color for each 

label. You should use the default random generator from the standard library. It is better than a call 

to rand()%256. 

 
#include <random> 

default_random_engine gen; 

uniform_int_distribution<int> d(0,255); 

uchar x = d(gen); 
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5.4. Labeling examples 
 

 
 

 
Fig. 5.2 Labeling examples 

 

5.5. Practical Work 
 

1. Implement the breadth first traversal component labeling algorithm (Algorithm 1). You should be 

able to easily switch between the neighborhood types of 4 and 8. 

2. Implement a function which generates a color image from a label matrix by assigning a random 

color to each label. Display the results. 

3. Implement the two-pass component labeling algorithm. Display the intermediate results you get 

after the first pass over the image. Compare this to the final results and to the previous algorithm. 

4. Optionally, visualize the process of labeling by showing intermediate results and pausing after 

each step to illustrate the order of traversal a selected algorithm. 

5. Optionally, change the queue to a stack to perform DFS traversal. 

6. Save your work. Use the same application in the next laboratories. At the end of the image 

processing laboratory, you should present your own application with the implemented 

algorithms!!! 

 

5.6. Bibliography 
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6. Border Tracing Algorithm 
 

6.1. Objectives 
 

The purposes of this laboratory session are: 

• to extract the objects’ contours using a border tracing algorithm; 

• to represent efficiently each extracted contour using chain codes; 

• to take advantage of using chain codes in representing the objects’ contours (border 

reconstruction, matching, merging etc.). 

 

6.2. Theoretical Background 
 

6.2.1. Border Tracing Algorithm 
 

 

The border tracing algorithm is used to extract the contours of the objects (regions) from an 

image. When applying this algorithm, it is assumed that the image with regions is either binary or 

those regions have been previously labeled. 

Algorithm’s steps: 

1. Search the image from top left until a pixel of a new region is found; this pixel P0 is the 

starting pixel of the region border. Define a variable dir which stores the direction of the 

previous move along the border from the previous border element to the current border 

element. Assign 

(a) dir = 0 if the border is detected in 4-connectivity (Fig. 6.1a) 

(b) dir = 7 if the border is detected in 8-connectivity (Fig. 6.1b) 

2. Search the 3x3 neighborhood of the current pixel in an anti-clockwise direction, beginning 

the neighborhood search at the pixel positioned in the direction 

(a) (dir + 3) mod 4 (Fig. 6.1c) 

(b) (dir + 7) mod 8 if dir is even (Fig. 6.1d) 

(dir + 6) mod 8 if dir is odd (Fig. 6.1e) 

The first pixel found with the same value as the current pixel is a new boundary element 

Pn. Update the dir value. 

3. If the current boundary element Pn is equal to the second border element P1 and if the 

previous border element Pn-1 is equal to P0, stop. Otherwise repeat step (2). 

4. The detected border is represented by pixels P0 … Pn-2. 

 
Fig. 6.1 (a) Direction notation, 4-connectivity, (b) 8-connectivity, (c) pixel neighborhood search sequence is 4-

connectivity, (d), (e) search sequence in 8-connectivity, (f) boundary tracing in 8-connectivity (dashed lines show pixels 

tested during the border tracing) [3] 
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Remarks: 

 

• The above algorithm works for all regions larger than one pixel.  

• Looking for the border of a single-pixel region is a trivial problem. 

• This algorithm is able to find region borders but does not find borders of region holes.  

• To search for the object’s holes’ borders as well, the border must be traced starting in each 

region or hole border element, if this element has never been a member of any border 

previously traced.  

• Note that if objects are of unit width, more conditions must be added.  

6.2.2. Chain Codes Extraction  

 

The chain code provides a storage-efficient representation for the boundary of an object in a 

binary image. The chain code representation incorporates such pertinent information as the length of 

the boundary of the encoded object, its area, and moments. Chain codes lend to efficient calculation 

of certain curve parameters. Additionally, chain codes are invertible in that an object can be 

reconstructed from its chain code representation. 

The basic idea behind the chain code is that each boundary pixel of an object has an adjacent 

boundary pixel neighbor whose direction from the given boundary pixel can be specified by a unique 

number between 0 and 7 (8-connectivity neighborhood). Chain codes could also be defined using a 

4-connectivity neighborhood. A 4-connecivity neighborhood chain codes example it is presented in 

Fig. 6.4.  

In the following we use the 8-connectivity neighborhood. Given a pixel, consider its eight 

neighboring pixels. Each 8-neighbor can be assigned a number from 0 to 7 representing one of eight 

possible directions from the given pixel (see Fig. 6.2). This is done with the same orientation 

throughout the entire image.  

  
Fig. 6.2 The 8-neighborhood and the associated eight directions 

 

The chain code for the boundary of a binary image is a sequence of integers  

c = {c0, c1, …, cn-1}, having each ci from the set {0, 1, …, 7} for i=0, 1, …, n-1. The number of 

elements in the sequence c is called the length of the chain code. The elements c0 and cn-1 are called 

the initial and terminal point of the code, respectively. Starting at a given base point, the boundary of 

an object in a binary image can be traced out using the head-to-tail directions that the chain code 

provides. 

Fig. 6.3 illustrates the process of tracing out the boundary of a triangle by following direction 

vectors. Suppose we choose the topmost left feature pixel of Fig. 6.3 as the base point (x=109, y=61) 

for the boundary encoding. The chain code for the boundary of the triangle is the following sequence 

of  245 codes: 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 

5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 2 3 2 3 

2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2. 
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Given the base point and the chain code, the boundary of the triangle can be completely 

reconstructed. The chain code is an efficient way of storing boundary information because it requires 

only three bits (23 = 8) to determine any one of the eight directions.  

 

 
 

Fig. 6.3 Chain code directions with associated direction numbers 

 Chain codes may be made position-independent by ignoring the “start point”. If they represent 

closed boundaries, they may be “start point normalized” by choosing the start point so that the 

resulting sequence of direction codes forms an integer of minimum magnitude.  

 The “derivative” of the chain code is useful because it is invariant under boundary rotation. 

The derivative (really a first difference mod 4 or 8) is simply another sequence of numbers indicating 

the relative direction of chain code segments; the number of left hand turns of π/2 or π/4 needed to 

achieve the direction of the next chain segment. A mod 4 or mod 8 difference is called a chain code 

derivative (see Fig. 6.4).  

 

 
Fig. 6.4 Chain code in 4-connectivity and its derivative 

Code:          3, 0, 0, 3, 0, 1, 1, 2, 1, 2, 3, 2 

Derivative: 1, 0, 3, 1, 1, 0, 1, 3, 1, 1, 3, 1 

 

Chain codes properties: 

• Chain codes describe an object by a sequence of unit-size (4-connectivity) line segments with 

a given orientation.  

• The first element of such a sequence must bear information about its position to allow 

reconstruction of the region.  

• Even codes {0, 2, 4, 6} correspond to horizontal and vertical directions; odd codes  

{1, 3, 5, 7} correspond to the diagonal directions. 

• Each code can be considered as the angular direction, in multiples of 45 degrees that we must 

move to go from one contour pixel to the next. 

• The absolute coordinates of the first contour pixel (e.g. top, leftmost) together with the chain 

code of the contour represent a complete description of the discrete region contour. 

• When there is a change between two consecutive chain codes, then the contour has changed 

direction. This point is defined as a corner.  
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6.3. Practical Work 
 

Using the OpenCVApplication framework and the laboratory’s additional images and files: 

 

1. Implement the border tracing algorithm and draw the object contour on an image having a single 

object.  

2. Starting from the border tracing algorithm write the algorithm that builds the chain code and 

derivative chain code for an object. Compute and display (command line or output text file) both 

codes (chain code and derivative chain code) for an image with a single object. 

3. Implement a function that reconstructs (draws) the border of an object over an image having as 

inputs the start point coordinates and the chain code in 8-neighborhood (reconstruct.txt). Load 

the image gray_background.bmp and apply the function that reconstructs the border. You should 

obtain the contour of the word “EXCELLENT” (having all the letters connected). 

4. Save your work. Use the same application in the next laboratories. At the end of the image 

processing laboratory, you should present your own application with the implemented 

algorithms!!! 

 

Additional info: 

The test images with a single object have: 

• 8 bits/pixel 

• index 0 for object’s pixels (black pixels) 

• other index value for background pixels (white pixels) 

 

The file reconstruct.txt is a text file having: 

• on the first line the start point coordinates (row, column) separated with a space; 

• on the second line the number of chain codes; 

• on the third line the chain codes (sequence of directions in 8-connectivity) 

separated with a space. 
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7.  Morphological operations on binary images 
 

7.1. Introduction 
 

Morphological operations are affecting the form, structure, or shape of an object. Usually, 

they are applied on binary images (black & white images – images with only two colors: black and 

white). They are used in pre- or post- processing (filtering, thinning and pruning) or for getting a 

representation or description of the shape of objects/regions (boundaries, skeletons convex hulls). 

  

7.2. Theoretical considerations 
 

The two principal morphological operations are dilation and erosion [1]. Dilation allows 

objects to expand, thus potentially filling in small holes and connecting disjoint objects. Erosion 

shrinks objects by etching away (eroding) their boundaries. These operations can be customized for 

an application by the proper selection of the structuring element, which determines exactly how the 

objects will be dilated or eroded. 

 

Notations:  

Object / foreground pixels:  pixels of interest (on which the morphological operations are 

applied) 

Background pixels:  the complementary set of the object / foreground pixels 

 

 

7.2.1. The dilation 
 

The dilation process is performed by laying the structuring element B on the image A and 

sliding it across the image from left to right, top to bottom. The result image has the same size as 

image A. Its pixels are initialized to ‘background’. The operation is non-linear and can be described 

as follows: 

 

1. If the origin of the structuring element coincides with a 'background' pixel in the image A, there 

is no change; move to the next pixel. 

2. If the origin of the structuring element coincides with an 'object' pixel in the image, label all 

pixels covered by the structuring element as ‘object’ pixels in the result image. 
 

Notation: 

A  B 
 

The structuring is a compound of ‘object’ pixels organized in any shape. Typical shapes are presented 

below:  

 
Fig. 7.1 Typical shapes of the structuring elements B 
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An example is shown in Fig. 7.2. Note that with a dilation operation, all the 'object' pixels in 

the original image will be retained, any boundaries will be expanded and small holes will be filled. 

 

Fig. 7.2 Illustration of the dilation process [1] 

 

  
a)       b) 

Fig. 7.3 Example of the dilation (object = black / background = white): a) Original image A;  

b) The result image: A  B 

 

7.2.2. The erosion 

 

The erosion process is similar to dilation, but the effect is somehow opposite. The result 

image, of same size as image A, is initialized to ‘background’. The same image scanning techniques 

is adopted as for dilation. The structuring element slides its position over pixels from image A. Each 

new position applies the following steps: 

 

1. If the structuring element covers only ‘object’ points, its corresponding pixel in the result image 

is set as ‘object’ pixel. 

2. If the structuring element covers any ‘background’ point, the pixel in the result image keeps its 

‘background’ label. 

 

Notation: 

A  B 
In Fig. 7.4 the only remaining pixels coincide to the origin of the structuring element for the 
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case when it was completely contained by any existing object. Because the structuring element is 3 

pixels wide, the 2-pixel-wide right leg of the image object was eroded away, but the 3-pixel-wide left 

leg retained some of its center pixels. 

 

 
Fig. 7.4 Illustration of the erosion process [1] 

 

 
a)        b) 

Fig. 7.5 Example of the erosion (object = black / background = white): a) Original image A;  

b) The result image: A  B 

 

7.2.3. Opening and closing 

 

These two basic operations, dilation and erosion, can be combined into more complex 

sequences. The most useful of these for morphological filtering are called opening and closing [1]. 

Opening consists of an erosion followed by a dilation and can be used to eliminate all pixels in regions 

that are too small to contain the structuring element. In this case the structuring element is often called 

a probe, because it is probing the image looking for small objects to filter out of the image. See Fig. 

7.6 for the illustration of the opening process. 

 

Notation: 

A◦B = (AΘB)  B 

Closing consists of a dilation followed by erosion and can be used to fill in holes and small 

gaps. In Fig. 7.7 we see that the closing operation has the effect of filling in holes and closing gaps. 

Comparing the left and right images from Fig. 7.8, we see that the order of operation is important. 
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Closing and opening will generate different results even though both consist of erosion and dilation. 

 

Notation: 

 A●B = (A  B)ΘB 
 

 
Fig. 7.6 Illustration of the opening process [1] 

 
Fig. 7.7 Illustration of the closing process [1] 

 

   
a)       b) 

Fig. 7.8 Results of the opening (a) and closing (b) operations applied on the original image from Fig. 7.5a  

(object = black / background = white) 
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7.2.4. Some basic morphological algorithms [2] 

7.2.4.1. Boundary extraction 

 

The boundary of a set A, denoted by β(A), can be obtained by first eroding A by B, and then 

performing the set differences between A and its erosion. That is,  

 

   β(A)=A – (AΘB) 

where:  

B is a suitable structuring element.  

‘–‘ is the difference operation on sets (illustrated in Fig. 7.10) 
 

 
Fig. 7.9 Illustration of the boundary extraction algorithm 

 

 

      A           B          A and B = A  B 

 

                    A or B = A  B          not (A) = AC        not(A) and B = B-A 

Fig. 7.10 Illustration of the main operations on sets 
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7.2.4.2. Region filling 

 

Next, we develop a simple algorithm for region filling based on set dilations, 

complementation, and intersections. 

 

Beginning with a point p inside the boundary, the objective is to fill the entire region with 

‘object’ pixels. If we adopt the convention that all non-boundary points are labeled ‘background’, 

then we assign the value/label ‘object’ to p to begin. The following procedure then fills the region 

with ‘object’ pixels: 

 

Xk = (Xk-1  B)   AC      k=1,2,3, … 

where: 

X0=p,  

B is the symmetric structuring element 

  - is the intersection operator (see Fig. 7.10) 

AC – is the complement of set A (see Fig. 7.10) 

 

The algorithm terminates at iteration step k if Xk=Xk-1. The set union of Xk and A contains the 

filled set and its boundary. 
 

 
Fig. 7.11 Illustration of the region filling algorithm 
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7.3. Implementation hints 
 

7.3.1. Using a supplementary image buffer for chain processing  

  

The results of the basic morphological operations (dilation and erosion) should be applied in 

the following manner:  

 

Destination image = Source image (operator) Structuring element 

 

The source image should not be affected in any way! 

 

For the implementation of the combined morphological operations (opening and closing) or 

of the repeated operations (for example: n consecutive erosions) in a single processing function a 

supplementary image buffer should be created and used.  

 

7.4. Practical work 
 

1. Add to the OpenCVApplication framework processing functions, which implement the basic 

morphological operations. 

2. Add the facility to apply the morphological operations repeatedly (n times). Input the value of n 

from the command line. Remark the ‘idempotency’ property of the opening/closing operations 

(therefore there is no use to apply them repeatedly). 

3. Implement the boundary extraction algorithm. 

4. Implement the region filling algorithm. 

5. Save your work. Use the same application in the next laboratories. At the end of the image 

processing laboratory, you should present your own application with the implemented 

algorithms!!! 
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8. Statistical properties of grayscale images  

 
8.1. Introduction 

 

This laboratory work presents the main statistic features that characterize the distribution of 

intensity levels in a grayscale image or in an area / region of interest (ROI) of the image. These 

statistic features can be applied similarly to color images, on each color component.  

The following notation will be used throughout this lab: 

• L = 255 highest intensity level; 

• h(g) histogram function, counts the number of pixels with gray level g; 

• M = H x W, number of pixels in the image; 

• p(g) = h(g)/M gray level probability distribution function (PDF). 

 

8.2. The mean value of intensity levels 
 

The mean value of intensity levels is a measure of the mean intensity of the given image or of 

the region of interest. A dark image has a low mean value (Fig 8.1a), and a bright image has a high 

mean value (Fig 8.1b). 

 

 
Fig. 8.12 The position of the histogram and the mean value of the intensity levels for  

a dark image (a) and a bright image (b) 

 

The mean intensity value is computed as follows:  

 

               �̄� = 𝜇 = ∫ 𝑔 ⋅ 𝑝(𝑔)𝑑𝑔
+∞

−∞
= ∑ 𝑔 ⋅ 𝑝(𝑔) =

1

𝑀
∑ 𝑔 ⋅ ℎ(𝑔)𝐿

𝑔=0
𝐿
𝑔=0  (8.1) 

 

 

a) 

b) 
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�̄� = 𝜇 =
1

𝑀
∑ ∑ 𝐼(𝑖, 𝑗)𝑊−1

𝑗=0
𝐻−1
𝑖=0               (8.2) 

 

8.3. The standard deviation of the intensity levels 
 

The standard deviation of the intensity levels represents a measure of the contrast of an image 

(region of interest). It characterizes the dispersion (spreading) of the intensity levels with respect to 

the mean value. An image having a high contrast will have a large standard deviation (Fig. 8.2a – the 

histogram is spread on the entire range of intensity levels), and an image having a low contrast will 

be characterized by a small standard deviation (Fig. 8.2b – the histogram is restricted to some intensity 

levels located around the mean value). 

Fig. 8.13 The position of the histogram and of the standard deviation (2) of the intensity levels for  

an image of high contrast (a) and an image of low contrast (b) 

 

The standard deviation of the intensity levels is given by:  
 

            𝜎 = √∑ (𝑔 − 𝜇)2 ⋅ 𝑝(𝑔)𝐿
𝑔=0              (8.3) 

                𝜎 = √
1

𝑀
∑ ∑ (𝐼(𝑖, 𝑗) − 𝜇)2𝑊−1

𝑗=0
𝐻−1
𝑖=0          (8.4)  

a) 

b) 
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8.4. Cumulative Histogram 
 

A cumulative histogram counts the cumulative number of pixel intensity values in all the bins 

up to the current bin. 

 

𝐶(𝑔)  =  ∑ ℎ(𝑗)

𝑔

𝑗=0

 

 

where h is the histogram of intensity levels and 𝑔 ∈ [0,255]. 

 

8.5. Basic global thresholding algorithm 
 

This thresholding algorithm is suitable for grayscale images having a bimodal histogram. A 

bimodal histogram is characterized by two dominant modes, thus one threshold (T) is enough for 

image segmentation.   

 

Algorithm 

 
1. Initialization step: 

• Compute the image histogram h 

• Find the maximum intensity Imax and the minimum intensity Imin in the image 

• Take an initial value for threshold T:  

 T = (Imin + Imax) / 2 

 

2. Segment the image after threshold T by dividing the image pixels into 2 groups G1 and G2 

• Compute mean 
1Gμ  for the group of pixels which satisfy the condition G1: I(i,j)≤T 

• Compute mean 
2Gμ  for the group of pixels which satisfy the condition G2: I(i,j)>T 

 

 Efficient implementation: compute the means 
1Gμ  and 

2Gμ  using the initial histogram 

 

      𝜇𝐺1
=

1

𝑁1
∑ 𝑔

𝑔=𝑇
𝑔=𝐼𝑚𝑖𝑛

⋅ ℎ(𝑔), where 𝑁1 = ∑ ℎ
𝑔=𝑇
𝑔=𝐼𝑚𝑖𝑛

(𝑔) 

 

      𝜇𝐺2
=

1

𝑁2
∑ 𝑔

𝑔=𝐼𝑚𝑎𝑥
𝑔=𝑇+1 ⋅ ℎ(𝑔), where 𝑁2 = ∑ ℎ

𝑔=𝐼𝑚𝑎𝑥
𝑔=𝑇+1 (𝑔) 

 

3. Update the threshold value: 𝑇 = (𝜇𝐺1
+ 𝜇𝐺2

)/2 

 

4. Repeat 2-3 until |𝑇𝑘 − 𝑇𝑘−1| < 𝑒𝑟𝑟𝑜𝑟 (where error is a positive value) 

 

5. Threshold the image using T 
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  a. Original image               b. Image histogram   c. Binary image after thresholding 

               with T = 165 (error = 0.1) 

Fig. 8.14 Segmentation result using the computed threshold 

 

8.6. Analytical histogram transformation functions 
 

In Fig. 8.4 are shown some typical transformation functions of the intensity values, which can 

be expressed in an analytical form: 

 

 
Fig. 8.15 Typical gray levels transformation functions 

 

8.6.1.  Identity function (no effect) 

 

𝑔𝑜𝑢𝑡 = 𝑔𝑖𝑛       (8.5) 

 

8.6.2.  Image negative 

 

𝑔𝑜𝑢𝑡 = 𝐿 − 𝑔𝑖𝑛 = 255 − 𝑔𝑖𝑛      (8.6) 

 

8.6.3. Brightness changing (histogram slide) 

 

• A positive offset increases the brightness 

• A negative offset decreases the brightness 

 

𝑔𝑜𝑢𝑡 = 𝑔𝑖𝑛 + 𝑜𝑓𝑓𝑠𝑒𝑡          (8.7)  

 

Attention: always the following checking will be done: 0 <= gout <=255. If an overflow beyond these 

limits appears, output values will be truncated or scaled!!! 
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           a. Original image        b. Brightness offset = 50        c. Brightness offset = -50 

Fig. 8.16 Brightness change 

 

8.6.4.  Histogram stretching / shrinking 

 

• Remap pixel intensities from [gin
MIN, gin

MAX] to [gout
MIN, gout

MAX] 

• Histogram stretching increases the contrast 

• Histogram shrinking decreases the contrast 

 

𝑔𝑜𝑢𝑡 = 𝑔𝑜𝑢𝑡
𝑀𝐼𝑁 + (𝑔𝑖𝑛 − 𝑔𝑖𝑛

𝑀𝐼𝑁) 
𝑔𝑜𝑢𝑡

𝑀𝐴𝑋−𝑔𝑜𝑢𝑡
𝑀𝐼𝑁

𝑔𝑖𝑛
𝑀𝐴𝑋−𝑔𝑖𝑛

𝑀𝐼𝑁    (8.8) 

where: 
𝑔𝑜𝑢𝑡

𝑀𝐴𝑋−𝑔𝑜𝑢𝑡
𝑀𝐼𝑁

𝑔𝑖𝑛
𝑀𝐴𝑋−𝑔𝑖𝑛

𝑀𝐼𝑁 = {
>1 ⇒ 𝑠𝑡𝑟𝑒𝑡𝑐ℎ

<1 ⇒ 𝑠ℎ𝑟𝑖𝑛𝑘
        (8.9) 

 

                
          a. Original image and histogram          b. Histogram stretching (gout

MIN=10, gout
MAX=250) 

Fig. 8.6 Histogram stretching 

 

                 
      a. Original image and histogram           b. Histogram shrinking (gout

MIN=50, gout
MAX=150) 

Fig. 8.7 Histogram shrinking 

 

8.6.5.  Gamma correction 

 

• Can be used to correct the brightness of an image with a non-linear transformation 

 
 

𝑔𝑜𝑢𝑡 = 𝐿 (
𝑔𝑖𝑛

𝐿
)

𝛾
     (8.10) 
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where: 𝛾 is a positive coefficient: <1 (gamma encoding/compression) or >1 (gamma decoding / 

decompression)  

 

Attention: always check that: 0 <= gout <= 255. If outside the domain, values should be saturated!!! 

 

 
Fig. 8.8 Results of gamma correction operations 

 

8.7. Histogram equalization 
 

Histogram equalization is a transform which allows us to obtain an output image with a quasi-

uniform histogram/PDF, regardless the shape of the histogram/PDF of the input image. For that 

purpose, the following transform will be used (see lecture notes for more details): 

          𝑠𝑘 = 𝑝𝑐(𝑘) = ∑
ℎ(𝑔)

𝑀
𝑘
𝑔=0 𝑔𝑜𝑢𝑡

𝑀𝐼𝑁 , 𝑘 = 0 … 𝐿    (8.11) 

where: 

k – intensity level in input image, 

ks – corresponding normalized intensity level of the output image, 

)(kpC  – cumulative probability density function (CPDF) of the input image. 

 

8.7.1. Histogram equalization algorithm 

 

• Compute the PDF of the input image as a vector pr of 256 elements;  

• Compute the CPDF of the input image (8.11), as a vector pc of 256 elements; 

• Because the ks  values obtained from (8.11) are normalized intensity values, it is necessary to 

transform the normalized intensity values ks  back to un-normalized ones by multiplication 

with L (the highest intensity value: 255 for 8 bits/pixel images): 

 

 < 1: gamma encoding/compression 

Input image 

 > 1: gamma decoding/expansion 
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𝑔𝑜𝑢𝑡 = 𝐿𝑠𝑘 =
𝐿

𝑀
∑ ℎ(𝑔)

𝑔𝑖𝑛
𝑔=0 , 𝑘 = 𝑔𝑖𝑛   (8.12) 

 

This transformation function can be written as an equivalence table (vector): 

 

𝑔𝑜𝑢𝑡 = 𝑡𝑎𝑏(𝑔𝑖𝑛) = 255 ∙ 𝑝𝐶(𝑔𝑖𝑛)    (8.13) 

 

• The intensity values of the output (equalized) image are computed using the equivalence 

table:  

𝐷𝑠𝑡(𝑖, 𝑗) = 𝑡𝑎𝑏(𝑆𝑟𝑐(𝑖, 𝑗))                                     (8.14) 

 

   
          a) Original image            b) Original image histogram 

 

   
         c) After histogram equalization                d) Equalized histogram  

Fig. 8.9 Histogram equalization 

 

                  
                e) Original image           f) After equalization        g) CPDF             h) Equalized histogram 

Fig. 8.10 Histogram equalization 

8.8. Practical work 
 

1. Compute and display the mean and standard deviation, the histogram and the cumulative 

histogram of the image intensity levels. For the histogram use the ShowHistogram function 

from OpenCVApplication (see also Laboratory 3). 



Technical University of Cluj-Napoca, Computer Science Department 

 

 

58 

 

2. Implement the automatic threshold computation (section 8.5) and threshold the images 

according to this threshold. Display the threshold. 

3. Implement the histogram transformation functions (section 8.6) for histogram 

stretching/shrinking, gamma correction, histogram slide. Input the limits 𝑔𝑜𝑢𝑡
𝑀𝐼𝑁, 𝑔𝑜𝑢𝑡

𝑀𝐴𝑋, the 

gamma coefficient and the brightness increase value from the console. After each processing 

display the histograms of the source and destination images. 

4. Implement the histogram equalization algorithm (section 8.7). Display the histograms of the 

source and destination images. 

5. Save your work. Use the same application in the next laboratories. At the end of the 

image processing laboratory, you should present your own application with the 

implemented algorithms!!! 

 

8.9. Bibliography 
 

[1] R.C.Gonzalez, R.E.Woods, Digital Image Processing, 4-th Edition, Pearson, 2017. 
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9. Image filtering in the spatial and frequency domains 
 

9.1. Introduction  
 

In this laboratory, the convolution operator will be presented. This operator is used in the 

linear image filtering process applied in the spatial domain (in the image plane by directly 

manipulating the pixels) or in the frequency domain (applying a Fourier transform, filtering and then 

applying the inverse Fourier transform. Examples of such filters are low pass filters (for smoothing) 

and high pass filters (for edge enhancement). 

 

9.2. The convolution process in the spatial domain 
 

The convolution process implies the usage of a convolution mask/kernel H (usually with 

symmetric shape and size 𝑤 × 𝑤, with w=2k+1) which is applied on the source image according to 

(9.2). 

𝐼𝐷(𝑖, 𝑗) = 𝐻 ∗ 𝐼𝑆                                                   (9.1) 

𝐼𝐷(𝑖, 𝑗) = ∑ ∑ 𝐻(𝑢, 𝑣) ⋅ 𝐼𝑆(𝑖 + 𝑢 − 𝑘, 𝑗 + 𝑣 − 𝑘)𝑤−1
𝑣=0

𝑤−1
𝑢=0                (9.2) 

 

This implies the scanning of the source image IS, pixel by pixel, ignoring the first and last k 

rows and columns (Fig. 9.1) and the computation of the intensity value in the current position (i, j) 

of the destination image ID using (9.2). The convolution mask is positioned spatially with its central 

element over the current position (i, j). 

 

 
Fig. 9.1 Illustration of the convolution process 

 

The convolution kernels can have also non-symmetrical shapes (the central/reference element 

is not positioned in the center of symmetry). Convolution with such kernels is applied in a similar 

way, but such examples will not be presented in the current laboratory. 

 

9.2.1. Low-pass filters 

 

Low-pass filters are used for image smoothing and noise reduction (see the lecture material). 

Their effect is an averaging of the current pixel with the values of its neighbors, observable as a 

“blurring” of the output image (they allow to pass only the low frequencies of the image).  

All elements of the kernels used for low-pass filtering have positive values. Therefore, a 

common practice used to scale the result in the intensity domain of the output image is to divide the 

result of the convolution with the sum of the elements of the kernel: 
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𝐼𝐷(𝑖, 𝑗) =
1

𝑐
∑ ∑ 𝐻(𝑢, 𝑣) ⋅ 𝐼𝑆(𝑖 + 𝑢 − 𝑘, 𝑗 + 𝑣 − 𝑘)𝑤−1

𝑣=0
𝑤−1
𝑢=0    (9.3) 

where: 

𝑐 = ∑ ∑ 𝐻(𝑢, 𝑣)𝑤−1
𝑣=0

𝑤−1
𝑢=0     (9.4)  

 

Example kernel matrices: 

 

Mean filter (3x3): 

     

















111

111

111

9

1
     (9.5) 

Gaussian filter (3x3):     

 

















121

242

121

16

1
      (9.6) 

 

   
a)    b)    c) 

Fig. 9.2 a) Original image; b) Result obtained by applying a 3x3 mean filter; c) Result obtained by applying a 5x5 mean 

filter 
 

9.2.2. High-pass filters 

 

These filters will highlight regions with step intensity variations, such as edges (will allow 

to pass the high frequencies).  

 

The kernels used for edge detection have the sum of their elements equal to 0: 

 

Laplace filters (edge detection) (3x3):  

    

















−

−−

−

010

141

010

     (9.7) 

or 

    

















−−−

−−

−−−

111

181

111

      (9.8) 
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High-pass filters (3x3):  

   

















−

−−

−

010

151

010

     (9.9)   

or  

     

















−−−

−−

−−−

111

191

111

      (9.10) 

 

   
a)    b)    c) 

Fig. 9.3 a) The result of applying the Laplace edge detection filter (9.8) on the original image (Fig. 9.2a); b) The result 

of applying the Laplace edge detection filter (9.8) on the blurred image from Fig. 9.2b (previously filtered with the 3x3 

mean filter); c) The result obtained by filtering the original image with the high-pass filter (9.10) 

 

9.3. Image filtering in the frequency domain 
 

The 1D discrete Fourier transform (DFT) of an array of N real or complex numbers is an array 

of N complex numbers, given by: 

 
21

0

,    0... 1
jknN

N
k n

n

X x e k N
− −

=

= = −                                         (9.11) 

 

The inverse discrete Fourier transform (IDFT) is given by: 

 

 

21

0

1
,    0... 1

jknN

N
n k

k

x X e n N
N

−

=

= = −                                      (9.12) 

 

The 2D DFT is performed by applying the 1D DFT on each row of the input image and then 

on each column of the previous result. The 2D IDTF is performed by applying the 1D IDFT on each 

column of the DFT “image” and then on each row of the previous result. The set of complex numbers 

which are the result of the DFT may also be represented in polar coordinates (magnitude, phase). The 

set of (real) magnitudes represent the frequency power spectrum of the original array.  

The DFT and its inverse are usually performed using the Fast Fourier Transform recursive 

approach, which reduces the computation time from 
2( )O n to ( ln )O n n , which represents a 

significant speed increase, especially in the case of 2D image processing, where a 
2 2( )O n m  
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complexity would be intractable for large images as opposed to the almost linear in number of pixels 

( ln( ))O nm nm complexity. 

 

9.3.1. Aliasing 

 

The aliasing phenomenon is a consequence of the Nyquist frequency limit (a sampled signal 

cannot represent frequencies higher than half the sampling frequency). This means that the higher 

half of the frequency domain representation is redundant. This fact can also be seen from the identity: 

 

 *

k N kX X −=                    (9.13) 

 

(where the asterisk denotes complex conjugation) which is true if the input numbers kx  are real. 

Therefore, the typical 1D Fourier spectrum will contain the low frequency components in both the 

lower and upper part, with high frequency located symmetrically about the middle. In 2D, the low 

frequency components will be located near the image corners and the high frequency components in 

the middle (see Fig. 9.4c, d). This makes the spectrum hard to read and interpret. In order to center 

the low frequency components spectrum about the middle of the spectrum, one should first perform 

the transformation on the input data:  

 ( 1)k

k kx x −                       (9.14) 

 

In 2D the centering transformation becomes: 

 ( 1)u v

uv uvx x+ −                             (9.15) 

 
a) 

 
c) 

 
e) 

 

 
b) 

 
d) 

 
f) 

Fig. 9.4 a) and b) Original images; c) and d) Logarithm of magnitude spectra; e) and f) Centered  logarithm of 

magnitude spectra 
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After applying this centering transform, in 1D the spectrum will contain the low frequency 

components in the center, and the high frequency components will be located symmetrically toward 

the left and right ends of the spectrum. In 2D, the low frequency components will be located in the 

middle of the image, while various high frequency components will be located toward the edges.  

The magnitudes located on any line passing through the DFT image center represent the 1D 

frequency spectrum components of the original image, along the direction of the line. Every such line 

is therefore symmetrical about its middle (the image center). 

 

 
a) 

 
b) 

 
c) 

 
d) 

Fig. 9.5 Fourier transforms of sine image waves a) and c). The center point in b) and d) represent the DC 

component, the other two symmetrical points are due to the sine wave frequency 

 

9.3.2. Ideal low-pass and high-pass filters in frequency domain 

 

The convolution in spatial domain is equivalent to scalar multiplication in frequency domain. 

Therefore, especially for large convolution kernels, it is computationally convenient to perform 

convolution in the frequency domain. 

 

The algorithm for filtering in the frequency domain is: 

a)  Perform the image centering transform on the original image (9.15). 

b)  Perform the DFT transform. 

c)  Alter the Fourier coefficients according to the required filtering. 

d)  Perform the IDFT transform. 

e)  Perform the image centering transform again (this undoes the first centering transform). 

 

An ideal low pass filter will alter all the Fourier coefficients that are further away from the 

image center (W/2, H/2) than a given distance R, by turning them to zero (W is the image width and 

H is the image height):  

 

                               

2 2

2

'

2 2

2

 ,  
2 2

0 ,       
2 2

uv

uv

H W
X u v R

X
H W

u v R

    
− + −     

    
= 

   
− + −    

   

 (9.16) 
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An ideal high-pass filter will alter all Fourier coefficients that are at a distance less than R from 

the image center (W/2, H/2), by turning them to 0. 
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0 ,       
2 2

uv

uv
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X u v R

X
H W

u v R

    
− + −     

    
= 

   
− + −    

   

 (9.17) 

 

The results of filtering with ideal low- and high-pass filtering are presented in Fig 9.6 b) and 

c). Unfortunately, the corresponding spatial filters Fig. 9.6 e) and g) are not FIR (they have an infinite 

support) and keep oscillating away from their centers. Because of this, the low-pass and high-pass 

filtered images have a disturbing ringing wavy aspect. In order to correct this, the cutoff in the 

frequency domain must be smoother, as presented in the next section. 

 

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

 
g) 

Fig. 9.6 a) Original image; b) Result of ideal low-pass filtering; c) Result of ideal high-pass filtering; d) 

Ideal low-pass filter in the frequency domain; e) Corresponding ideal low-pass filter in spatial domain; f) 

Ideal high-pass filter in frequency domain; g) Corresponding ideal high-pass filter in the spatial domain 

(R=20) 

 

9.3.3. Gaussian low-pass and high-pass filtering in the frequency domain 

 

In the case of Gaussian filtering, the frequency coefficients are not cut abruptly, but smoother 

cutoff process is used instead. This also takes advantage of the fact that the DFT of a Gaussian 

function is also a Gaussian function (Fig. 9.7d-g). 

The Gaussian low-pass filter attenuates frequency components that are further away from the image 

center (W/2, H/2). 
1

~A


 where   is the standard deviation of the equivalent spatial domain 

Gaussian filter. 
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The Gaussian high-pass filter attenuates frequency components that are near to the image 

center (W/2, H/2): 

 

 

2 2

2

2 2

' 1

H W
u v

A
uv uvX X e

   
− + −   

   
−

 
 

= − 
  
 

                                         (9.19) 

 

Fig. 9.7 shows the results of Gaussian filter. Notice that the ringing (wavy) effect visible in 

Fig. 9.6 disappeared.  

 

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

 
g) 

Fig. 9.7 a) Original image; b) Result of Gaussian low-pass filtering; c) Result of Gaussian high-pass 

Filtering; d) Gaussian  low-pass filter in the frequency domain; e) Corresponding Gaussian low-pass filter 

in the spatial domain; f) Gaussian high-pass filter in the frequency domain; g) Corresponding Gaussian 

high-pass filter in the spatial domain (A=20) 

 

9.4. Implementation details 
 

9.4.1. Spatial domain filters 

 

Low-pass filters will always have positive coefficients, and therefore, the resulting filtered 

image will have positive values. You must ensure that the resulting image fits in the desired range (0-

255 in our case). In order to ensure this, you must ensure that the coefficients of a low-pass filter sum 

to 1. If you are using integer operations pay attention to the order of operations! Usually, the division 

should be the last operation performed in order to minimize the rounding errors! 
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High-pass filters will have both positive and negative coefficients. You must ensure that the 

final result is an integer between 0 and 255! There are three possibilities to ensure that the resulting 

image fits the destination range. The first one is to compute:  
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=
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 

 

    (9.20) 

 

In the formula above S+
 represents the sum of positive filter coefficients and S−  the sum of 

negative filter coefficients magnitudes. This result of the convolution operation with the high-pass 

filter F * Is always lies in the interval [ , ]LS LS− +−  where L is the maximum image gray level (255). 

By multiplying with S, the results will be scaled to the interval [-L/2, L/2]. By adding L/2 the interval 

[-L/2, L/2] will be translated to [0, L]. 

 

Another approach is to perform the convolution operation using signed integers, determine 

the global minimum (min) and maximum (max) from the result and then linearly transform the 

resulting values with: 

                                     
minmax

min),)(*(
),(

−

−
=

vuIF
LvuI S

D  (9.21) 

 

where min = min(F * Is) and max = max(F * Is) are computed globally from the entire convoluted 

image. 

 

The third approach is to compute the magnitude of the result and saturate everything that 

exceeds the domain [0, L]. 

 

9.4.2. Frequency domain filters 

 

It is common practice for visualization and for processing purposes to consider a 

representation of the frequency space which has the (0,0) coefficient in the image center. This can be 

achieved by cross-swapping the four quadrants of the Fourier image channels. Equivalently, we can 

preprocess the source image using (9.15). The generic filter presented below uses the following helper 

function, which performs the centering operation. 
 
void centering_transform(Mat img){ 
 // expects floating point image 
 for (int i = 0; i < img.rows; i++){ 
  for (int j = 0; j < img.cols; j++){ 
   img.at<float>(i, j) = ((i + j) & 1) ? -img.at<float>(i, j) : img.at<float>(i, j); 
  } 
 } 
} 

 

The OpenCV library provides an implementation for performing Discrete Fourier Transform. 

The following template code performs both the direct and the inverse transformation. Processing 

should be done on the magnitude channel of the Fourier transform. Since DFT works best if the input 

image has dimensions equal to powers of two, use cameraman.bmp as your input. 
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Mat generic_frequency_domain_filter(Mat src) { 
// convert input image to float image 

 Mat srcf; 
 src.convertTo(srcf, CV_32FC1); 
 
 // centering transformation  
 centering_transform(srcf); 
 
 // perform forward transform with complex image output 
 Mat fourier; 
 dft(srcf, fourier, DFT_COMPLEX_OUTPUT); 
 
 // split into real and imaginary channels 
 Mat channels[] = { Mat::zeros(src.size(), CV_32F), Mat::zeros(src.size(), CV_32F) }; 
 split(fourier, channels);  // channels[0] = Re(DFT(I)), channels[1] = Im(DFT(I)) 
 
 // calculate magnitude and phase in floating point images mag and phi 
 Mat mag, phi; 
 magnitude(channels[0], channels[1], mag); 
 phase(channels[0], channels[1], phi); 
 
 // display the phase and magnitude images here 
 // ...... 
 
 // insert filtering operations on Fourier coefficients here 
 // ...... 
 

// store in real part in channels[0] and imaginary part in channels[1] 
// ...... 

 
 // perform inverse transform and put results in dstf 
 Mat dst, dstf; 
 merge(channels, 2, fourier); 
 dft(fourier, dstf, DFT_INVERSE | DFT_REAL_OUTPUT | DFT_SCALE); 
 
 // inverse centering transformation  
 centering_transform(dstf); 
 
 // normalize the result and put in the destination image 
 normalize(dstf, dst, 0, 255,  NORM_MINMAX, CV_8UC1); 

// Note: normalizing distorts the resut while enhancing the image display in the range [0,255].  
// For exact results (see Practical work 3) the normalization should be replaced with convertion: 

 // dstf.convertTo(dst, CV_8UC1); 
 
 return dst; 
} 

 

9.5. Practical work 
 

1. Implement a general filter, which performs the convolution operator with a custom kernel 

matrix. The scaling coefficient should be computed automatically as either the reciprocal of 

the sum of filter coefficients for low pass filters or according to equation (9.20) for high-pass 

filters. 

2. Test the filter with the kernels from equations (9.5) .... (9.10). 

3. Study the provided generic function for processing in the frequency domain. Perform the 

conversion of a source image from spatial domain to frequency domain by using the Fourier 

transform (DFT), then apply the inverse Fourier transform (IDFT) on the obtained Fourier 

spectrum coefficients and check if the destination is the same as the source image. 

4. Add a processing function that computes and displays the logarithm of the magnitude of the 

Fourier transform of an input image. Add 1 to the magnitude to avoid log(0). 

5. Add processing functions that perform low- and high-pass filtering in the frequency domain 

using the ideal and Gaussian filters from equations (9.16)...(9.19). 
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6. Save your work. Use the same application in the next laboratories. At the end of the 

image processing laboratory, you should present your own application with the 

implemented algorithms!!! 

 

9.6. Bibliography 
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10. Noise modeling and digital image filtering 
 

10.1. Introduction 
 

Noise represents unwanted information which deteriorates image quality. Noise is defined as 

a process (n) which affects the acquired image (f) and is not part of the scene (initial  

signal – s). Using the additive noise model, this process can be written as: 

 

   f(i, j) = s(i, j) + n(i, j)      (10.1) 

 

Digital image noise may come from various sources. The acquisition process for digital 

images converts optical signals into electrical signals and then into digital signals and is one processes 

by which the noise is introduced in digital images. Each step in the conversion process experiences 

fluctuations, caused by natural phenomena, and each of these steps adds a random value to the 

resulting intensity of a given pixel. 

 

10.2. Noise modeling 
 

Noise (n) may be modeled either by a histogram or a probability density function which is 

superimposed on the probability density function of the original image (s). In the following, the 

models for the most common types of noise will be presented: salt and pepper noise and Gaussian 

noise. Other types of noise, such as negative exponential model, gamma/Erlang model, Rayleigh 

model are also presented in the literature (see the course notes!). 

 

10.2.1. The salt & pepper noise 

 

In the salt&pepper noise model only two possible values are possible, a and b, and the 

probability of obtaining each of them is less than 0.1 (otherwise, the noise would vastly dominate the 

image). For an 8 bit/pixel image, the typical intensity value for pepper noise is close to 0 and for salt 

noise is close to 255. 

         

   

 
Fig. 10.1 Probability density function for the salt & pepper noise model 

 

𝑃𝐷𝐹𝑠𝑎𝑙𝑡&𝑝𝑒𝑝𝑝𝑒𝑟 = {
𝐴  𝑓𝑜𝑟 𝑔 = 𝑎 ("𝑝𝑒𝑝𝑝𝑒𝑟")
𝐵  𝑓𝑜𝑟 𝑔 = 𝑏 ("𝑠𝑎𝑙𝑡")

       (10.2) 

  

The salt&pepper noise is generally caused by malfunctioning of camera’s sensor cells, by 

memory cell failure or by synchronization errors in the image digitizing or transmission.  
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10.2.2. Gaussian noise 

 

The Gaussian noise has a normal (Gaussian) probability density function: 

 

 
Fig. 10.2 Probability density function for the Gaussian noise model 

 

𝑃𝐷𝐹𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 =
1

√2𝜋𝜎
𝑒

−
(𝑔−𝜇)2

2𝜎2           (10.3) 

where: 

 g = gray level 

  = mean 

  = standard deviation. 

 

Approximately 70% of the values are contained between  ±  and 90% of the values are 

contained between  ± 2. Although, theoretically speaking, the PDF is non-zero everywhere 

between - and +, it is customary to consider the function 0 beyond  ± 3. 

Gaussian noise is useful for modeling natural processes which introduce noise (e.g. noise 

caused by the discrete nature of radiation and the conversion of the optical signal into an electrical 

one – detector/shot noise, the electrical noise during acquisition – sensor electrical signal 

amplification, etc.). 

  

10.3. Noise removal using spatial filters 
 

10.3.1. Ordered filters (non-linear) 

 

Ordered filters are based on a specific image statistic, called ordered statistic. They are called 

non-linear, because they cannot be applied as a linear operator (such as a convolution kernel). These 

filters operate on small windows, and replace the value of the central pixel (similarly to convolution). 

The ordered statistic is a technique which arranges all the pixels in sequential order, based on their 

gray-level value. The position of an element in this ordered set can be characterized by its rank. Given 

a NxN window W, the pixel values can be sorted in ascending order: 

2321 N
IIII           (10.4) 

where: 

 2,,,, 321 N
IIII   represent the intensity values of the pixels located within the NxN 

window W. 
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For example: given a 3x3 window: 

     

110 110 114

100 106 104

95 88 85

 
 
 
  

 

The result of applying the ordered statistic will be: 

    {85, 88, 95, 100, 104, 106, 110, 110, 114} 

 

The median filter: selects the middle value from the ordered statistic and replaces the destination 

pixel with it. In the example above, the selected value would be 104. The median filter allows the 

elimination of salt&pepper noise. 

 

 
Fig. 10.3 Applying the median filter 

 

The maximum filter: selects the largest value amongst the ordered values of pixels from the window. 

In the above example, the value selected is 114. This filter can be used to eliminate the pepper noise, 

but it amplifies the salt noise if applied to a salt&pepper noise image. 

 

The minimum filter: selects the smallest value amongst the ordered values of pixels from the 

window. In the above example, the value selected is 85. This filter can be used to eliminate the salt 

noise, but it amplifies the pepper noise if applied to a salt&pepper noise image. 

 

10.3.2. Linear filters 

 

These filters are applied by convolution (a linear operation) with a low-pass filter convolution 

kernel. In the following, the computation of the elements of a convolution kernel for Gaussian noise 

elimination will be presented. 

 

10.3.3. Designing a variable size Gaussian convolution kernel 

 

Gaussian noise removal must be performed using a filter with adequate shape and size, 

correlated to the amount of the Gaussian noise that corrupts the image (see Fig. 10.2). The filter size 

w of such a filter is usually 6  (for example, for a Gaussian noise with =   

w = 4.8  5). 

Constructing the elements of such a kernel/Gaussian filter G will be performed using the 

following equations: 

 

𝐺(𝑥, 𝑦) =
1

2𝜋𝜎2 𝑒
−

(𝑥−𝑥0)2+(𝑦−𝑦0)2

2𝜎2        (10.5) 
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where:  

(x0, y0) – are the coordinates of the central column and row of the kernel (see Fig. 10.4). 

 
Fig. 10.4  Design example of a Gaussian kernel/filter G having a 5x5 size 

 
10.3.4. Image filtering/restoration 

 

It is accomplished by the convolution of the source image with a Gaussian kernel/filter 

computed previously: 

𝐼𝐷 = 𝐺 ∗ 𝐼𝑆            (10.6) 

  

When the filter size w is large, the convolution may be time consuming  

(w x w multiplications for each pixel). In this case, the Gaussian decomposition may be used: 

 

𝐺(𝑥, 𝑦) = 𝐺(𝑥)𝐺(𝑦)        (10.7) 

 

and replacing the convolution of a 2D nucleus G with two convolutions of a 1D nucleus  

Gx and Gy (Fig. 10.5): 

 

𝐼𝐷 = (𝐺𝑥𝐺𝑦) ∗ 𝐼𝑆 = 𝐺𝑥 ∗ (𝐺𝑦 ∗ 𝐼𝑆)     (10.8) 

where: 

Gx and Gy are 1D vectors (Fig. 10.5): 

 

𝐺(𝑥) =
1

√2𝜋𝜎
𝑒

−
(𝑥−𝑥0)2

2𝜎2          (10.9) 

𝐺(𝑦) =
1

√2𝜋𝜎
𝑒

−
(𝑦−𝑦0)2

2𝜎2         (10.10) 

 

 
Fig. 10.5 The two vectors Gx and Gy into which a 2D Gaussian kernel may be separated 
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In this case, the number of multiplications needed for each pixel is w for each of the two 

convolutions. 

 

10.4. Processing time computation   
 

double t = (double)getTickCount(); // Get the current time in [CPU cycles] 

// … Actual processing … 

// Get the current time again in [CPU cycles] and compute the time 

difference in [sec] 

t = ((double)getTickCount() - t) / getTickFrequency(); 

// Display (in the console window) the processing time in [ms]  

printf("Time = %.3f [ms]\n", t * 1000); 

 

 

10.5. Practical work 
 

1. Implement a median filter with a variable dimension (w = 3, 5 or 7) specified by the user. Display 

the processing time. 

2. Implement the filtering operation with a 2D Gaussian filter, with variable size w (w = 3, 5  

or 7), specified by the user. The values of the kernel’s components will be automatically computed 

as a function of   ( = w/6), as in equation (10.5). Display the processing time. Compare the 

processing times against different values of w. 

3. Implement Gaussian filtering by using a Gaussian kernel separated into 2 vector components Gx 

and Gy having a variable size w (w = 3, 5 or 7), specified by the user. The vector components 

values Gx and Gy will be computed automatically as a function of   ( = w/6), as in equations 

(10.9) and (10.10). Display the processing time. Compare the processing times between the 2D 

and 1D Gaussian filters. 

4. Save your work. Use the same application in the next laboratories. At the end of the image 

processing laboratory, you should present your own application with the implemented 

algorithms!!! 

 

10.6. Bibliography 
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11. Edge detection 
 

11.1. Introduction  
 

This laboratory presents the edge detection problem in digital images. Edge points are found 

where the image intensity encounters a steep variation along a specific direction ‘x’ (Fig. 11.1). This 

intensity variation can be detected and quantified by finding the local maxima of the first order 

derivative of the image intensity (the gradient: f=f’) or by finding the zero crossings of the second 

order derivative of the image intensity (the Laplacian: 2f=f”). 

 

 
Fig. 11.1 Detection methods of the edge points (points where the image intensity suffers a steep variation) 

  

Further on only the gradient-based methods will be approached. 

 

11.2. Computing the image gradient 
 

The gradient in an image point is a vector heading the direction of the intensity variation 

around this point (Fig. 11.2). Its module is proportional with the speed of this variation (11.1). If the 

edge points are part of a contour (as in Fig. 11.2) the gradient will be perpendicular on the tangent to 

the contour at that point. 

 

 
Fig. 11.2 Left: illustration of the image gradient (in an edge point) on the image of the gradient module 

 

The gradient of a two variables continuous function f is defined as: 
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For digital images, the gradient can be approximated by making x and y equal to 1 in 

(11.1): 

     
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Other approximations of the two components of the gradient can be computed through the 

convolution of the image with the following kernels: 

 

Prewitt: 
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Sobel: 
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Roberts (cross): 
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In the case of Roberts (cross), that applies convolution with a 2 x 2 filter, the result of the 

convolution will be stored in the position of the top left corner of the window. 

 

As a vector, the gradient can be quantified by a magnitude (11.6) and a direction (11.7).  

 

Magnitude: ( ) ( )22
),(),(),( yxfyxfyxf yx +=       (11.6) 
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Direction must be incremented with 1350 (3π/4) when applying Roberts (cross).  
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11.3. The Canny edge detection method 
 

The edge detection method proposed by Canny is based on the image gradient computation 

but in addition tries to: 

• maximize the signal-to-noise ratio for a proper detection; 

• find a good localization of the edge points; 

• minimize the number of positive responses around a single edge (suppression of the gradient 

module non-maxims). 

 

The steps of the Canny edge detection method are given bellow: 

1. Noise filtering through a Gaussian kernel; 

2. Computing the gradient’s module and direction; 

3. Non-maxima suppression of the gradient’s module; 

4. Edge linking through adaptive hysteresis thresholding. 

 

11.3.1. Noise filtering through a Gaussian kernel 

 

The noise in the image is high frequency information which overlaps the original image signal. 

This introduces false edge points. The noise intrinsic to the image acquisition process can be modeled 

by a Gaussian distribution and can be suppressed by a Gaussian filter (see laboratory 10). 

 

11.3.2. Computing the gradient’s magnitude and direction 

 

Computing the gradient’s module and direction requires the allocation of two temporary 

image buffers (with the same size as the image) and the initialization of their elements according to 

equations (11.6) and (11.7) respectively, where the horizontalfx(x,y) and the vertical fy(x,y) 

components of the image gradient can be computed using the Prewitt operator (11.3) or the Sobel 

operator (11.4). 

 

11.3.3. Non-maxima suppression of the gradient’s module 

 

Its purpose is the thinning of the edges by retaining only the edge points with the highest 

gradient module along the direction of the image intensity variation (along the direction of the 

gradient vector). 

 

The first step consists in the quantization of the gradient directions, computed using (11.7), in 

4 regions shown in Fig. 11.3: 

 

 
Fig. 11.3 Quantization of the gradient directions in the non-maxima suppression step [3] 
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Supposing that, for example, the direction of the gradient in an image point is “1”  

(Fig. 11.4), the module of the gradient in point P is a local maximum if 1IP   and '1IP  . 

If these conditions are fulfilled the point P is retained as an edge point, otherwise it is rejected. 

 

 
Fig. 11.4 Example for the non-maxima suppression 

 

11.3.4. Edge linking through adaptive hysteresis thresholding 

 

After computing the image gradient and performing the non-maxima suppression procedure, 

an “image” is obtained in which the pixel values are equal with the gradient’s modules in that pixel. 

Moreover, the thickness of the edge pixels (with non-zero module) has an ideal value of one pixel. In 

the following, the steps required to obtain the final edges are described: 

11.3.4.1. Adaptive thresholding 

 

Adaptive thresholding tries to extract a quite constant number edge points for a given image 

size. In this way, lighting and contrast variations are compensated (fixed threshold would extract 

either too much or too few edge points). 

 

The parameter which is given to the threshold detection procedure is the ratio between the 

number of edge points and the number of points with non-zero gradient module: 

 

)( xelsntModulePiZeroGradieNoPixelsplsNoEdgePixe −•=    (11.8) 

 

Parameter p has usually values between 0.01 and 0.1. 

 

The algorithm is the following: 

 

1. The histogram of the gradient’s magnitude image (values obtained after non-maxima suppression) 

is computed. These values will be scaled to fit within [0..255] range (by division with 4 2  if the 

gradient was computed using the Sobel operator). The result is a histogram Hist[0..255]: 

  

Hist[i] = No of pixels having the scaled gradient magnitude value i    (11.9) 

 

2. The number of pixels with non-zero values which would not be edge points is computed: 

 

 NoNonEdge = (1-p) • (Height • Width – Hist[0])    (11.10) 
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3. Starting with position 1 the values of the histogram are summed. When the sum exceeds the value 

NoNonEdge, then the index i reached in the counting process is the searched threshold. This 

technique, intuitively, will find the gradient magnitude value (AdaptiveThresholding) bellow which 

NoNonEdge pixels are found. 

 

Pay attention to the pixels located at the image margins (where the image gradient was not computed)! 

Their values should be zero or should not be taken into account, because they can modify the value 

of the threshold.  

11.3.4.2. Edge extension through hysteresis 

 

Adaptive thresholding does not guarantees the completeness of the edges (shadowed parts of 

the objects or presence of noise can affect the edge detection process). The result will be an image 

with many fragmented edges. 

Therefore an edge extension technique is needed. The edges obtained by adaptive thresholding 

are considered STRONG EDGES and we try to extend them with weaker edge points, which have 

not passed the thresholding with the initial value, but could be detected with a lower threshold. 

 

Formally, two thresholds are defined: 

 

Threshold_high = AdaptiveThresholding    (11.11) 

 

Threshold_low = k • Threshold_high     (11.12) 

 

where k<1 (for example, k = 0.4).   

 

The image of the gradient module is scanned pixel by pixel. In the destination image the 

pixels with the gradient magnitude higher then Threshold_high are labeled as STRONG_EDGES 

(e.g. with the value 255). The pixels with the gradient magnitude between Threshold_low and 

Threshold_high are labeled as WEAK_EDGES (e.g. with the value 128).  The pixels with the 

gradient magnitude bellow Threshold_low are considered NON-EDGES and are rejected. The 

inverted result (negative) of this labeling is shown in Fig. 11.5-left: 

 

 
Fig. 11.5 Left: the image of the labeled strong and weak edges; Right: the result of the extension of the strong edges 

with connected WEAK edges 
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Next step consists in the extension of the STRONG_EDGE points with neighboring 

WEAK_EDGE points, if they are parts of a connected component (see laboratory and lecture related 

to “Labeling”) – as in Fig. 11.5. If a STRONG_EDGE point has WEAK_EDGE neighbor, the 

WEAK_EDGE neighbor is labeled as a STRONG_EDGE point. This STRONG_EDGE becomes a 

new source of edge extension. The process is repeated until the STRONG_EDGE points cannot be 

extended further by joining them with WEAK_EDGE points. 

 

An efficient implementation of this step uses a queue to perform a breadth first search through 

WEAK_EDGE points connected to STRONG_EDGE points and mark them as STRONG_EDGE 

points. The algorithm would look like this: 

1. Scan the image, top left to bottom right, pick the first STRONG_EDGE point encountered 

and push its coordinates in the queue. 

2. While (queue is not empty) 

a) Extracts the first point from the queue; 

b) Find all the WEAK_EDGE neighbors of the current point; 

c) Label in the image all these neighbors as STRONG_EDGE points; 

d) Push the image coordinates of these neighbors into the queue; 

e) Continue to the next STRONG_EDGE point. 

3. Go to step 1 considering the next STRONG_EDGE point. 

4. Eliminate the remaining WEAK_EDGE points from the image by turning them to 

NON_EDGE (0). 

 

Final consideration: regarding the definition of the neighborhood used in the above algorithm, 

the common 4-type or 8-type neighborhood can be used, or a tolerance of 1 to 2 pixels can be 

considered. The reason is noise may cause edge interruptions by small gaps. 

 

11.4. Practical work 
 

The practical activities related to this laboratory will be split in two: 

 

11.4.1. Laboratory 1(first WEEK) 

 

1. The horizontalfx and verticalfy components of the gradient through convolution with the 

kernels given in (11.3) ... (11.5) will be computed and the results will be shown in destination 

windows (the convolution operation was already implemented in laboratory 9). 

2. The gradient magnitude (11.6) and direction (11.7) will be computed using the three operators 

(Sobel, Prewitt and Roberts) and the results of the gradient magnitude will be shown in a 

destination window.  

3. The thresholding with an arbitrary and fixed threshold of the results obtained at point 2 will 

be shown in a destination window. 

4. The steps 1 – 3 of the Canny edge detection algorithm will be implemented (step 1 – was 

already implemented in laboratory 10; step 2 – is the implementation with Sobel filters; step 

3 – implement the non-maxima suppression operation). The results obtained after step 3 will 

be shown in a destination window. The results will be compared with the one obtained at point 

2 after the simple use of the Sobel operator. 

5. Save your work. Use the same application in the next laboratories. At the end of the 

image processing laboratory, you should present your own application with the 

implemented algorithms!!! 
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11.4.2. Laboratory 2 (second WEEK) 
 

1. Edge linking through adaptive hysteresis thresholding algorithm (step 4 of the Canny method) 

will be implemented. The intermediate results of the STRONG_EDGE and WEAK_EDGE 

points (after the hysteresis thresholding and before the edge extension step) and the final 

results (with the final edges) will be shown destination windows. The implementation will be 

experimented for different values of the parameters p, k and neighborhood types. 

2. The final results of the implemented Canny edge detection method will be 

tested/experimented on different image types. 

3. Save your work. At the end of the image processing laboratory, you should present your 

own application with the implemented algorithms!!! 

 

  
a)      b) 

  
c)      d) 

  
e)      f) 

Fig. 11.6 Canny edge detection - sample results: a) Initial image; b) After Gaussian filtering ( = 0.5); c) Normalized 

gradient magnitude (using Sobel operators); d) After non-maxima suppression; e) After adaptive thresholding (p = 0.1); 

f) Final edges after edge extension with N8 and weak-edge removal 
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