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Abstract—Obstacles classification plays an important role in 
driving assistance systems. Any classification system should 
accurately distinguish, in real-time, between a set of well-known 
object classes such as pedestrians, cars and poles and other 
obstacles. If the object class is determined then the driving 
assistance system may take the right decision, in case of an 
imminent impact, in correlation to the vulnerability of the class 
that object belongs to. An object detection module based on both 
2D and 3D information is considered for the obstacles 
segmentation. Preliminary classification results are obtained, at 
each image frame, for each detected object. The classification 
result should be approximately the same for an object that is 
tracked across frames. We described some methods for 
accomplishing this issue. First a Bayesian inference is considered 
for obtaining the class probability of the tracked objects from 
frame to frame. Then the tracking and filtering of the object’s 
class is realized by applying a k-NN classification on the 
previously computed class values over the last few frames. These 
methods improve the stability and accuracy of tracked objects’ 
classification across multiple frames. 

Keywords - obstacle classification; obstacle tracking; Bayesian 
inference; k-NN classification; classification tracking 

 

I.  INTRODUCTION 

A very important aspect for driving assistance systems is 
the objects’ detection, tracking and classification. The large 
variety of different traffic scenarios with different kinds of 
scene objects makes these tasks more difficult, complex and 
hard to obtain high accuracy results.  

There are different technologies such as RADAR, LIDAR, 
ultra-sound sensors, piezo-electrical sensors, LASER-scanners 
and video cameras used for acquiring the environment 
information. However, the video images acquired with video 
cameras is the most similar acquisition manner to the human 
vision system and it’s a passive and clean way because it does 
not imply any source of pollution and does not affect the 
environment and people. In comparison to a single video 
camera, a pair of two stereo-cameras provides much more 
information crucially needed for the algorithms used in solving 
the driving main tasks. The stereo sensor offers the possibility 
to determine the depth distance value for any image point but 
also the possibility to compute the motion vector for any pixel. 
The combined use of the 3D position and motion information 
significantly improves the object detection, the discrimination 

between static and dynamic components, the dynamic object 
tracking and offers then the possibility of achieving a good 
classification. 

 Determining the classes for all objects that appear in the 
environment or specifically in the traffic scenarios is a 
requirement that every safety driving assistance system must 
implement. There are different traffic scenarios where the 
driving assistance systems may be used. In the highway 
scenarios, the scene is relatively simple and the obstacles that 
appear in the traffic are limited to cars, trucks and road-side 
fences. Opposite to highway scenarios, in the urban traffic 
scenarios, the classification problem becomes much more 
difficult due to the environment complexity and the presence of 
different objects types. 

We have identified four main classes used in relevant 
obstacles classification: cars, pedestrians, poles and other 
objects. Pedestrians are the most vulnerable participants 
involved in traffic, so their recognition and protection is a 
major requirement in urban traffic scenarios. Cars’ recognition 
is also important for a further detection of the occupant cell of 
the collision car, in order to avoid the injury to its passengers in 
case of an imminent accident. Poles recognition is important in 
order to avoid possible collisions with them, to infer the 
position of the drivable lane knowing that the poles are on the 
road-sides and also to further detect the traffic road signs and 
traffic lights. 

The classification system should be able to recognize as 
accurately as possible, in real-time, each of the four classes of 
objects. It should be also capable of working in different 
weather conditions and traffic scenarios. The classification 
algorithms are not yet powerful enough to determine accurately 
the obstacles’ classes considering just the current frame. The 
features values used in the classifier input for the same object 
change from frame to frame and this leads to an inaccurate 
classification. There are consecutive frames in which the 
obstacle is correctly classified, but there may appear some 
intercalated frames where the object is wrongly classified.  

This drawback is covered in this paper by describing a 
robust classification tracking technique. The preliminary results 
of a classifier that classifies all the objects in the current frame 
are merged together with the results of a tracking module that 
tracks the obstacles between frames. Our contribution consists 
in developing a probabilistic method that combines these 
results. In comparison with other systems, that don’t use object 



classification tracking [3][6] , our proposed method achieves an 
improvement in the objects classification results. 

 

II. RELATED WORK 

There have been a lot of research activities for developing 
new solutions and systems used for robust object tracking and 
classification in different surveillance applications or driving 
assistance systems. The architecture of a stereovision obstacle 
classification system [1] consists of the following three main 
modules: object detection based on 3D points grouping [2]  and 
density maps [3] ; motion detection and object tracking [4], [5]; 
objects classification [6]. 

The identification and tracking the blobs of an object 
bounding box in 2D space could be considered a solution for 
object tracking. Its disadvantages refer to the issues of 
occlusion that cannot be solved in dense situations. The regions 
that are grouped together will form a combined blob and cause 
tracking errors. A Kalman filter that estimates the pedestrians’ 
parameters in this manner is presented in [7]. Defining the 3D 
geometry of a moving object may solve partially the occlusion 
problem, but it has the drawback that it is time consuming so it 
can’t be used on detailed geometric object models. In [8] the 
problem of partial occlusion is solved by considering 3D 
models. A specification of vehicle models makes it possible to 
take advantage of the a-priori knowledge about the shape of 
typical objects in traffic scenes [9]. 

Features based objects tracking is used by considering 
relevant features of moving objects (corners or invariant 
features). These features are continuously tracked for each 
object. This method overcomes the objects’ partial occlusion 
problem for a small time interval because it may work correctly 
even with a subset of features extracted from the visible 
objects’ parts. However, it is difficult to identify those features 
which belong to the same object during the tracking process. In 
[10] the considered features for tracking are represented by the 
Harris corners. Each corner position and other attributes are 
used in a classification procedure to determine if the tracker has 
worked correctly.  

The objects’ size and velocity are selected for computing 
the motion correspondence [11] and then the size and position 
are used with the Kalman predictors [12] for correctly 
estimating as much as possible the real trajectories. If the 
objects’ types are known, e.g. the type of an object to be 
tracked being a pedestrian, then more appearance models of the 
body-silhouettes can be used [13]. Some probabilistic object 
appearance models have been used [14] in order to detect and 
track pedestrians that belong to a group and may occlude each 
other [15]. 

There are also other approaches on object tracking. In [16] 
a tracking method based on wavelet analysis is presented. The 
wavelet transform is applied for decomposing the image. A 
particular frequency band is selected then as the input into the 
neural network for vehicle recognition. All the vehicles are 
tracked by using their own position coordinates and the wavelet 
feature differences for identifying the correspondences between 
vehicle regions. Other methods have been developed to avoid 
using Kalman filtering. A new stochastic algorithm for robust 

tracking which is superior to previous Kalman filter based 
approaches is presented in [17]. 

Probabilistic tracking methods [18] decompose the human 
dynamics in order to learn and recognize human beings in 
video sequences. In [19] a simple tracking based on a mixture 
of temporal differencing and image template matching is 
presented. It achieves highly tracking performance in the 
presence of partial occlusions and achieves good classification. 

A large number of algorithms for obstacle classification 
have been proposed in literature but the problem of achieving a 
good objects classification in complex traffic scenes is still far 
from being solved. In the classification step, the type of the 
previously tracked object is determined. In [20] a feed-forward 
neural network is used in order to distinguish between persons, 
vehicles, and background clutters. A Support Vector Machine 
[21] may also be used for classifying vehicles, humans and 
animals. A classifier based on error correction output is 
proposed in [22] and used for distinguish between bikes, cars, 
trucks, persons and people groups. In [23] an algorithm that 
does not need to be trained with test sequences of the objects is 
used for object classification. 

Objects’ classification based on pattern matching is 
sometimes limited to 2D image intensity information [24] or it 
may have additional 3D information. An approach that aimed 
at pedestrian detection used the dense 3D information but only 
as a validation method [25] due to the fact that 3D data 
generated by the dense stereo reconstruction devices is still 
noisy and has lower confidence than intensity data. In [26] 
techniques such as Adaboost with illumination independent 
features are considered for boosting the obstacle classification. 

 

III. CLASSIFICATION SYSTEM 

The whole objects’ classification system architecture with 
all its components and data flow is depicted in Figure 1.  

Gray-levels left and right intensity images (512x383 pixels) 
of the scene are acquired with the stereo vision system. A 
hardware machine is used then for computing the stereo 
reconstruction of the two intensity images, resulting in a 3D 
range image (depth image). In the depth image each scene-
point encodes the distance from the stereo cameras, so we have 
obtained a 3D set of points (2D intensity levels and the 
distance). 

An object detection algorithm is applied on the 3D range 
image which finds the 3D bounding boxes of all objects in the 
scene image. All the background points are removed by using 
depth information; the only remaining 3D points belong to the 
objects. 

A tracking algorithm [27] for objects, based on information 
supplied by dense stereo and optical flow, is used. It defines an 
advanced probabilistic cuboidal model for objects and use a 
dynamic model based on objects’ classes. The algorithm is able 
to deal with hierarchical objects and it shows that tracking 
greatly improves the performance of object detection. 

A large amount of features are extracted for each obstacle. 
The features comprise 3D attributes, motion attributes, 2D 



visual attributes. The most relevant attributes considered for the 
generic classification task are: object dimensions (width and 
height), aspect ratio, area to distance ratio, lateral speed, 
longitudinal speed, histogram of oriented gradients used for 
pedestrians and poles, a contour template matching score used 
for pedestrians, the vertical texture dissimilarity used for 
distinguish between pedestrians and poles. 

A large database containing about 100000 objects together 
with their features and their class (obtained by manual label 
assignment) was built. In order to train the classifier, based on 
the dataset objects, the WEKA environment is used. The result 
is a random-forest classification model. This model is applied 
at each frame on the entire list of the previously detected 
objects. A classification result in an image frame is shown in 
Figure 2.  

 
Figure 1.  Obstacle classification system architecture 

 
Figure 2.  Example of classified objects in an image frame 

 

The issue that occurs refers to the fact that the classification 
result (the assigned object’s class for an object by the classifier) 
isn’t stable across frames. This problem is related to the fact 
that the features values used in the classifier input for the same 
object change from frame to frame. There may appear 
consecutive frames in which the obstacle is correctly classified 
(having a correct and constant class assignment) but there may 
appear some intercalated frames where the object is wrongly 
classified. 

In order to solve this problem, for the objects that were 
successfully tracked across frames, we propose two stages that 
refine the frame classified objects. First step consists in a 
Bayesian inference that is applied for computing the class 
probability of the tracked objects from frame to frame. Second 
step is the tracking and filtering of the object’s class by taking a 
k-NN classification on the previously computed class values 
over the last few frames. These two steps are largely described 
in the next two chapters.  

The objects’ classification across frames achieves an 
improvement compared to the standard classification that 
doesn’t take into account the previously mentioned two steps. 

 

IV. BAYESIAN INFERENCE 

Bayesian probability updating is an important statistical 
technique which could be used in computing the class 
probabilities that a classifier assigns to an object in the 
classification process. It is especially important in the analysis 
of the classification results viewed as a sequence of data. 

Our objects’ classifier is generating independent and 
identically distributed classes iC according to the class that the 

candidate object O  belongs to. We considered the main four 
classes – pedestrian, car, pole, other object: 
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The probability distribution for each of them is unknown. 
The conditional probabilities ( | )iP O C  are specified to 

define the models for each class iC . The value of ( )iP C  

represents the occurrence probability of class iC . In the initial 

step we consider the set of initial class prior probabilities: 
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( ) 0.25, 1,iP C i n
n

    (1) 

In each frame, for each detected object O , the classifier 

assigns a probability ( | )iP O C
 
that the object may appear 

into one of the four considered classes , 1,iC i n . This 

probability represents the likelihood ( )iL O C used in the 

Bayesian inference: 
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We considered here two approaches in computing the 

likelihood ( )iL O C in the current frame: 

 First method considers the object’s likelihood as being 
equal to the probability assigned by the classifier in the 
current frame: 

 ( ) ( ), 1,i iL O C P O C i n   (3) 

 Second method consists in computing the likelihood as 
being the average of all likelihoods that the tracked 
object had been assigned by the classifier across all its 
appearances in time: 
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1
( ) ( ), 1,

N

i f i
f

L O C P O C i n
N 
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where N represents the number of frames where the 
object appeared in the frames sequence and 

( )f iP O C is the  probability assigned by the classifier 

in the frame f. 

Remark that the second method is suitable only for objects 
that were tracked across multiple frames. In case of an object 
that couldn’t have been tracked across multiple frames, the 
second method of computing the likelihood is similar to the 
first method: 

11, ( ) ( ) ( ), 1,i i iN L O C P O C P O C i n     

The a-posteriori class probability ( )iP C O  can now be 

computed using (2), having the likelihood already computed by 
either the first method or second method described above. The 
Bayesian inference probabilistic classifies the object into the 
class index W that has the maximum a-posteriori probability 
from all the a-posteriori probabilities set (5). 

  
1,

arg max ( )i
i n

W P C O


  (5) 

The final step consists in updating the a-priori probabilities 
with the a-posteriori values (6) and then repeating the inference 
in the next frame where the object is tracked and so on, until it 
disappears from the scene. 

 ( ) ( ), 1,i iP C P C O i n   (6) 

A discussion regarding what method is best suitable for 
computing the object’s likelihood in the current frame is 
presented in the experimental results chapter. 

 

V. K-NN CLASSIFICATION TRACKING 

The k-nearest neighbor algorithm (k-NN) is a method for 
classifying objects based on closest examples in the feature 
space. An object is classified by a majority vote of its 
neighbors by assigning the class most common amongst its k 
nearest neighbors. 

We used the k-NN method to filter false classifications of 
each tracked object along several successive frames. We 
suppose that the object is right classified in almost all frames 
where it is tracked, but there are few frames where the 
Bayesian inference gets a wrong result. The objective is to 
filter these wrong classifications and convert them to the right 
class. The k-NN method is suitable for accomplishing this task. 

Considering the value k as being the number of last frames 
where the object appeared in its tracks, and knowing the class 
Wf that was assigned for the object at frame f (see Figure 3. !), 
we can vote for each class appearance in all k frames. 
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Figure 3.  Class assigned to the object at each frame in the last k frames 
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The object’s classification was performed by using the 
Bayesian inference, so the class indexes in the above formula 
were computed using (5). 

 After computing all the votes in the last k frames with (7), 
the class index that is reassigned to the object in current frame 
is given by that class having the maximum number of votes (8) 
(k-NN method). 

  
1,

arg max ( )i
i n

W V C


  (8) 



Remark that the filtering result depends on the number k of 
last frames that is considered in the voting process. If k it is 
chosen to be small, the classification tracking filter tends to 
perform a light filtering, with similar results with the process 
when only the Bayesian inference is used. In the opposite way, 
if k is large then the filtering process is very rough having the 
undesired possibility of affecting the classification in a wrong 
way. A discussion regarding what is best value for k is 
presented in the experimental results chapter. 

 

VI. EXPERIMENTAL RESULTS 

This chapter presents comparative classification results 
obtained without any probabilistic inference or classification 
tracking and those achieved by using both of them. There is 
also a comparison between computing the likelihood as being 
the value in the current frame (instant likelihood) (3) or as 
being the mean over several frames (average likelihood) (4). 

The simple frame-based classifier is developed using 
WEKA environment, with a random forest model used in the 
classification process. We have built a database containing 
about 100000 objects together with their features and their 
class (pedestrians, cars, poles, others). We used about 80% of 
the dataset for training and the remaining 20% for testing the 
classifier. Our simple classification results are presented in 
TABLE I.  

TABLE I.  SIMPLE FRAME-BASED CLASSIFICATION RESULTS 

Class TP Rate FP Rate ROC value 

Pedestrian 0.908 0.032 0.9025 

Car 0.877 0.101 0.8408 

Pole 0.853 0.094 0.8255 

Other 0.692 0.085 0.6804 

 

A. Classification tracking with  instant likelihood 

The classification results considering the last k frames for 
k-NN classification and instant likelihood in the Bayesian 
inference are depicted for each class in next four tables 
(TABLE II. -TABLE V. ). 

TABLE II.  PEDESTRIANS K-NN CLASSIFICATION TRACKING WITH 
INSTANT LIKELIHOOD FOR BAYESIAN INFERENCE 

k 3 4 5 7 8 10 12 

FP Rate 0.0874 0.0404 0.0492 0.0417 0.029 0.059 0.048 

TP Rate 0.9254 0.921 0.9314 0.9314 0.942 0.9186 0.9248 

ROC value 0.8850 0.9112 0.9155 0.9197 0.9351 0.8994 0.9107 

 

TABLE III.  CARS K-NN CLASSIFICATION TRACKING WITH INSTANT 
LIKELIHOOD FOR BAYESIAN INFERENCE 

k 3 4 5 7 8 10 12 

FP Rate 0.1236 0.1316 0.1252 0.1169 0.106 0.1189 0.1115 

TP Rate 0.8982 0.897 0.9037 0.9036 0.912 0.8972 0.884 

ROC value 0.8398 0.8328 0.8420 0.8484 0.8622 0.8428 0.8391 

TABLE IV.  POLES K-NN CLASSIFICATION TRACKING WITH INSTANT 
LIKELIHOOD FOR BAYESIAN INFERENCE 

k 3 4 5 7 8 10 12 

FP Rate 0.0992 0.1058 0.0904 0.074 0.0873 0.1088 0.0852 

TP Rate 0.8618 0.872 0.8866 0.89 0.8826 0.8902 0.8606 

ROC value 0.8298 0.8339 0.8549 0.8674 0.8536 0.8454 0.8366 

TABLE V.  OTHERS  K-NN CLASSIFICATION TRACKING WITH INSTANT 
LIKELIHOOD FOR BAYESIAN INFERENCE 

k 3 4 5 7 8 10 12 

FP Rate 0.081 0.098 0.1144 0.0843 0.075 0.1002 0.0951 

TP Rate 0.6734 0.6811 0.6874 0.6936 0.7 0.6838 0.6708 

ROC value 0.6635 0.6663 0.6671 0.6822 0.6907 0.6683 0.6573 

 

There are variations in ROC values for all object classes 
when k is varied from 3 to 12 last frames. From all graphics, 
we can see that these variations depend on the different values 
of k (see Figure 4. !). However, it could be remarked that we 
have a local maximum on almost all ROC curves in the 
neighborhood of k=8. A value of k=8 is optimal for best 
tracking classification results considering instant likelihood in 
Bayesian inference. 

 

  
Figure 4.  ROC curves for all four object classes, instant likelihood 

 

B. Classification tracking with average likelihood 

The classification results considering the last k frames for 
k-NN classification and average likelihood in the Bayesian 
inference are depicted for each class in next four tables 
(TABLE VI. -TABLE IX. ). 

TABLE VI.  PEDESTRIANS K-NN CLASSIFICATION TRACKING WITH 
AVERAGE LIKELIHOOD FOR BAYESIAN INFERENCE 

k 3 4 5 7 8 10 12 

FP Rate 0.0343 0.034 0.029 0.0398 0.0407 0.0414 0.0437 

TP Rate 0.9321 0.9355 0.94 0.9298 0.923 0.918 0.918 

ROC value 0.9239 0.9270 0.9333 0.9193 0.9129 0.9081 0.9070 

 



TABLE VII.  CARS K-NN CLASSIFICATION TRACKING WITH AVERAGE 
LIKELIHOOD FOR BAYESIAN INFERENCE 

k 3 4 5 7 8 10 12 

FP Rate 0.1121 0.1156 0.108 0.1186 0.1144 0.124 0.135 

TP Rate 0.8972 0.8977 0.9 0.8995 0.892 0.878 0.866 

ROC value 0.8479 0.8456 0.8528 0.8445 0.8426 0.8260 0.8097 

TABLE VIII.  POLES K-NN CLASSIFICATION TRACKING WITH AVERAGE 
LIKELIHOOD FOR BAYESIAN INFERENCE 

k 3 4 5 7 8 10 12 

FP Rate 0.0795 0.076 0.0778 0.0805 0.0858 0.0802 0.1201 

TP Rate 0.8882 0.89 0.8865 0.885 0.8756 0.869 0.872 

ROC value 0.8628 0.8662 0.8623 0.8596 0.8488 0.8463 0.8244 

TABLE IX.  OTHERS  K-NN CLASSIFICATION TRACKING WITH AVERAGE 
LIKELIHOOD FOR BAYESIAN INFERENCE 

k 3 4 5 7 8 10 12 

FP Rate 0.0906 0.0867 0.08 0.0849 0.0942 0.0874 0.1195 

TP Rate 0.686 0.6891 0.695 0.6876 0.69 0.6806 0.6712 

ROC value 0.6731 0.6772 0.6846 0.6762 0.6760 0.6688 0.6501 

 

We applied the same procedure as in the previous sub-
chapter; the value k is varied from 3 to 12 last frames. We can 
see that there are relative small variations among different 
values of k (see Figure 5. !) in comparison with the previous 
method. However, it could be remarked that we have a local 
maximum on almost all ROC curves in the neighborhood of 
k=5. A value of k=5 is optimal for best tracking classification 
results considering average likelihood in Bayesian inference. 

 

 
Figure 5.  ROC curves for all four object classes, average  likelihood 

 

VII. CONCLUSIONS 

We developed a real-time classification tracking system 
that may be used with success in improving obstacle 
classification results (pedestrian, car, pole, other) in each image 
frame, for each detected object. First, a probabilistic Bayesian 
inference is considered for obtaining the class probability of the 
tracked objects from frame to frame. Then the tracking and 

filtering of the object’s class is realized by applying a k-NN 
classification on the previously computed class values over the 
last few frames.  

We described two methods of computing the likelihood for 
the Bayesian inference. The experimental results show that 
both of them have improved the preliminary simple frame-
based classification (in terms of TP rate, FP rate and ROC 
value). However, choosing the second method of computing 
the averaged likelihood is better than the first one because it 
achieves almost the same performance but considering just k=5 
frames for inferring the result (increasing the decision speed). 

Statistically, the classification of almost all obstacle classes 
was improved in a range of maximum 5% in TP and FP rates. 
The exception is the class “Other” that didn’t get an 
improvement neither in FP rate nor TP rate. This resides from 
the fact that the “Other” class may contain obstacle parts from 
the other three classes and they are very hard to be tracked 
between frames. 

An example of a frame obstacles classification result, 
before and after applying the probabilistic classification 
tracking technique, is shown in Figure 6. Remark that the 
probabilistic classification tracking method managed better to 
assign classes to all the obstacles from the scene. 

 
a) without classificaton tracking (some objects are wrongly classified) 

 
b) with classificaton tracking (the objects are correctly classified) 

Figure 6.  Comparison between frame obstacles classification result with and 
without classificaton tracking 
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