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Abstract—This paper presents a system capable of identifying 
and validating various human body gestures. Body data is 
acquired from a Kinect sensor and consist in a set of bones 
represented by their rotation in 3D space. The main goal is to 
correctly identify the user performed gesture and return 
feedback related to its performance accuracy. A database with 
several samples for each gesture is built and used as ground truth 
in the gesture validation process. A novel approach of dynamic 
time warping algorithm is proposed for synchronizing the 
performed gesture with the corresponding ground truth dataset. 
If the sequences are not synchronized, feedback is returned to 
user as a comparison between its performance and the closest 
sample in the database. Experimental results show high accuracy 
at about 90% success rate. The system performs better for 
gestures in which the users’ body is fully exposed to the sensor. 

Keywords—body gestures; recognition; validation; quaternion; 
dynamic time warping; Kinect 

I.  INTRODUCTION 

Human gesture recognition is a domain with a large range 
of application starting from controlling machines, controlling 
3D objects in a virtual environment or characters in an 
animation, analysis of patterns in human movement etc. Our 
system’s aim is to use human gesture validation in order to 
help users perform physical exercises, at home, without need of 
a qualified trainer. The system replaces the work that a 
supervisor should do by showing to the user how an exercise 
should be performed, tracking the way a user performs a 
specific exercise and returning feedback about correctness of 
user performance. 

To achieve all these goals we will need a robust body 
posture recognizer and an algorithm to translate a series of 
body postures into a gesture. Body pose recognition is beyond 
the scope of this paper but a short introduction is worth 
mention. 

Parvini et al. proposes in [1] a method to track hand 
gestures using a CyberGlove which is a glove having sensors 
on different key points. Schwarz et al. propose in [2] a similar 
method (extended to body pose estimation) using sensors 
attached to the extremities of an actor. Song et al. propose in 
[4] a method to estimate upper body pose and hands position 
based on depth data taken from a depth camera. Rehm et al. use 
in [3] acceleration data acquired from a Wiimote controller in 
order to estimate body activity. Shotton et al. [5] developed a 

method to estimate joint position using the depth data from a 
Microsoft Kinect sensor. The studies made by Shotton and its 
colleagues helped at the improvement of Kinect SDK which 
offers now a robust body tracking system. Due to its robustness 
and reliability this sensor was chosen for body data acquisition. 

Body gesture recognition and/or validation is performed 
using a classic algorithm from speech recognition field, called 
dynamic time warping. This algorithm is often used in order to 
align two time-dependent sequences. Muller describes in its 
book [6] how this algorithm can be applied in body motion and 
music information retrieval. Our system considers a sequence 
of body poses as a multi-dimensional signal, each dimension 
being the rotation amount of each bone. Holt et al. propose in 
[7] a way to compute such multi-dimensional dynamic time 
warping, in which considers the distance between two points in 
a multi-dimensional space as the sum of the absolute 
differences in all dimensions. The proposed system is intended 
to be able to give user concise feedback about its errors. If we 
were to use the method proposed by Holt, specific information 
related to each bone would have been suppressed. As a result, 
the returned feedback would have contained only general 
information, whether the gesture was validated or not without 
specific information about which part of the gesture was not 
synchronized with the sample in the gesture database. 

In this paper we propose a novel approach of dynamic time 
warping algorithm that is applied on body data, at each bone 
level, for synchronizing the user performed gesture with the 
ground-truth database recorded gestures and provide feedback 
to the user about the correctness of the performed gesture. 

II. RELATED WORK

Body gesture recognition is a domain that was intensively 
studied in the last years. Although it was a field of interest for 
many engineers, the lack of hardware support and efficient 
algorithms for body tracking was a major drawback for 
studying gesture patterns. 

In [8], Song studies different gestures and determined 
characteristics of body and hand posture sequence during 
different gestures. The main drawback of this method is that for 
each new gesture, a complex analysis should be made. Park 
and Lee proposed in [9] a more generic method using Hidden 
Markov Models (HMM). In their algorithm, each gesture is 
composed of a sequence of body frames while the temporal 



 

 

relation between these frames is enforced by HMM. In [10], 
Forrer proposed a complete system for gesture recognition, 
also using HMM. Its system consisted of four main steps 
depicted by figure 1. 

 

Blackburn and Ribeiro describe in [11] a method using 
dynamic time warping on isometric feature mapping. In [12], 
Ravi used the Kinect sensor for developing a gesture 
recognition system that could be used in physiotherapy. A 
partnership between Microsoft and Nike resulted in one of the 
best known products involving Kinect and gesture recognition, 
Nike+Kinect. This is a fitness application that can be used by 
anyone having an Xbox and a Kinect sensor. 
 

III. SYSTEM ARCHITECTURE 

A. Hardware components 

 In order to use the system, one needs a Kinect sensor for 
body tracking, and a personal computer for Kinect data 
interpretation and gesture computation. 

 

B. Software components 

In terms of software components a component to 
continuously track the body is needed. It will be called Kinect 
manager and will have the responsibility to get data from the 
Kinect sensor. Recorded samples for each gesture will be 
stored in a database. A component to compare the records 
from Kinect sensor with the recorded gestures in the database 
is also needed.  

Since the stream of information coming from the sensor is 
continuous, a segmentation of it into gestures is necessary. For 
this, a component which records the initial-final position of 
the user is necessary. Initial-final position is defined as the 
position from which the user starts performing the gesture and 
to which the user returns when gesture is performed. In most 
of the cases, a gesture starts and ends in the same position, but 
for more complex gesture in which start position differs from 
end position, this component should be split in two 
components.  

A Gesture Manager will manage the components 
previously listed. The conceptual software architecture is 
presented in figure 3. 

 

IV. KINECT DATA 

 As stated before, due to its robustness, Microsoft Kinect 
sensor was chosen for body data acquisition. It consists of an 
infrared emitter, RGB camera, infrared camera and a 
microphone array, as shown in figure 4. Based on the infrared 
emitter and the infrared camera, it is able to obtain depth 
information about the surrounding environment. Studies 
performed by Shotton et al. [5] lead to a development of an 
algorithm for body tracking which was introduced in Kinect 
SDK offered by Microsoft for development [13].  
 

 
 

 
Fig. 1: Gesture recognition steps [11] 

 
Fig. 2: Main hardware components:  

1 - personal computer; 2 - Kinect sensor  

 
 

Fig. 3: Conceptual software architecture. 1 - data acquisition from 
Kinect; 2 - after data is transformed in a format suitable for the system it 
is sent to Gesture Manager; 3 – data is sent to Initial Position Detector;  

4 - status of initial position is sent back to Gesture Manager; 5 - if body is 
not in the initial position data is sent to gesture detector;  

6 - comparison between recorded gesture and samples in the database;  
7- result is returned to Gesture Manager; 8 - display result 

 
Fig. 4: Kinect sensor main components 



 

 

 Body data can be obtained as 3D position of joints relative 
to the sensor or as bones rotation. Using Kinect SDK one can 
obtain bone rotation either as rotation matrices or as 
quaternions. The rotations can be obtained as an absolute 
rotation or as relative rotation to parent bone. In both cases, 
rotations can be obtained as rotation matrices or quaternions. 
Bones are presented in figure 5 where parent of a bone is the 
bone to which it is attached (e.g.: parent of left forearm(8) is 
left arm(6)). 

 

For simplicity and robustness, the system uses the 
hierarchical rotations of bones expressed as quaternions. 
Quaternions are an extension of complex numbers, a four-
dimensional number capable to uniquely express the rotation 
of an object (in this case a bone) in 3D space relative to 
another object. The general formula for a quaternion is  

      , 
where  ,  ,  ,   are real numbers 

and ,  ,  are imaginary units

Q w xi yj zk
w x y z
i j k

   
		 (1)	

While performing an exercise, a series of body postures 
characterized by bone rotations, as quaternions, are recorded 
using Kinect. Since quaternions are used to uniquely describe 
a bone rotation in 3D space, we can assume that during two 
occurrences of the same gesture, the sequence of body 
postures are almost similar, thus the sequence of quaternions 
is also, almost similar. 

 

V. DYNAMIC TIME WARPING 

Dynamic Time Warping (DTW) is an efficient algorithm 
for expressing the similarity between two sequences regardless 
of their variation in time and speed. It was efficiently used in 
speech recognition for a long time as shown in [14][15]. They 
were also efficiently used in genetics for aligning gene 
expression time series [16]. In figure 5 it is demonstrated the 

difference between time alignment of two sequences and the 
alignment after applying DTW. 

 
First step in applying the DTW algorithm on two sequences 

X = (ݔଵ, ,ଶݔ … , ,ଵݕ)	ൌ	Y	and	௡), n ∈ Գݔ ,ଶݕ … ,  is to	௠), n ∈ Գݕ
define a cost function	 
	  : c     		 (2) 

Although many implementations of DTW recommend 
using as cost function the Euclidean distance of two samples,  

	   2 2,   i j i jcost x y x y  		 (3)	

for simplicity and computational reasons we choose as cost 
function 

	  ,   i j i jcost x y x y  		 (4)	

Next step is to construct the cost matrix of the two 
sequences. The cost matrix is obtained by applying the cost 
function on each combination of pairs from the sequences X 
and Y, being defined as 

	     M R ,  ,  ,N
i jC C i j cost x y  		 (5)	

The goal now is to find an optimal warping path between 
sequences X and Y. A warping path is defined in [16] as “a 
sequence	݌ ൌ ሺ݌ଵ, ,ଶ݌ … , ௟݌ ௅ሻ, where݌ ൌ ሺ݊௟,݉௟ሻ ∈ ሾ1:ܰሿ ൈ
ሾ1 ∶ Mሿ	݂ݎ݋	݈	 ∈ ሾ1:  ሿ.” The warping path starts from C(0,0)ܮ
and ends at C(n,m) (see figure 6).  

 

 
Fig. 5: Bones considered in the application: 1 - lower spine, 2 - upper 
spine, 3 - neck, 4 - left clavicle, 5 - right clavicle, 6 - left arm, 7 - right 

arm, 8 - left forearm, 9 - right forearm, 10 - left hip, 11 - right hip,  
12 - left femurs, 13 - right femurs, 14 - left tibia, 15 - right tibia 
(base image taken from Microsoft Kinect SDK documentation) 

 
Fig. 5: left – time alignment, right – DTW alignment [16] 

 
Fig. 6: Warping path example [16] 



 

 

In order to compute a correct warping path, some 
constraints should be satisfied: 

a) Monotonicity – The path does not go back in time  

	 1 1 and  t t t ti i j j   		 (6) 

This condition guarantees that features are not repeated in 
the alignment. 

 

b) Continuity – The path can pass only through adjacent 
cells.  

	 1 11 and  1t t t ti i j j     		 (7)	

This condition guarantees that no important features are 
omitted. 

 

c) Boundary conditions – The path must start at C(0,0) 
and end at C(n,m). 

	 0 00,  and 0, k ki i n j j m    		 (8)	

 

This condition guarantees that the alignment is performed 
on the entire sequences, and does not consider only a part of 
one of the sequences. 

d) Warping window – The path should be bounded in 
the proximity of the diagonal. 

	   where  0 is the window sizet ti j r r   		 ሺ9ሻ	

This condition guarantees that the alignment will not skip 
different features and get stuck at similar features. 

 

e) Slope constraint – The path should not be too steep 
or shoo shallow. This constraint prevents short parts of the 
sequence to be matched to very long ones. 

	
0 0

0 0

 and  p p

p p

t t t t

t t t t

j j i i
p q

i i j j

 
 

 
		 (10)	

where q > 0 is the number of steps in the x direction and p > 0 
is the number of steps in the y direction. 

 

Even though all these constraints are imposed, there will be 
more than a single warping path, each of them having its own 
cost defined as 

	    
1

,  ,
l l

L

p n m
l

pathCost X Y cost x y


 		 (11)	

The goal is to find the optimum warping path which is the 
path having the minimal cost. This is the end result of the 
DTW algorithm and it is defined as 

 

 
Fig. 7: Monotonicity condition violation [16] 

 
Fig. 8: Continuity condition violation [16] 

 
Fig. 9: Boundary condition violation [16] 

 
Fig. 10: Warping window condition violation [16] 

 
Fig. 11: Slope constraint violation [16] 



 

 

	
 

  
,

min , is a warping pathp

DTWcost X Y

pathCost X Y p


		(12)	

For two sequences that are almost similar the cost will be 
low while for two sequences that don’t resemble many 
characteristics the cost will be high. 

One of the main advantages of DTW is the fact that the cost 
matrix can be computed in parallel. What is more, in our 
particular case, the cost for each bone rotation can also be 
computed in parallel thus improving the computation time. 

 

VI. GESTURE VALIDATION 

 
Since Kinect body tracking is a marker less body tracking, 

data might appear with some noise. In order to remove the 
noise one can apply a low-pass filter on the sequence of poses 
to smooth the signal. 

 

Afterwards, DTW cost must be computed between each 
quaternion component of each bone. Computing the cost on 
the entire matrix, using a greedy algorithm might result in a 
high cost, both for DTW and computational time. Using the 
window constraint, the DTW cost is greatly reduced. As a 
result of window constraint, the computational time is also 
reduced. The experimental results are shown in figures 13 and 
14. The square represents the cost matrix. A low cost between 
two samples yields a white area while a higher cost yields a 
darker red area. Green was used to display the computed 
warping path while gray area represents the warping 
constraint.  

 

 
In order to perform body gesture validation we define our 

own cost function between two series of body poses as 

	

 1, 2  

1. . ,

 2. .bonesqComp

bodyCost body body

body bones qComp
DTWcost

body bones qComp



 
 
 

 
		 (13)	

where bones ∈ {lower spine, upper spine, neck, left 
clavicle, right clavicle, left arm, right arm, left forearm, right 
forearm, left hip, right hip, left femurs, right femurs, left tibia,  
right tibia} and qComp ∈ {wComponent, xComponent, 
yComponent, zComponent}, the components of a quaternion. 
The overall body cost is obtained as the sum of all DTW costs 
computed at the level of quaternion component. 

One can observe from figures 13 and 14 that the computing 
DTW without window constraint may not lead to the optimal 
warping path, and the DTW cost may be high even for the 
same gesture. What is more, the DTW cost for two instances 
of "raise left hand" which are similar, is higher than the cost 
computed for an instance of "raise left hand" and "raise right 
hand". However, adding the window constraint and bounding 
the warping path to diagonal, one can observe that for similar 
gestures the cost is really small while for different gestures, 
we still obtain a high cost.  

Using this approach, both gesture recognition and gesture 
validation can be performed. Gesture recognition may be 
slower depending on the size of the database, due to the fact 
that the system should compare each gesture performed by the 
user, to each sample in the database and the sample with the 
lowest cost would be considered to be the one matching the 
gesture. Gesture validation supposes that the user already 
knows what gesture wants to perform and its performance will 
be compared against those samples resembling the selected 
gesture. The result would be either validation of the gesture, 
i.e. selected gesture is performed correctly, or invalidation, i.e. 
feedback about performance correctness is returned.  

 
Fig. 12: Signal plot for x component of quaternion corresponding to upper 

left arm, in a sequence of body poses representing raising the left arm; 
black dots represent the raw signal taken from Kinect sensor while orange 

dots represent the filtered signal 

 
 

Fig. 13: DTW matrix and warping path computed between two instances 
of left arm raising gesture; DTW matrix in the pictures represent the 

matrix for x component of quaternion representing left arm;  
left - simple DTW matrix (cost = 33.5477); right - DTW matrix and 

warping path constraint (cost = 1.39704)  

 
 
 
 
 
 
 
 
 
 

Fig. 14: DTW matrix and warping path computed between  an instance of 
left arm raising gesture and an instance of right arm raising gesture; DTW 
matrix in the pictures represent the matrix for x component of quaternion 
representing left arm; left - simple DTW matrix (cost = 19.59153); right - 

DTW matrix and warping path constraint (cost = 19.1861)  



 

 

Before using the system, it has to be trained in order to 
construct a database of gestures. For achieving this, an 
individual must repeat the gesture for a number of times in 
order to construct the set of sample gestures 

	
 0 1 , , ,  

where  
ngestureSet sample sample sample

n

 


	(14)	

In our case n = 5 proved to be enough for training the 
system. After this a cost threshold is computed as 

	
  max ,  

where , 

i j

i j

threshold bodyCost sample sample

sample sample gestureSet




	(15)	

The threshold value must be computed for each gesture 
when it is added to the database. Given the fact that the n 
samples resemble the same gesture, one can assume that the 
gesture performed by the user must be in the same range. As a 
result, the computed cost between the recorded gesture and at 
least one of the samples in the database must be lower than the 
threshold to validate the gesture: 

 
 

, ,

 where 

i

i

isValidGesture bodyCost record sample threshold

sample gestureSet

 


		 (16)	

In order to use the system, user must select the gesture it 
wants to perform. The system will require the user to stay in 
the initial position for 5 seconds. This is necessary in order to 
train the system with user initial position, which will be the 
marker by which the data stream will be fragmented into 
gestures. 

The conceptual diagram presented in figure 3 shows that 
the data taken from Kinect sensor is handled by a component 
called Kinect Manager. This transforms data into a suitable 
format to be further sent to Gesture Manager. Gesture 
manager is the main component of the system, which receives 
data as a sequence of body poses and delegates the work to 
Initial Position Detector or Gesture Detector.  

First time, Initial Position Detector receives the data and 
sends back a message to Gesture Manager regarding the 
posture. If the body posture is in initial position the system 
stays in idle state. As soon as a body pose is not in initial 
position, Gesture Manager sends the samples to Gesture 
Detector. This component accumulates samples in a queue of 
poses. When the body returns to initial position, Gesture 
Manager sends a message to Gesture Detector to start 
computing the gesture validation.  

Based on the result of gesture validation, the user will either 
receive as feedback the fact that the gesture was correctly 

performed or a replay will be shown, where both the gesture 
performed by the user and the closest sample in the database, 
based on bodyCost, will be plotted in parallel (see figure 15).  

 
Fig. 15: Example of feedback sequence for performing a lateral right hand 

raise while the expected gesture was lateral left hand raise –  
black skeleton represents the gesture performed by the user while  

red skeleton represents the expected gesture 
 

It is important to mention the fact that for the same user, 
exercises present similar characteristics. However, during 
testing of the system, we observed that different user perform 
the same exercise slightly different, but still in a correct form. 
In order to be able to train the system with one user and 
validate exercises performed by another user a confidence 
threshold should be considered. As a result the real threshold 
for the exercise performed by the new user will be 

	 *realThreshold threshold confidenceThreshold 	(17)	

 

Confidence threshold is computed experimentally, by 
observing a number n of persons performing a gesture m 
times. For this, ݐ݁ܵ݀ݎ݋ܿ݁ݎ௜ is defined as the set of records for 
person i 

	  0 1 , , ,  where   mrecordSet rec rec rec m   		(18)	

 

Then the cost for each person is computed as 

	
  min , 

where  and   

i j

i j

personCost bodyCost sample rec

sample gestureSet rec recordSet



 
	(19)	

 

This cost shows which is the minimum cost for each gesture 
performance recognized by the system. Taking the maximum 
of these minimum costs and dividing it by threshold we obtain 
the level of confidence threshold 

	
max{ |0 ,   }/i

confidenceThreshold

personCost i m m threshold


   		(20)	

 



 

 

VII. EXPERIMENTAL RESULTS 

In order to prove the usefulness of the system, the database 
was trained with 10 gestures: 7 simple gestures (first 7 rows of 
the result table) and 3 slightly more complex ones (last 3 rows 
of the result table). Afterwards, a user performed each gesture 
from the database 10 times. The results are presented in the 
Table I. 

TABLE I. PERFORMANCES OF THE BODY GESTURE VALIDATION SYSTEM 

Gesture 
Threshold 

cost 

Performed gesture 

Avg. cost Min. cost 
Max. 
cost 

Success 
rate 

Left arm 
lateral raise 

70.7250443 75.79240 62.65014 83.20147 10/10 

Right arm 
lateral raise 

62.28287 70.34488 61.07209 78.16035 9/10 

Both arms 
lateral raise 

79.43044 91.44340 73.06082 108.9929 9/10 

Right arm 
front raise 

82.9584351 116.52569 95.00497 145.6474 9/10 

Both arms 
curls 

38.3784676 51.37135 46.89584 55.37613 10/10 

Right knee 
raise 

50.32552 54.12544 47.90615 60.96284 10/10 

Right foot 
forward 

69.57885 55.51976 31.3826 52.2625 8/10 

Squat 155.280457 144.3788 101.613 212.1844 7/10 

Right foot 
reverse lunge 

112.773056 116.90734 74.78407 162.7144 9/10 

Left foot 
lateral lunge 

97.99207 86.224108 76.19372 92.3608 9/10 
 

As one can observe from the Table I, for the simpler 
gestures, the validation worked better than for the complex 
ones. One of the main reasons for this is the fact that in 
simpler gestures, all bones were exposed to Kinect sensor, so 
the approximation of them was accurate enough. The complex 
gestures contain body poses in which some of the bones are 
hidden by others. For example, when performing a squat, the 
hip center and hip bones are hidden by tibia bones in the 
lowest position of the squat. This results in an approximation 
made by the sensor which is not always accurate enough. 
Tests were performed with more complex gestures but due to 
the limitation of the sensor, the approximation of the bones 
resulted in costs so big between samples in the database, that a 
correct gesture validation would have not been so reliable. 

 

VIII. CONCLUSIONS 

Following the experimental results, the remark is that the 
proposed system is more suitable for gestures in which the 
whole body is exposed to the sensor. This is due to the fact 
that the sensor performs an approximation of the hidden 
bones. The approximation can lead to some inaccuracies in the 
synchronization of the body pose sequences.  

In order to train the system with one user and validate the 
gesture for another user, a confidence threshold should be 
computed. This is due to the fact that the Kinect sensor 
records slightly different bones data for different users, even 
though they perform similar gestures. 

As a future work, an improved system for body data 
acquisition could be used in order to increase the accuracy of 
the recorded data, which will lead to improved results of the 
currently proposed method. 
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