
Image Processing - Laboratory 10: Noise modeling and digital image filtering

1

10. Noise modeling and digital image filtering

10.1. Introduction

Noise represents unwanted information which deteriorates image quality. Noise is defined

as a process (n) which affects the acquired image (f) and is not part of the scene (initial
signal – s). Using the additive noise model, this process can be written as:

 f(i, j) = s(i, j) + n(i, j) (10.1)

Digital image noise may come from various sources. The acquisition process for digital
images converts optical signals into electrical signals and then into digital signals and is one
processes by which the noise is introduced in digital images. Each step in the conversion process
experiences fluctuations, caused by natural phenomena, and each of these steps adds a random
value to the resulting intensity of a given pixel.

10.2. Noise modeling

 Noise (n) may be modeled either by a histogram or a probability density function which
is superimposed on the probability density function of the original image (s). In the following,
the models for the most common types of noise will be presented: salt and pepper noise and
Gaussian noise. Other types of noise, such as negative exponential model, gamma/Erlang
model, Rayleigh model are also presented in the literature (see the course notes!).

10.2.1. The salt & pepper noise

 In the salt&pepper noise model only two possible values are possible, a and b, and the
probability of obtaining each of them is less than 0.1 (otherwise, the noise would vastly
dominate the image). For an 8 bit/pixel image, the typical intensity value for pepper noise is
close to 0 and for salt noise is close to 255.

Fig. 10.1 Probability density function for the salt & pepper noise model.

&

(" ")

(" ")salt pepper

A for g a pepper
PDF

B for g b salt


  

 (10.2)

The salt&pepper noise is generally caused by malfunctioning of camera’s sensor cells,

by memory cell failure or by synchronization errors in the image digitizing or transmission.

Technical University of Cluj-Napoca, Computer Science Department

2

10.2.2. Gaussian noise

 The Gaussian noise has a normal (Gaussian) probability density function:

Fig. 10.2 Probability density function for the Gaussian noise model

2

2

()

2
1

2

g

GaussianPDF e








 (10.3)

where:
 g = gray level;
  = mean;
  = standard deviation;

Approximately 70% of the values are contained between  ±  and 90% of the values are

contained between  ± 2. Although, theoretically speaking, the PDF is non-zero everywhere
between - and +, it is customary to consider the function 0 beyond  ± 3.
 Gaussian noise is useful for modeling natural processes which introduce noise (e.g. noise
caused by the discrete nature of radiation and the conversion of the optical signal into an
electrical one – detector/shot noise, the electrical noise during acquisition – sensor electrical
signal amplification, etc.).

10.3. Noise removal using spatial filters

10.3.1. Ordered filters (non-linear)

 Ordered filters are based on a specific image statistic, called ordered statistic. They are
called non-linear, because they cannot be applied as a linear operator (such as a convolution
kernel). These filters operate on small windows, and replace the value of the central pixel
(similarly to convolution). The ordered statistic is a technique which arranges all the pixels in
sequential order, based on their gray-level value. The position of an element in this ordered set
can be characterized by its rank. Given a NxN window W, the pixel values can be sorted in
ascending order:

2321 N
IIII   (10.4)

Where:

 2,,,, 321 N
IIII  represent the intensity values of the pixels located within the NxN

window W.

Image Processing - Laboratory 10: Noise modeling and digital image filtering

3

For example: given a 3x3 window:

110 110 114

100 106 104

95 88 85

 
 
 
  

The result of applying the ordered statistic will be:

 {85, 88, 95, 100, 104, 106, 110, 110, 114}

The median filter: selects the middle value from the ordered statistic and replaces the
destination pixel with it. In the example above, the selected value would be 104. The median
filter allows the elimination of salt&pepper noise.

Fig. 10.3 Applying the median filter

The maximum filter: selects the largest value amongst the ordered values of pixels from the
window. In the above example, the value selected is 114. This filter can be used to eliminate
the pepper noise, but it amplifies the salt noise if applied to a salt&pepper noise image.

The minimum filter: selects the smallest value amongst the ordered values of pixels from the
window. In the above example, the value selected is 85. This filter can be used to eliminate the
salt noise, but it amplifies the pepper noise if applied to a salt&pepper noise image.

10.3.2. Linear filters

These filters are applied by convolution (a linear operation) with a low-pass filter
convolution kernel. In the following, the computation of the elements of a convolution kernel
for Gaussian noise elimination will be presented.

10.3.3. Designing a variable size Gaussian convolution kernel

 Gaussian noise removal must be performed using a filter with adequate shape and size,
correlated to the amount of the Gaussian noise that corrupts the image (see Fig. 10.2). The filter
size w of such a filter is usually 6 (for example, for a Gaussian noise with 
w = 4.8  5).
 Constructing the elements of such a kernel/Gaussian filter G will be performed using the
following equations:

2 2
0 0

2

() ()

2
2

1
(,)

2

x x y y

G x y e 



  


 (10.5)

Technical University of Cluj-Napoca, Computer Science Department

4

Where:
(x0, y0) – are the coordinates of the central row and column of the kernel (see Fig. 10.4).

Fig. 10.4 Design example of a Gaussian kernel/filter G having a 5x5 size.

10.3.4. Image filtering/restoration

It is accomplished by the convolution of the source image with a Gaussian kernel/filter
computed previously:

D SI G I  (10.6)

When the filter size w is large, the convolution may be time consuming

(w x w multiplications for each pixel). In this case, the Gaussian decomposition may be used:

(,) () ()G x y G x G y (10.7)

and replacing the convolution of a 2D nucleus G with two convolutions of a 1D nucleus
Gx and Gy:

   D x y S x y SI G G I G G I     (10.8)

Where:
Gx and Gy are the central line and column vectors of the 2D nucleus (Fig. 10.5):

2

0
2

()

21
()

2

x x

G x e 






 (10.9)

2
0
2

()

21
()

2

y y

G y e 






 (10.10)

Fig. 10.5 The two vectors Gx and Gy into which a 2D Gaussian kernel may be separated

Image Processing - Laboratory 10: Noise modeling and digital image filtering

5

In this case, the number of multiplications needed for each pixel is w for each of the two
convolutions.

10.4. Processing time computation

double t = (double)getTickCount(); // Get the current time [ms]
// … Actual processing …
// Get the current time again and compute the time difference [ms]
t = ((double)getTickCount() - t) / getTickFrequency();
// Display (in the console window) the processing time in [ms]
printf("Time = %.3f [ms]\n", t * 1000);

10.5. Practical work

1. Implement a median filter with a variable dimension (w = 3, 5 or 7) specified by the user.

Display the processing time.
2. Implement the filtering operation with a 2D Gaussian filter, with variable size w (w = 3, 5

or 7), specified by the user. The values of the kernel’s components will be automatically
computed as a function of ( = w/6), as in equation (10.5). Display the processing time.
Compare the processing times against different values of w.

3. Implement Gaussian filtering by using a Gaussian kernel separated into 2 vector components
Gx and Gy having a variable size w (w = 3, 5 or 7), specified by the user. The vector
components values Gx and Gy will be computed automatically as a function of ( = w/6),
as in equations (10.9) and (10.10). Display the processing time. Compare the processing
times between the 2D and 1D Gaussian filters.

4. Save your work. Use the same application in the next laboratories. At the end of the
image processing laboratory you should present your own application with the
implemented algorithms.

References

[1]. R.C.Gonzales, R.E.Woods, Digital Image Processing. 2-nd Edition, Prentice Hall, 2002.

