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Abstract— In the automotive industry, vehicle components 
can be obtained through the process of plastic injection molding. 
The components can be fixed in the vehicle by using metal 
bushings, which are placed on the injection mold before the 
beginning of the plastic injection process. The incorrect 
placement or absence of the bushings leads to a defective 
product.  Object classification has been a long-tackled problem 
in Computer Science, and the breakthroughs in Artificial 
Intelligence allows us to solve this problem with a high degree of 
accuracy and precision. In the context of industrial inspection, 
ensuring high-quality products is a matter of utmost 
importance. The automated vision inspection process facilitates 
the creation of a high volume of products, which are in 
conformity with the quality standards, in a short amount of time 
and can save the manufacturing company money. In this paper 
we propose a solution that automatically detects the injection 
mold and classifies the positioning of the bushings, warning the 
operator in case the current positioning can lead to a defective 
product. Furthermore, the bushing detection is optimized in 
such a way that, it is mandatory for the mold to be visible only 
in the first frame, thus reducing the running time of the whole 
pipeline. The results are validated by using a data set covering 
multiple possible working scenarios. Moreover, we compare the 
implemented classifier with other classifiers, highlighting the 
performance of the proposed solution with respect to running 
time and classification accuracy.  

Keywords—CNN, non-destructive testing, plastic injection 
molding , artificial intelligence, computer vision, industrial 
inspection 

I. INTRODUCTION 

Industrial inspection is a critical process in ensuring the 
quality of a product before reaching the market. Until recent 
times, a human operator whose duty was checking for faults 
in products, was used. This method was not reliable in all 
cases, as attention fades with repetitive and boring jobs. 
However, thanks to the innovations in artificial intelligence, 
computer vision and technology in general, it is possible to 
inspect products using advanced algorithms, without the need 
of a human employee, whose attributes shifted from checking 
for faults to operating the industrial inspection machines. 
Other advantages of this practice include objectiveness and 
repeatability of a certain inspection or measurement process. 

Two types of testing are distinguished, based on impact 
they have on the product. Destructive testing is meant to 
destroy the test specimen in order to find out its properties. In 
the paper presented in [1], the authors show the values of 
concrete-mix strength, found out using destructive testing. 
Hardness can be inspected by placing a heavy ball on the 
specimen, then applying a force on the ball, and using a 
microscope to detect the deformation of the specimen, known 
as the Brinell test [2]. The main disadvantage of such an 
experiment, is that the specimen is no longer usable. In 
consequence, destructive testing is only applicable to one item 
in a batch, which does not guarantee the same properties for 
all products in that batch, therefore this type of testing is more 
of an approximation. 
 Non-destructive testing (NDT), on the other hand, 
describes various methods of inspecting the structure of a 
specimen without destroying or altering its composition. They 
are especially useful because no material is wasted and they 
can be applied to each product, instead of a batch of products. 
This leads to certain advantages, like improved product 
quality, raw material and finished products are not wasted, and 
therefore higher profit for the manufacturing company. 
 The are many types of NDT methods used, some of them 
really simple, like penetrant methods, were a dye is placed on 
top of a material and then cleaned, leaving the dye visible in 
the cracks [3]. Radiographic methods are based on X-rays that 
penetrate the material and display on a film possible cracks in 
the material [4]. Ultrasonic methods use the properties of 
high-frequency sound waves, where based on the emission 
and reception time computed by a probe, cracks can be found 
in the material [5]. Magnetic methods use the flux leakage 
detection method to check for very fine cuts and cracks on the 
surface [6]. Electrical methods induce currents into 
conductive materials to detect cracks [7]. 
 In the injection molding process, an injection molding 
machine liquifies the polyester, and injects it under pressure 
into a specific molding tool. Through cross linking reaction or 
cooling, the material from the molding tool, transforms into a 
solid state and can be removed and the process can be 
repeated. The cavity of the molding tool, determines the shape 
and surface structure of the finished part. Being a complex 
procedure, intelligent systems have been developed to model 
this process and tune its parameters, as presented in [8].  



In the current paper, the correct placement of metal bushings 
plays an important role in obtaining the desired product. These 
components are placed onto the molding tool before the 
injection process, and if they are missing or are incorrectly 
placed, all the following stages of the manufacturing process 
will lead to the creation of a flawed product. Therefore, the 
quality of the final product is directly influenced by the correct 
placement on the bushings onto the mold. 
 In this paper, a non-destructive optical inspection solution 
for the problem of analyzing the correct placement of the 
bushings on parts obtained through the process of plastic 
injection molding is presented. The proposed approach 
segments the image region corresponding to the mold, isolates 
the region of interest, which includes the area around the 
bushings and for each bushing the proposed algorithm 
classifies it into 3 main categories: well placed, badly placed 
or missing. The operator is warned using a color code about 
the positioning each bushing from the mold. 
 This proposed solution is relevant for multiple reasons. 
Most important, it intervenes in the manufacturing process 
enabling the detection of faulty parts before the product is 
finished. Therefore, the costs of production are reduced, 
because possible faults are mitigated before the plastic 
injection process is started. Furthermore, using such an 
approach, human error is removed, and the inspection process 
is objective and repeatable.  
 The rest of the paper is structured as follows, section II 
presents the related work in the field of non-destructive 
testing, in section III the proposed solution is explained, in 
section IV the experimental results are shown and finally in 
section V the main conclusions are drawn.  

II. RELATED WORK

 In many industries, massive automation has been 
carried out on manufacturing lines, however, in many cases, 
defect detection is still being done visually by inspection 
workers. Product verification is an important step in the 
manufacturing process, and ensuring that the quality of each 
product is compliant with the standards is a challenging task. 
Factors such as fatigue of the human operator, caused by 
performing a repeatable task, may affect the accuracy of the 
quality inspection. Furthermore, compared to machines, the 
working hours of the human inspector is relatively short, and 
the final verdict, when assessing the quality of a product, may 
be subjective and may have fluctuations with respect to the 
inspection standards and some rate of unavoidable errors. 
The digitalization of factories adopted by many 
manufacturers has led to the usage of automated visual 
inspection [9], which ensures the objectiveness and 
repeatability of the quality inspection task, while also 
improving the production throughput. Automated visual 
inspection, assumes the usage of computer vision methods 
for quality control, and many solutions have been applied in 
the production lines of traditional manufacturing industries in 
order to help factories achieve their desired level of quality. 

In [10] a new type of system that use a Cellular Neural 
Network was proposed, that would be suited in the field of 
visual inspection of paper, metal and polymer surfaces, due 
to its highly parallel architecture. The proposed approach was 

able to detect faults, like cracks and scratches, in real-time. 
The biggest advantage of this solution consists in its parallel 
architecture design that increases the processing speed. 
Cellular Neural Network machines, were also used in [11], 
where the authors managed to implement a genetic algorithm 
for border detection and template matching. With this 
approach, very fine scratches were being detected on metal 
surfaces. A simpler solution that only uses a webcam to 
measure different geometrical features of industrial products 
such as length, height, or diagonal of circular parts, was 
proposed in [12]. 

In recent years Convolutional Neural Networks 
(CNN) models have proven to be powerful tools for many 
classification applications. Furthermore, CNNs can extract 
automatically features from complex data sets, and can be 
fine-tuned with certain inputs to meet specific industrial 
requirements. For these reasons, many industrial inspection 
applications have applied CNN models for defect detection 
and classification [13, 14, 15].  The authors in [16] train and 
compare ResNet, Inception and MobileNet CNN models to 
detect up to 27 defects in power cable manufacturing. A 
framework for automatic machine vision-based surface 
defect detection and classification is presented in [17]. The 
authors use a modified SqueezeNet model that can classify 
defects of various sizes in cluttered background. In order to 
obtain larger receptive files and extract multi-scale features 
the authors use multiple convolutional layers having different 
kernel sizes. Furthermore, the number of parameters of the 
newly added convolutional layers are reduced to avoid over-
fitting. Another neural network model NB-CNN, proposed in 
[18], managed to detect defects like cracks on underwater 
metallic surfaces for nuclear components. The method uses a 
novel data fusion scheme that aggregates information 
obtained from multiple video frames and registers crack 
patches to a global coordinate system forming tubelets. 
Moreover, A Naive Bayes decision making process discards 
tubelets that are not of interest. Using multiple Convolutional 
Neural Networks, the authors of [19] create a multiscale 
system capable of combining different networks that have 
been trained independently. Such a system can perform visual 
inspection of airplane engine blades.  

Authors of [20] used CNNs in order to classify a wide 
range of defects on the surface of materials such as steel, 
paper, foil, glass, plastic and film, obtaining an accuracy of 
over 98%. The authors in [21] combine a CNN architecture 
with K-NN algorithm to accurately detect and classify five 
surface defects, present in the semiconductor manufacturing 
industry. Based on the detected defects, the operators can 
determine whether the product can be repaired or discarded. 
CNNs have also been applied for quality control purposes in 
a paper production plant [22]. The architecture was used to 
generate different digital filters that aided the discovery of 
defects. Other works, like the one presented in [23], use MLP 
Neural Networks to predict the quality and soundness of 
injected plastic parts; the results show that the model is 
capable of determining the existence of weld line defects. The 
authors in [24] present a quality predictor for the plastic 



injection molding process using a self-organizing map 
together with a back-propagation neural network (SOM-
BPNN). The results present a comparison of SOM-BPNN 
and another BPNN, with SOM-BPNN having a much better 
accuracy at predicting the quality values.  

The current paper builds upon the state of the art by 
creating a novel automated vision inspection and warning 
system that aims at detecting and classifying the positioning 
or absence of metal bushings onto an injection mold, with the 
purpose of preventing the creation products that are not in 
conformity with the standards. The incorrect positioning or 
the absence of one of the metal bushings, may lead to the 
creation of a defect product, and the loss of raw material 
(PWC) and implicitly the loss of money for the 
manufacturing company. The pipeline of the proposed 
system contains an image pre-processing step, the mold 
detection stage, the bushing segmentation and classification 
part and finally the visual warning stage that informs the 
operator about the status of system. 

III. PROPOSED SOLUTION

 In this section, a solution incorporating the detection 
of an industrial mold and bushings along with bushing 
classification is presented. The processing pipeline of the 
proposed solution consists of the following five stages:  Data 
Pre-processing, Mold Detection, Bushings Detection, 
Bushings Classification, Visual Warning System. For 
experimental purposes a copy of the mold has been created, 
that respects the proportions and interior shape and structure 
of the original mold. In Figure 1, on right-hand side we 
observe the original mold image and on the left-hand side the 
copy of the mold.  

 

A. Data Pre-processing

In the pre-processing step, the input image is resized to a
dimension of 85% from its original size, in order to reduce 
the processing time for each frame.  

It is expected that through the frame acquisition process, 
Gaussian white noise could be an impacting factor on image 
quality. For removing the Gaussian noise, the image was 
filtered using a 5x5 Gaussian Kernel. Furthermore, important 
parts of the image like the black circles surrounding the mold, 

which help in the mold detection stage are not altered. 
Finally, the noise-filtered image is converted to grayscale, 
since there is no helpful color information in the region of 
interest, the mold having a metallic grey chromatic. 
Furthermore, this conversion also helps in reducing the 
processing time, and memory usage since we only have one 
channel for each pixel. 

B. Mold Detection

After the frame pre-processing, we want to isolate the
area corresponding to the injection mold. The four holes used 
to fix the mold in the injection process are used for 
segmenting the region of interest. In the copy of the mold, the 
four holes are represented by the four black circles. 

The pipeline for detecting the mold from a pre-processed 
image is presented in Figure 2. In order to highlight the 
desired information from the preprocessed image an adaptive 
Gaussian thresholding operation is performed. 

The image is scanned using a 11x11 window and the 
threshold value is the weighted sum of neighborhood values 
where weights are a Gaussian window. 
This step facilitates the finding of contours of objects in the 
image. To reduce unnecessary noisy information that remains 
after the thresholding operation and to better separate the 
shapes within the image, an opening morphological operation 
is applied. 

For detecting the injection mold, the four large holes from 
the corners of the mold, which are normally used in fixing the 
mold, have to be detected. Looking at the injection mold from 
a 2D perspective, we assume that these holes represent the 
largest round shapes in the region of interest. The first step in 
this endeavor is to find the contours and area of each object 
in the image processed so far. The contour is extracted using 
the border tracing algorithm described in [25]. For each 
extracted contour, the area corresponding to the region 
enclosed by the contour is computed as shown in (1). 
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Figure 2. Mold Detection pipeline 

Figure 1. In the right-hand side an image of the original mold, 
and on the left-hand side the copy of the mold 



The circularity, C, of each identified object is computed using 
(3), where A is the area of the object, and P is the perimeter.  
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Objects having a circularity below 0.7 are removed. The 
perspective effect together with bad illumination may lead to 
a poor ROI identification, therefore the selection of the 
largest round objects is not a viable solution. For this reason, 
the image is further filtered using the area of each identified 
item, leaving only the instances that have an area larger than 
30% of the area of the largest contour. The 30% percentage 
has been chosen experimentally, due to the fact that 
depending on the viewpoint of the camera, and the 
perspective effect, some circles can appear larger than others. 
The results of the processing steps presented so far can be 
seen in Figure 3.  

The region of interest is isolated using the position of the 
centroids of each identified circle. In some scenarios, the 
algorithm may be unable to recognize all four circles, due to 
bad illumination. In case only three of the four circles are 
detected, the approximate location of the fourth circle is 
inferred, by using the assumption that the mold has the shape 
of a quadrilateral with parallel edges in the 2D image space. 
Knowing that the slope of the parallel lines that make the 
quadrilateral is equal, a system of 2 equations with two 
unknowns can be derived. Given the four points necessary for 
detecting the ROI corresponding to the mold )�	-�� .�, �)�	-�� .��, �)*	-*� .*, �)/	-/� ./ are positioned in a 
clockwise manner on the corners of the 2D mold, with 
)�)��0�0)*)/ and the slope 12324 � 12526 . In case the point, 
�)/	-/� ./, is not detected, its position can be inferred using 
equations 4 and 5.  

7/ � � 84	95��93	:4�:3;	95�94	:4�:3	:5�:3�:5	94�93	:5�:3	95�93	:4�:3��	94�93	:5�:3 �         
   (4) 

</ � .* =� 	94��93	:6�:5:4�:3   (5) 

In Figure 4, two depictions of the cropped region of interest 
are illustrated. 

C. Bushings Detection

The pipeline for detecting the bushings is similar to the
one presented for detecting the injection mold. To facilitate 
the detection of bushings, small circular black marks are 
placed around the bushing support area. On the metal mold 
the marks can be made using a thermal resistant paint, which 
would not disappear after the injection process, but it would 
have to be reapplied after a number of days.  

In order to aid the bushing detection process, an optimal 
level of brightness and contrast have to be set in the image. A 
region of interest that is too bright will result in bushings not 
being detected, while a region of interest that is too dark will 
result in other objects being detected as well.  

The brightness is adjusted by applying a linear 
transformation to each pixel, p(i,j), located at row i and 
column j in the image as exemplified in (6).  
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The values of B and C are selected relative to the mean 
intensity value from the region of interest.  
 For adjusting the contrast in the ROI, the Contrast 
Limited Adaptive Histogram Equalization [26] is used. 
A binarization of the region of interest using a global 
threshold value (t=50) is used together with a closing 
operation for identifying the bushing location. The result of 
the mentioned operations is shown in Figure 5.  

 The contours of the objects in the image are computed, 
and then the round objects are filtered. The circularity of 

Figure 4. ROI of the injection mold. In the left a case 
where all corner points were detected, in the right, only 3 

points were detected and one was inferred. 

Figure 3. In the left image all detected contours are shown, in 
the middle image the remaining contours after circularity 
filtering are depicted, finally in the right image the remaining 
contours after circularity and area filtering are illustrated. 

Figure 5. In the left image, the original ROI is shown, the 
middle image corresponds to the ROI after the contrast and 

brightness adjustments, the right image illustrates the 
identified bushing location 



objects is computed using (3), and the image is filtered 
leaving only the round objects having a circularity greater 
than 0.6. The resulting set is filtered again using the area 
information, leaving only four of the roundest objects having 
the largest area. Once the contours are located, the regions of 
interest can be extracted, as shown in Figure 6, by computing 
the bounding rectangle of each contour.  

D. Bushing Classification

The bushing classification problem was solved using a
Convolutional Neural Network, based on the LeNet-5 
architecture, described in [27]. The proposed classifier has to 
distinguish between three possible classes: correct placement 
of the bushings, incorrect placement and missing bushings. 
The missing bushings class was added because, once the 
injection molding process begins, the bushings may fall of 
from the mold, and in such a scenario the operator should be 
warned such that the molding process does not lead to 
product with defects. A pair of bushings are shown in Figure 
7, the correct placement on the injection mold would be with 
the wide flange towards the injection mold, and the narrow 
flange facing out of the mold. Any other positioning would 
be incorrect. The proposed classification solution works for 
any color of the metal bushings (silver, golden, copper etc.). 

The original LeNet architecture was built for digit 
recognition and uses 6 layers. Starting from the original 
design, in our implementation, we have modified the 
architecture and created an 8-layer architecture for 
classifying the 32x32 images of the industrial bushings. The 
first layer is a Convolutional layer, with an 32x32x1 input 
image and 28x28x6 output. It uses 5x5 convolution kernel 
with 6 feature maps, with a stride of 1. The purpose of this 
first convolutional layer is to detect basic features in the 
image, like lines. All the convolutional layers use ReLu 
activation function and a stride of 1. The second layer is a 
Max-Pooling layer, with 2x2 window and a stride of 2. This 
layer is responsible reducing the size of the feature map in 
half, by selecting only those features which are dominant. A 
28x28x6 input produces a 14x14x6 output. The third layer is 
another Convolutional layer, with input 14x14x6 and output 
10x10x16. This layer uses 5x5 convolutional kernels and 16 
feature maps. This layer is responsible for learning more 
complex features, like combinations of lines and basic 
shapes. The fourth layer is another Max-Pooling layer, with 

the same parameters as the second layer. This produces an 
output of size 5x5x16 for the input size 10x10x16. The fifth 
layer is the final Convolutional layer, with 5x5 kernel and 400 
feature maps. This layer learns the most complex features of 
the map. This layer can learn even more complex pattern than 
the previous convolutional layers. The output of the fifth 
layer is fed into a 3-layer fully connected neural network, that 
uses ReLu activation and does the classification of the image 
based on the features provided by the Convolutional and 
Max-Pooling layers.  
Multiple experiments have been done regarding the 
architecture of the network, however, for the available 
dataset, this architecture yielded the best results. 
 The architecture deals with overfitting by adding 
regularization techniques, like dropout, at level 1 and level 3 
convolutional layers. Dropout is a technique of disregarding 
the values of randomly chosen neurons in order to reduce 
overfitting. The network was trained on the GPU for 100 
epochs using an Adam optimizer, with a learning rate of 
0.0001 and no momentum. To train the neural network, it was 
compulsory to create a dataset, containing images of the 
bushings in different positions and scenarios. The original 
dataset contained 1000 images and was augmented to 
improve the training results. The following augmentation 
operations were performed on the original dataset: inducing 
salt-and-pepper noise, affecting 5% of the image, median 
blurring with a 5x5 kernel, perspective transformation, 
contrast normalization with a sampled value between 0.8 and 
2.0, flipping the image vertically, flipping the image 
horizontally, translation with a number of pixels, increasing 
brightness with a sampled value between from the interval [1, 
30], multiplying each image pixel with constant value of 1.5. 
After the application of these operations, more than 8.000 
images were obtained, which were split into train, validation 
and test set. 

E. Bushing Detection Optimization

The processes presented above are integrated inside a
unified solution, in which a sequence of frames is analyzed 
in real time, and the result of classification is displayed within 
each frame, warning the operator regarding the position of the 
bushings. In order to improve processing and the detection 
time, we take advantage of the fact that the bushing’s 
displacement between consecutive frames is quite low. 
Considering this assumption, we would only be required to 
detect the injection mold in the first frame. This reduces the 
processing time because the search for the bushings is done 
in a relatively small area, without having to go through 
processing steps required when their position wasn’t known 
in advance. For each bushing, a new window is created that 
is bigger than the original bounding box with 10 pixels on 
each side. The new bounding box is made larger, in order to 
accommodate possible size changes due to the mold moving 
closer to the camera. A global thresholding algorithm 
together with a morphological opening operation is applied 
in the newly created window for each bushing location. The 
displaced bushing location is extracted by computing the 
contour and circularity of the biggest object in the new region 

Figure 7. Silver Color Bushings. The bushing on the left has its wide 
flange up and the bushing on the right has its narrow flange up 

Figure 6. The four extracted regions of interest 



of interest. For each window, the new position of the bushing 
will be the bounding box associated to the biggest contour. In 
Figure 8, we illustrate detections that are made exclusively 
from previous frames. 

IV. EXPERIMENTAL RESULTS

 In this section we present an evaluation of the proposed 
solution in terms of mold and bushings detection accuracy 
and bushing classification accuracy, under different 
conditions. For testing purposes, it has been accounted for 
certain factors that might have a significant impact in real-
life, such as different lighting conditions, different camera 
angles, different distances with respect to the injection mold. 
It is also important to note that the testing samples were shot 
indoors, in a relatively clean environment, without many 
objects around the mold.  In order to cover as many real-life 
scenarios as possible, multiple sequences were taken.  The 
camera is located at around 1-2 m away from the mold, the 
experiments have been performed fixing the camera in 
different positions with respect to the mold (top, left side, 
right side, straight view). The system on which we have 
tested our method contains an Intel i7-7700HQ @ 2.80 GHz 
processor and 16GB of RAM.  

A. Evaluation of the Mold Detection

For testing the discovery rate of the mold detection
algorithm, the proposed solution was tested on 200 sequences 
describing multiple scenarios. The algorithm was tested for 
distances up to 2m, which is the maximum distance from the 
camera, the mold would be positioned in a real-life scenario.  
 The proposed solution for mold detection shows very 
good results, even when light is directly incident on it. The 
result of the detection is 99% and it has been achieved taking 
into consideration the following conditions: Natural Light, 
Artificial Light, Straight View, Top View (45°), Left View 
(60°), Right View (60°), different distances to the mold. The 
different views refer to the positioning of the camera with 
respect to the injection mold. 

B. Evaluation of the Bushing Detection

The bushings in this category are detected from the
segmented region of interest, which contains the mold. In our 
scenario, the injection mold can have at most four bushings 
placed on it. The detection rate score for each scenario is 
presented in Table I. In this testing stage, we are interested in 
detecting the region of interest corresponding to each of the 
four bushings. The testing of the orientation, and presence of 
the bushings will be discussed in section C. In Figure 9 
several detections of regions of interest are presented from 
various scenarios. 

It can be noticed from Table I that the bushing detection 
is quite accurate in most cases. One might think that the 
accuracy at 1m should be higher than the accuracy at 1.5m, 
because closer objects should be easier to detect.  

TABLE I. BUSHING DETECTION ACCURACY 

Scenarios D <= 1m 1m <  D <= 2m 

Natural light 97% 95%

Artificial light 97% 99%

Straight view 94% 97%

Top view (45°) 99% 99%

Left view (60°) 96% 96%

Right view (60°) 99% 99%

 In some scenarios, the accuracy at 1m is lower than the 
accuracy at 2m in the case of a straight view camera angle. 
This happens because of the illumination conditions 
especially the natural one, which cannot be controlled. 

C. Evaluation Bushing Classification

The quality and running time of the proposed neural
network classifier are evaluated on multiple sequences. The 
results of the proposed classifier have also been compared to 
the results of other classifiers, like Support Vector Machine 
(SVM), Decision Trees (DT), or solutions using Image 
Processing Techniques. The SVM classifies industrial 
bushings based on features provided by the Histogram of 
Oriented Gradients (HOG) [28]. Using HOG, information 
such as the orientation of the edges of the bushings can be 
captured by computing the magnitude and direction of the 
gradient in points where intensity level changes abruptly. 

Decision trees [29] are supervised learning models that 
can perform both classification and regression. In a decision 
tree, each node represents a test on an attribute, and each leaf 
corresponds to a classification result. The outcome is 
computed by comparing the features of the input with the 
features in each node and then going further on the 
appropriate branch. In our implementation, items are 
classified using Haar features [30]. The other classifier uses 
classical Image Processing techniques (IPT), like 
segmentation, morphological operations, contours finding, 
histogram equalization, highlighting distinctive traits of the 
bushings depending on their positioning. The number of 

Figure 9. Multiple detection cases for the bushing ROI

Figure 8. Bounding boxes detected using the position from 
consecutive frames  



bushings in each category is 600, 200 which are placed 
correctly, 200 which are not placed correctly and 200 that are 
missing completely. The classification accuracy for each 
method can be seen in Table II. It can be observed that the 
proposed implementation outperforms the other methods 
qualitatively, the DT, the SVM approach and the method that 
uses image processing techniques have a lower accuracy. 

The main classification challenge comes from the small 
dimensions of the bushing images and engineering the correct 
features extractors would be a very difficult endeavor. 

TABLE II. BUSHING CLASSIFICATION ACCURACY 

Using the proposed method, the neural network 
automatically extracts the most relevant features. The 
running time of the proposed classifier has also been 
assessed. In Table III, the average running time is presented. 
Analyzing Table III, it can be observed that SVM is much 
faster, on average, than the other methods. However, for this 
application, where classification quality is a key point, the 
proposed solution is still the better option, due to its 
classification accuracy.  

TABLE III. AVERAGE BUSHING CLASSIFICATION TIME 

Methods Proposed SVM DT IPT 
  Time (s) 0.0102 0.0009 0.8589 0.014 

In Figure 10 and Figure 11 two classification scenarios 
are illustrated. The region of interest corresponding to a 
bushing is highlighted using a colored rectangle. The color of 
the rectangle is helpful to identify the positioning of the 
bushing and has the following meaning: Green-placed 
correctly, Blue-placed incorrectly and Red-missing. The used 
color code is also helpful for an operator, to easily identify 
the class of each positioning or absence the bushing.   The 
results of the classification using the four classifiers can be 
seen in Figure 10. In the presented scenario, out of four 
bushings, only one is placed correctly. Only the proposed 
solution is able to detect correctly the positioning of all the 
bushings. In Figure 11 another scenario is presented where 
two bushings are missing and two are placed correctly. In this 
scenario, the solution using the SVM and the proposed 
solution are able to acurately detect the correct classes for all 
the items, while the other methods detect only two or three 
classes of the four bushings corectly. In Figure 12 a zoom in 
of the bushing placement onto the mold is presented, for the 
scenario in Figure 10 and Figure 11. The bushings from 
Figure 12 are illustrated, from top down and left to right.  

Scenarios Proposed SVM DT IPT

Natural light 99% 89% 86% 72%

Artificial light 99% 89% 85% 75%

Straight view 98% 89% 85% 73%

Top view (45°) 99% 92% 87% 73%

Left view (60°) 98% 90% 82% 78%

Right view (60°) 98% 86% 86% 78%

a b 

c d 
Figure 10. a) IPT b) SVM c) DT d) Proposed Solution 

a b 

c d 
Figure 11. a) IPT b) SVM c) DT d) Proposed Solution 



V. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a solution for visually 
inspecting the process of creating automotive components 
through plastic injection molding in order to reduce the 
number of defective products that are created. The processing 
pipeline includes steps for detecting the injection mold using 
various image processing methods, the  regions of interest for 
the bushings, that are normally added to the plastic object to 
better fix the product on the vehicle, and classification of the 
positioning of the bushing or their absence from the injection 
mold. The implemented solution was evaluated by using a 
copy of the injection mold that respects the proportions of the 
original. Extensive tests have been carried out in various 
lightning conditions, different distances to the mold and 
using multiple angles for the positioning of the camera. The 
proposed solution yielded good results for the detection and 
classification tasks required. Furthermore, we have proven 
the classification accuracy of the proposed classifier by 
comparing it with other classifiers using various 
classification features.  

For future work, we plan to optimize the speed of the 
whole pipeline using a GPU for most of the processing 
functions and would like to improve the detection of the 
injection mold by using a solution based on a combination 
between the current solution and a learning-based approach. 
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Figure 12. The top image, containing four bushings, 
corresponds to the scenario presented in Figure 10, and 
the bottom image corresponds to the one presented in 
Figure 11. 


