
 

Pattern recognition systems – Lab 12 

Support Vector Machine – Classification 
 

1. Objectives 
In this lab session we will study and implement a simple linear classifier for linearly 
separable dataset and we will study the mechanisms of support vector classification based 
on soft margin classifiers. 
 

2. Theoretical Background 
 
2.1. Linear classification 
 
The goal of classification is to group items that have similar feature values into classes or 
groups.  A linear classifier achieves this by making a classification decision based on the 
value of the linear combination of the features. 
 
There are some issues in the learning classifier problem: 

- Limited number of training data; 
- Learning algorithm (how to build the classifier?); 
- Generalization: the classifier should correctly classify test data. 

 
Example of a linear classifier, 

 
where X is the space of data (feature space), called input space, Y is the target space (class 
space) with values from {-1, 1} and f:X→Y is the classifier. 
 
Given a test data xX we choose y such that (x, y) is in some sense similar to training 
examples. Thus we need a notion of similarity in X and in {-1, 1}. 
 
2.2. A simple linear classifier 
 
A simple type of similarity is the dot product (inner product or scalar product). The idea 
of this classifier is to assign a new point to the class whose mean is the closest. 



 

           
 
For xX it is sufficient to take the sign of the inner product between w and x-c. 
If h(x)=<w, x-c>, we have the classifier f(x)=sign(h(x)). The dotted hyperplane (H), of 
the normal vector w, is the decision surface (h(x)=0). 
We obtain:  
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Where: m is the total number of samples, m+
 is the total number of samples from blue 
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Remark: A generic linear classifier is 0( ) Tg x w x w  . We can identify from the equality 
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2.3. Hard-margin classifiers 
 
In explaining the problem of hard and soft margin classifiers we will start from a simple 
problem of linearly separating a set of points in the Cartesian plane, as depicted in  
Fig. 1.1 

 
Fig. 1.1 A set of points linearly separable 

 
The question here is how can we classify these points using a linear discriminant function 
in order to minimize the error rate? We have an infinite number of answers, as shown in 
Fig. 1.2: 



 

 
Fig. 1.2 Linear classifiers that can discriminate between the set of points 

 
From the multitude of solutions we need to find out which is the best one. The answer is 
given by the linear discriminant function (classifier) with the maximum margin is the 
best. Margin is defined as the width that the boundary could be increased by before 
hitting a data point as in Fig. 1.3.  
 

 
Fig. 1.3 The margin of a linear classifier 

 
This classifier is the best because it is robust to outliners and thus has strong 
generalization ability. 
 
Given a set of data points: ሼݔ, ,ሽݕ ݅ ൌ 1,2, … , ݊ where  

For	ݕ ൌ 1,ݔ்ݓ  ܾ  0 
For	ݕ ൌ െ1,ݔ்ݓ  ܾ ൏ 0 

	 
With a scale transformation on both w and b, the above is equivalent to: 

For	ݕ ൌ 1,ݔ்ݓ  ܾ  1 
For	ݕ ൌ െ1,ݔ்ݓ  ܾ  െ1 

 
We know that: 

ାݔ்ݓ	  ܾ ൌ 1 
ିݔ்ݓ  ܾ ൌ െ1 



 

 
The margin width is: 
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This margin should be maximized. The maximization problem is difficult to solve 
because it depends on ||w||, the norm of w, which involves a square root. Fortunately it is 

possible to alter the equation by substituting ||w|| with 
ଵ

ଶ
 ଶ without changing the‖ݓ‖

solution (the minimum of the original and the modified equation have the same w and b).  
 
This is a quadratic programming (QP) optimization problem. More clearly we need to: 

 minimize	
ଵ

ଶ
 :such that	ଶ‖ݓ‖

 For	ݕ ൌ 1,ݔ்ݓ  ܾ  1	 
 For	ݕ ൌ െ1,ݔ்ݓ  ܾ  െ1   

 
Which is equivalent to minimize	 ଵ

ଶ
ݔ்ݓሺݕ such that	ଶ‖ݓ‖  ܾሻ  1	. 

The solution to this optimization problem is found by Lagrangian multipliers, but it is not 
the purpose of this lab. 
 
2.4. Soft-margin classifiers 
 
In 1995, Corinna Cortes and Vladimir Vapnik suggested a modified maximum margin 
idea that allows for mislabeled examples. If there exists no hyperplane that can split the 
"yes" and "no" examples, the Soft Margin method will choose a hyperplane that splits the 
examples as cleanly as possible, while still maximizing the distance to the nearest cleanly 
split examples. The method introduces slack variables, ξi, which measure the degree of 
misclassification of the datum xi. 



 

 
Fig. 1.4 Classification using soft margin 

 
By minimizing ∑ξi, we can obtain ξi by: 
 

 
 

 ξi are “slack variables” in optimization 
 ξi =0 if there is no error for xi  
 ∑ξi is an upper bound of the number of errors 

So we have to minimize	
ଵ

ଶ
ଶ‖ݓ‖  ܥ ∑ ߦ


ୀଵ  such that ݕሺݔ்ݓ  ܾሻ  1 െ  .0ߦ  andߦ

Parameter C can be viewed as a tradeoff parameter between error and margin. 	
 
2.5. Support vector machine with soft margin classification 
 
If the data is non-linearly separable a transformation is applied to each sample xi such 
that xi→ф(xi) such that the original input space is be mapped to some higher-dimensional 
feature space where the training set is separable. 
Suppose we have a nonlinearly separable dataset {(x1,y1),…, (xm,ym)}. The idea is to 
choose a nonlinear mapping  : X→H and each x in input space is assigned  (x) in H. H  
is an inner product space called feature space. Then we can find a classifier (a separating 
hyperplane) in H to classify {( (x1),y1),…, ( (xm),ym)}. 
 

 



 

Given a training set of instance-label pairs (xi, yi); i = 1… l where xi ∈ Rn and y∈{+1,-1}l, 
the support vector machines (SVM) require the solution of the following optimization 
problem: 

 
Subject to: 

 
Here training vectors xi are mapped into a higher (maybe infinite) dimensional space by 
the function Φ. Then SVM finds a linear separating hyperplane with the maximal margin 
in this higher dimensional space. C > 0 is the penalty parameter of the error term. 
Furthermore, K(xi, xj) = Φ(xi)T Φ(xj) is called the kernel function. Though new kernels are 
being proposed by researchers, beginners may find in SVM books the following four 
basic kernels: 

- Linear kernel: ( , ) Tk u v u v  

- Gaussian kernel: 
2

2
( , ) exp

2

u v
k u v



 
  
 
 

 

- Sigmoid: 0 1( , ) tanh( )Tk u v u v    

- Polynomial kernel:  ( , ) , , ,
d

k u v u v c c d      

3. Exercises 
 
For the practical work you will be given a framework called SVM-toy, that provides a 
C++ implementation of soft-margin classifiers using different types of kernels. 
 

1. Download TestSVM.zip. Compile SVM-toy and run it. Its interface should look 
like:  

 



 

The buttons of the interface have the following meaning: 
 ‘Change’ button: the application allows the user to add points in the 

classification space (the white window) by mouse left click; this button 
allows to change the color of the points (each color corresponds to a 
class). A maximum number of three colors is allowed (hence three classes) 

 ‘RunSVM’ button – runs the SVM classifier with the parameters specified 
in the edit box  

 ‘Clear’ button – clears the classification space 
 ‘Save’ button – saves the points (normalized coordinates) from the 

classification space to a file 
 ‘Load’ button – loads a bitmap image (loads and draws the points into the 

classification space) 
 The Edit box where parameters are specified, the default values are  

‘–t 2 –c 100’ 
The application allows several parameters, but we will use two of them, 
naming: 

 ‘-t kernel_type’ specifies the kernel type: set type of kernel 
function (default 2); ‘kernel_type’ can be one of the following: 

  0 – linear  kernel: u*v 
  1 –polynomial kernel: (gamma*u'*v + coef0)^degree 
  2 – radial basis function: exp(-gamma*|u-v|^2) 
  3 – sigmoid: tanh(gamma*u'*v + coef0) 

 ‘-c cost’ specifies the parameter C from the soft margin 
classification problem  

 ‘SimpleClassifier’ button – runs the simple classifier (to do!). 
 

2. For each image in svm_images.zip run the default SVM classifier (with different 
kernels and costs) 

3. Implement the ‘SimpleClassifier’ (according to section 2.2) and compare it to the 
SVM classifier that uses a linear kernel. 
 
Write the code in the file svm-toy.cpp for the case branch:  
 
case ID_BUTTON_SIMPLE_CLASSIFIER: 
{ 
 
/* ****************************************  
 TO DO: 
 WRITE YOUR CODE HERE FOR THE SIMPLE CLASSIFIER 
**************************************** */ 
 
} 
 
For implementing the simple classifier you should know that in the svm_toy.cpp 
file the coordinates of the points are stored in the structure  
 
list<point> point_list;  
 
and a point is defined by the structure: 
 



 

 struct point { 
  double x, y; 
  signed char value; 

}; 
 
The variable ‘value’ represents the class label. 
 
The coordinates  of the points are normalized between 0 and 1 and the (0,0) point 
is located in the top left corner. 
Notice that the dimension of the classification space is XLEN x YLEN. Hence to 
a normalized point (x,y) we have other coordinates in the classification space 
(drawing space) which are (x*XLEN, y*YLEN). 
 
The drawing of a segment between two points is done by the method:  
DrawLine(window_dc,x1, y1, x2, y2, RGB(255,0,0)); 
 
In order to iterate over all the points and count how many points are in class ‘1’ 
and in class ‘2’ you should do the following: 
//declare an iterator 
list<point>::iterator p; 
int nrSamples1=0; 
int nrSamples2=0; 
double xC1=0,xC2=0,yC1=0,yC2=0; 
 
for(p = point_list.begin(); p != point_list.end(); p++) 
{ 
 if ((*p).value==1) //point from class ‘1’ 
 { 
   nrSamples1++; 
  xC1 =(*p).x; //normalized x coordinate of the current point  
  yC1 =(*p).y; //normalized y coordinate of the current point  
 
 } 
 if ((*p).value==2)  //point from class ‘2’ 
 { 
  nrSamples2++; 
  xC2 =(*p).x; //normalized x coordinate of the current point 
  yC2 =(*p).y; //normalized y coordinate of the current point 
 }  
}      
 
Sample result: 

 

Details: 
- 2D points to be classified 
- 2 classes, 2 features (x1 and x2) 
- Red line separation obtained by implementing 

the ‘Simple Classifier’ algorithm 
- Cyan/Brown line separation obtained by SVM 

linear kernel (-t 0) and cost C=100 (-c 100) 
Observe  

- The maximized margin obtained with SVM 
- The points incorrectly classified by simple 

classifier 
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