
 

Pattern recognition systems – Lab 10 

The AdaBoost method 
 

1. Objectives 

In this lab session we will study an ensemble classifier obtained using a method called 

AdaBoost (Adaptive Boosting). We will apply it for a binary classification problem 

on 2D points. 

2. Theoretical Background 

AdaBoost, short for Adaptive Boosting, is a machine learning meta-algorithm 

formulated by Yoav Freund and Robert Schapire in [1], who won the 2003 Gödel 

Prize for their work [2]. In this session the goal will be to separate 2D points into two 

classes, the class membership is given by the color of the points. 

 
Figure 1 Example of two class samples (red and blue points) 

 

The general idea of the AdaBoost algorithm is to build a strong classifier 𝐻𝑇(𝒙) 

which is the sign of the linear combination of 𝑇 weak classifiers (or weak learners) 

ℎ𝑡:  

𝐻𝑇(𝒙) = 𝑠𝑖𝑔𝑛 (∑ 𝛼𝑡ℎ𝑡(𝒙)

𝑇

𝑡=1

) 

Each weak learner returns either +1 or -1 and is weighted by 𝛼𝑡. The final class is 

given by the sign of the strong classifier 𝐻𝑇(𝒙). In this work we will use decision 

stumps as weak learners. A decision stump classifies an instance by looking at a 

particular feature, if this feature is below a threshold, the instance is classified as class 

+1 and -1 otherwise.  

We are given the training set in the following form: 𝑿 is the feature matrix of 

dimension 𝑛 𝑥 𝑚 and contains 𝑛 the training samples, each row being an individual 

sample of dimension 𝑚. In our case, 𝑚 =  2 and the features are the rows and 

columns at which the points are found in the input image. The class vector 𝒚 of 

dimension 𝑛 contains +1 for each red point and -1 for each blue point. 

For this method we will associate a weight with each example. We will store the 

weights in the weight vector 𝒘 of dimension 𝑛. Initially all samples have an equal 

weight of 1/𝑛. The following algorithm describes the high level AdaBoost procedure 

which finds the strong classifier 𝐻𝑇.  



 

Algorithm AdaBoost 

 

init wi=1/n 

for t=1:T 

  //also returns the weighted training error 𝝐𝒕: 

  [ℎ𝑡, 𝜖𝑡 ] = findWeakLearner(X,y,w) 

  𝛼𝑡 = 0.5 ln (
1−𝜖𝑡

𝜖𝑡
) 

  s = 0 

  for i=1:n 

    //wrongly classified examples will have 𝒚𝒊𝒉𝒕(𝑿𝒊) < 𝟎 
    //their weights will be higher in the next step 

    𝑤𝑖 ← 𝑤𝑖 ⋅ 𝑒𝑥𝑝(−𝛼𝑡𝑦𝑖ℎ𝑡(𝑋𝑖)) 
    s += 𝑤𝑖 

  endfor 

  //normalize the weights 

  for i=1:n 

    𝑤𝑖 ← 𝑤𝑖/𝑠 
  endfor   

endfor 

//returns all the alpha values and the weak learners 

return [𝜶, 𝒉] 
 

[ℎ𝑡, 𝜖𝑡 ] = findWeakLearner(X,y,w) 
best_h = {} 

best_err = ∞ 

for j=1:X.cols  

  for threshold=0:img.size //cols or rows 

    for class_label={-1,1} 

      e=0 

      for i=1:X.rows 

        if X(i,j)<threshold 

          zi=class_label 

        else 

          zi=-class_label 

        endif 

        if ziyi < 0 

  e += wi 

        endif 

      endfor 

      if e<best_err 

        best_err = e 

        best_h = {j, threshold, class_label, e} 

      endif 

    endfor 

  endfor 

endfor 

return best_h 

 

  



 

The underlying idea behind this algorithm is to find the best simple (weak) classifier 

and then to modify the importance of the examples. Missclassified examples will get 

a higher weight and correctly classified examples will get a lower weight. An 

example is classified as the wrong class if the sign of the expression 𝑦𝑖ℎ𝑡(𝑋𝑖) is 

negative (the class labels have different signs).  

At the following step, when we search for the next weak learner, it will be more 

important to correctly classify the examples which have high weights since they 

contribute more to the weighted training error. 

Each weak learner contributes to the final score of the classifier. The contribution is 

weighted by how well the weak learner performed in terms of the weighted training 

error. 

3. Implementation details 

 

Suggested structure for a single weak leaner: 
struct weaklearner{ 

  int feature_i; 

  int threshold; 

  int class_label; 

  float error; 

  int classify(Mat X){ 

    if (X.at<float>(feature_i)<threshold) 

      return class_label; 

    else 

      return –class_label; 

  } 

}; 

 

Header for function that finds the best weak learner: 
weaklearner findWeakLearner(Mat X, Mat y, Mat w) 

 

Suggested structure for the strong classier (MAXT is a constant): 
struct classifier{ 

  int T; 

  float alphas[MAXT]; 

  weaklearner hs[MAXT]; 

  int classify(Mat X){ 

    return 0; 

  } 

}; 

 

Header for function which draws the decision boundary (keep the original image 

unmodified): 
void drawBoundary(Mat img, classifier clf) 

  



 

 

   
Figure 2. Sample results on points1 with T=1 (left) and T=13 (right) 

4. Practical work 

 

1. Read the training set from input files (points*.bmp). Each row from the feature 

matrix 𝑿 should contain the row and column of each colored point from the image. 

The class vector 𝒚 contains +1 for red and -1 for blue points. 

2. Implement the decision stump weak learner. 

3. Implement the findWeakLearner function. 

4. Implement the drawBoundary function which colors the input image showing 

the decision boundary by changing the background color (white pixels) based on 

the classification result. Use yellow for +1 background and teal for -1 background 

pixels. Test the function with a strong classifier formed by a single weak learner. 

5. Implement the AdaBoost algorithm to find the strong classifier with T weak 

learners. Visualize the decision boundary. For each input image find the value of T 

which results in zero classification error. What are the limitations of the presented 

method? 
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