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Abstract—Multiple sensor systems are extremely used in
autonomous driving for providing increased object detection
accuracy. We present a multiple sensor based pedestrian detection
system that combines aggregated channel features classifiers
trained on images captured with two types of sensors: far infrared
and stereovision sensors.

We developed a spatio-temporal data alignment between the
two sensorial systems. For the temporal alignment we used
an original camera response timing model for free running
cameras in order to align the infrared image with grayscale
intensity images captured by trigger-based cameras. The spatial
data alignment is done by performing the extrinsic parameters
calibration of the infrared camera in the ego car world coordinate
system which is also the reference for the stereovision sensors.

Based on the aligned sensorial data we developed a classifi-
cation fusion mechanism for combining infrared and grayscale
detections on a unified pedestrian detection stream. We obtain
an increased accuracy showing that the two detectors complete
each other.

I. INTRODUCTION

Pedestrian detection by day and by night is a very explored
problem in the computer vision world. Most of approaches use
visual data provided by either stereo [1] or monocular systems
[2], [3], but there are also approaches that combine different
types of sensors like visible cameras, near and thermal infrared
cameras, RADAR, LASER scanner [4], [5], [6].

As most approaches use stereovision sensors for pedestrian
detection, with this paper we enhance the power of stereo
based pedestrian detection with the addition of a far-infrared
pedestrian detection system. Our solution is motivated by
the limitations of the visual spectrum during low lighting
conditions (dawn, dusk, night), or difficult weather conditions
(like heavy sun, strong shadows, fog, snow, strong rain). On
the other hand, the multiple sensor fusion pedestrian detection
is also motivated by the challenges of illumination variation
in the environment, cluttered background characterizing the
traffic scenes, pedestrian occlusions, and complex pedestrian
appearance. The two types of sensors used in this paper are
somehow complementary as the visual cameras capture the
light reflected by the objects in the scene, while far infrared
cameras capture the heat emitted by the objects.

A first original contribution of this paper is given by the
proposal of a camera response timing model for free running
cameras (in our case far IR camera) which was successfully

applied for synchronizing with trigger-based cameras (stereo-
system).

The second contribution of the paper is related to the
development of an original calibration method of the extrinsic
parameters of the far infrared camera without using any
calibration object, which allows and ad hoc calibration every
time the far IR camera is mounted on the test vehicle.

A third contribution of the paper is given by the com-
bination of three information cues for pedestrian detection:
these are depth information, monocular intensity features and
far-infrared information. These information cues are fused
using aggregated channel feature pedestrian classifiers. The
Aggregated Channel Feature Classifier has been introduced by
[7] and it has a good performance on monocular color images.

A fourth important contribution is the development of a
dataset of train and test images that proves the effectiveness
of our approach. The dataset contains far-infrared and intensity
images aligned by means of a stereovision sensor. The dataset
was annotated using a Caltech annotation toolbox [8].

II. RELATED WORK

We revise the multiple sensor approaches for pedestrian
detection in traffic scenes. A comprehensive analysis of color-
, infrared-, and multimodal-stereo approaches is presented by
[6]. They also describe their own solution that uses a custom
rig formed of two color cameras and two infrared cameras
arranged in stereo pairs. The solution describes a trifocal
framework containing the color, disparity, and infrared images.
They are combined into a single five-channel multispectral
image. On their proposed dataset they obtain a 91.89% pedes-
trian detection rate for a 5% false positive rate. They use
histogram of gradient, color, disparity and infrared channels.
The classification of pedestrians is performed using Support
Vector Machines.

Another approach based on far-infrared stereo vision is
presented by [9]. The proposed system combines warm-area
detection, with a step that detects cold areas that potentially
contain a pedestrian. The cold area analysis is done based
on edges and disparity. Pedestrians are validated using head
morphological characteristics and also thermal properties.

A tetra-vision system containing four cameras is explored
by [10] for detecting pedestrians by means of the simultaneous



use of two pairs of stereo systems: a far infrared and a
visible spectrum one. They exploit the advantages of both far-
infrared and visible cameras and by their combination they
try to overcome the limitations of each system in part. Using
visual stereovision they obtain a list of bounding boxes that
potentially contain a pedestrian. Based on warm area detection
and symmetry based analysis the results are further refined. A
last validation step is also performed by searching for human
shape characteristics based on head detection, shape detection,
and active contours.

An approach for detecting and predicting the pedestrian
motion with the purpose of avoiding imminent collisions has
been developed by [11]. The approach combines a stereo
vision system with a laser scanner. This combination provides
an accurate positioning of the obstacles in the environment.
Using the obstacle hypothesis their system identifies pedes-
trians based on polylines and leg pattern identification based
on laser data combined with dense disparity maps and u-v
disparity. The pedestrians are tracked within the detected areas
by means of validation gates.

A LIDAR sensor and an infrared camera are combined by
[12] for detecting and classifying pedestrians based on their
moving direction and relative speed. The two sensors are used
for generating regions of interest in which pedestrians may
appear. Within those regions 2D translation invariant features
are extracted and then classified by means of support vector
machine classifiers.

A laser scanner and a stereovision system are employed
by [13] for detecting pedestrians in urban environments. The
laser based pedestrian detector is composed of a distance based
clustering process that separates the different clouds of points
that represent each obstacle followed by a polyline based shape
estimation. The pedestrian hypothesis is generated based on
the comparison of the shape cluster with a pedestrian model.
The laser based detector is combined with the u-v disparity
based object detection provided by the stereovision system.
The stereo-based pedestrian hypotheses are classified as be-
ing pedestrians based on the similarity between the vertical
projection of the silhouette and the histogram of a normal
distribution. The fused pedestrian detections are combined
with context information (velocity and GPS information) in
order to provide danger estimation.

A dual camera system combining visible light and thermal
cameras is used by [14] for detecting pedestrians. They
define a geometric transformation matrix that represents the
relationship between the two cameras’ axes. Two background
images for visible and thermal images are constructed based
on the pixel difference between an input thermal and pre-
stored thermal background images. By means of background
subtraction combined with shadow removal and morphological
operations the regions of interest for the visible images are
obtained and then are projected onto the thermal image.
Based on the horizontal and vertical histograms pedestrians
are identified in the two images.

Support Vector Machine classifiers trained on different local
and global SURF features extracted on both visible and far-

infrared images are described by [15]. They propose a two-
stage recognition method in order to cope with the complexity
of the system.

Different probabilistic based fusion schemes that combine
information from visible and infrared images for classifying
road obstacles based on SVM are approached by [16]. The
approaches refer an early fusion method applied at the feature
level, an intermediate fusion at kernel level and a late fusion
scheme that combines detection scores from visible and in-
frared detectors.

III. PROPOSED METHOD

The method we propose combines aggregated channel fea-
ture classifiers trained on two types of data one generated
by an infrared sensor and another given by a stereovision
system. The overall architecture of the system is described
in Fig. 1 and 2. The first module performs the alignment of
the infrared image with the grayscale image of the left camera
from the stereovision system. This allows us to precisely find
the correspondence of a point from the left image to the
infrared image. Due to field of view variations, the borders
of the left image will be ignored. Using stereovision we also
obtain the 3D object hypothesis based on the depth map [17].
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Fig. 1: Region of interest generation

The 3D object hypotheses are projected onto the left image
but also on the infrared image. The region of interest of
both images are scanned Aggregated Channel Feature based
classifiers, and then the detections from the two images are
fused as shown in Fig. 2.
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Fig. 2: Pedestrian classification fusion

A. Multiple sensors data alignment

The architecture of the stereo vision system complies with
the one presented in [18]. The stereo sensor is based on two
cameras mounted in a general configuration behind the wind-
shield of a test car. The system provides a dense depth map
generated on rectified images using a GPU implementation
of the SGM approach[19]. High level perception methods



[20] implemented upon the low level sensorial data are used
for detecting and tracking obstacles and associate classes
to them (cars, pedestrians etc.). All the measurements of
the stereovision sensor are reported in the ego-vehicle’s 3D
coordinate system. Its origin is the projection of the ego
vehicle’s front bumper mid-point on the ground, with the OZ
axis pointing forwards (Fig. 3). The position and orientation
of the stereo cameras relative to the ego vehicle coordinate
system are defined by the extrinsic parameters: the translation
vectors T, and Teor and the rotation matrices Roy and
Rcr. The parameters are estimated with high precision using
a calibration method specially developed for high accuracy
automotive stereo vision [21]. Consequently a reliable dense
depth map is available.
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Fig. 3: Model of the multiple camera system

The far IR camera camera is mounted on the ego-vehicle’s
roof, positioned approximately above the stereo camera rig
and aligned with the longitudinal axis of the car. Its extrinsic
parameters relative to the ego-vehicles 3D coordinate system
are defined by the Ty translation vector and Rop rotation
matrix (their estimation method is described in the next
section). Since all the sensors (cameras) have the extrinsic
parameters estimated relative to an unique coordinate system
(the ego vehicle 3D coordinate system) the alignment between
the two sensorial systems (stereo and far IR) is performed
by projecting the stereo reconstructed 3D points on the far
IR image. This can be achieved using the projection matrix
computed from the far IR camera intrinsic and extrinsic
parameters:

Pr = Ar -  Rwr|Twr] (1)

where:

e Ap is the internal matrix of the far IR camera encoding
its intrinsic parameters (the focal length [f,, f.] and the
and principal point [ug, vg]):

f= 0w
Ap=1| 0 f, v 2
0 0 1

e R is the far infrared camera world-to-camera rotation
: _RpT
matrix. Rwr = Rop
e Ty is the far infrared camera world-to-camera transla-
tion vector. Twr = ~RwrTcr

The projection of a 3D point (expressed in homogeneous
coordinates XXw = [Xw, Yw, Zw, 1]T relative to ego car
world coordinate system) on the far infrared image will be a
point plu, v]:

U Ts )}(/“’
S - v f— ys = PF . Zw (3)
1 Zs 1“’

where: [z, y;] are the scaled image coordinates of p (with
a ratio s = z5). The image coordinates of p[u,v] can be
obtained from the scaled ones using:
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B. Multiple sensor data synchronization

The purpose of sensor synchronization is to obtain far
infrared images aligned with the grayscale images provided
by the video cameras of the stereo system. Our infrared
camera is free running at a constant frame rate. The stereo
cameras provide trigger-based synchronized video signal with
insignificant relative delay times. We introduce a camera
response timing model for free running cameras which relates
the capture, the frame request and response moments for a
particular frame. The timing model is shown in Fig. 4.
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Fig. 4: Timing model for free running cameras
Considering the capture moment 7,, of a particular frame n

any request for the image between 52 _; and §} will be delayed
until 8%, and any request between &} and §2 will encounter

ns

no delays. These parameters meet the following constraints:
2 2
‘Tn+1 - 671’ = |T7’L - 67171' (5)

The readout interval is defined as:

& — 1, = 571:,+1 — Tp+1 (6)
T < 68 < Tpit @)
S > 62 <6hiq ®)

The frame period is defined as:
T=Tn+1 — Tn 9)

Given a constant frame period 7 we define the relaxing
period « as the time interval between releasing one frame and
capturing moment of the next frame:

a=Tu1 — 0} (10)
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Fig. 6: Overlapped timing models

Considering the timing model for externally triggered video
cameras depicted in Fig. 5 with known exposure time ¢ we
were able to determine experimentally the relaxing period «
for the infrared camera.

For this purpose we had to synchronize the execution thread
with the moment &} for each infrared frame. According to
our proposed model for free running cameras shown in Fig.
4 any request for a frame is delayed until §} or not delayed
if the request is between J} and 62. Due to this uncertainty
period between 4. and §2 we perform two consecutive re-
quests instead of one. According to 8 the first request will
be released somewhere between 6. and 02 and the second
request, which takes place immediately after the first response,
will be released at &, ;. At the cost of losing two frames
we managed to perform the synchronization on the 3rd frame
by delaying the trigger moment of video cameras with a
controlled A period as shown in Fig. 6.

The experimental setup uses both infrared and video cam-
eras capturing images of a fast moving object emanating heat.
The delay A is increased incrementally until the moving object
has similar position in both grayscale and infrared images.
Once A is stabilized for a fixed exposure ¢ we are able to
compute the constant a:

a=A+¢ (11)

Once the relaxing period « is known we can afford a
variable exposure €, by changing the delay time A, of the
video trigger for each pair of captured images:

Ay =a—e¢, (12)

C. Calibration of the far IR camera parameters

The intrinsic parameters of the far IR camera are inferred
from the data sheet of the manufacturer. Since the camera can
be used in 2 resolutions two sets of intrinsic parameters are
generated:

e QVGA (native): f,=f,=410, up=160, vo=120 [pixels]

o VGA (upscaled): f,=f,=620, ug=320, vy=240 [pixels]

For the extrinsic parameters estimation an approach sim-
ilar to [21] could be used by replacing the control points
(detectable in visible light) with ones that have a thermal

(a) Contol points selection - far IR image
2
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(b) Left image with obstacles detection and 3D dense map - stereo sensor

Fig. 7: Typical experimental scenario used for the extrinsic parame-
ters calibration of the far IR camera.

footprint. But this would require a complicated calibration
setup which should be reproduced every time the far IR camera
is mounted on and off the car roof. In our case the far IR
camera does not have a permanent mounting socket on the
car and is removed after every driving experiment (due to
security reasons). For such experimental condition a much
simpler calibration methodology was proposed which can be
easily performed every time the far IR camera is mounted on
the car:

1) Acquire synchronized pairs of stereo and far IR images
in a static scenario with uniquely selectable image fea-
tures in both sensorial image spaces. Preferred features
are those that are easy to localize (i.e. corner features) in
both sensors: they are visible in the stereo sensor images
and also have a visible thermal footprint in the far IR
image.

2) Manually select at least 6 points with 3D information
from the stereo system (using the left stereo image +
depth map): P;(X;,Y;, Z;). Manually find their corre-
sponding points on the far IR image (a procedure to
compute their sub-pixel coordinates using a zoom in
technique is employed): p;(x;, yi). An example of such
a calibration scenario is presented in Fig. 7 along with
a numerical example of the selected features’ values in
Table I.

3) The extrinsic parameters of the far IR camera (Tcp
and Rcy) relative to the ego-vehicle coordinate system
are estimated by minimizing the projection errors of
the 3D points P;(X;,Y;,Z;) against the selected im-
age points: p;(xj,y;) using the Gauss-Newton iterative
method [21].

D. Aggregated Channel Feature Classification

The Aggregated Channel Feature is a model for multiple
resolution image feature approximation that works fast and
has good performance. The model can be applied to a generic
object detector and it was tuned for pedestrian detection in the
Aggregated Channel Features (ACF) framework [7], [8]. The



TABLE I: Numerical example of the selected features values for the
calibration scenario from Fig. 3.

far IR control points p; | 3D coordinates P; (stereo sensor)

ID | «; [pixel] | y; [pixel] X; [mm] | Y; [mm] Z; [mm]
1 153.25 86.92 -323 -926 7751

2 153.99 128.94 -304 85 7775

3 195.64 128.76 700 57 7733

4 195.27 85.82 689 -924 7899

5 93.16 81.03 -2165 -876 10258

6 93.02 115.14 -2160 117 10070

7 127.13 115.71 -1148 101 9941

8 126.98 80.89 -1106 911 9539

9 237.83 87.84 1689 -905 7898

10 | 236.49 129.85 1661 88 7732

idea of ACF is to replace the actual feature computation at
every image scale in an image pyramid with feature approxi-
mation by extrapolation from nearby scales. [7] prove that for
a broad family of features this process does not reduce the
performance of the detection. Their proposed approximation
yields considerable speedups with negligible loss in detection
accuracy.

AdaBoost learner build on top of level-two decision trees
is employed. The classification score of the AdaBoost learner
is a linear combination of weighted weak learner responses
hi,ha,...hp: f(z) = Zle wihi(x). Each weak learner
response is weighted by w that is proportional to the error
of the weak learner.

A cascade of such composite ensemble is used. The cas-
cade has four stages and each stage has the same positive
training set, while the negatives for each stage are the false
positives of the previous stage. Each weak learner is a de-
cision tree. The number of weak classifiers in the stages is
256, 512,1024, 2048.

In the proposed method we train two ACF based pedestrian
detectors: one for the grayscale intensity images and another
for the infrared images. For the grayscale intensity image we
train the ACF framework using ten channels, namely LUV,
gradient magnitude, gradient orientation histogram containing
six bins. Let D, be the detector that results.

For the infrared intensity image we train the ACF framework
on infrared images and we use the gradient magnitude, the
gradient orientation histogram with six bins and the LUV
channels. Denote with D; the resulting classifier.

Next the two classifiers are applied in parallel and the results
for an image I of each detector are fused using the following:

F(I) = aDy(I) 4+ BD;(I) (13)

where « and (3 are parameters which we use to weight the in-
fluence of each classifier. For example in low lightning driving
scenarios, or when the grayscale images are over-saturated the
infrared classifier will have a greater weight than the grayscale
classifier. On the other hand when the temperature difference
between the environment and the pedestrians or other objects
of interest is reduced causing a very low contrast on infrared
features the grayscale classifier will prevail.

The 3D object points of object hypothesis generated by
the stereo sensor are projected on both the grayscale and

the far IR images. The fusion between the grayscale and far
IR detections is performed based on an overlapping predicate
(OR) on their 2D image projections (as shown in Fig. 8). The
grayscale/stereo detections and the far IR detections (given by
orange bounding boxes) are fused on the far IR image — as
shown in the left parts of Fig. § .

IV. EXPERIMENTAL RESULTS

A. Assessment of the far IR camera parameters calibration
procedure

The accuracy of the data alignment procedure depends on
the extrinsic parameters which are used in the projection
matrix (1). As evaluation metric the 2D projection error of
a set of 3D points generated with the stereo sensor vs. their
manually selected correspondences on the 2D far IR image
was considered.

-

e [zaT,ycr] are the coordinates of the manually selected
2D control points on the far IR image (ground truth -
GT)

e [zpRr,ypr] are the 2D projections of the 3D control
points selected from the stereo sensor.

(14)

TGT — TPR
YcaTr — YPR

where:

In Fig. 9 the qualitative assessment of the projection errors
is shown in a visual form (green points are the projected points
while red ones are the GT points manually selected on the far
IR images). This is also observable in Fig. 8.

In Table II the corresponding numerical errors in terms
of the (14) metric are shown. Two scenarios are analyzed:
in Scenario 1 the calibration experiment from Fig. 7 was
evaluated using far IR images acquired in QVGA resolution.
The results labeled Scenario 2 were obtained performing a new
calibration experiment with the far IR camera mounted in a
new position using the established methodology and evaluation
in real traffic conditions on VGA resolution images.

TABLE II: Numerical evaluation of the projection errors.

Scenario 1: QVGA res. Scenario 1: QVGA res.
ID Fig. 9(a) | ez €y ID Fig. 9(b) € €y
1 -0.17 | 1.76 | 1 1.15 -0.61
2 0.97 154 | 2 1.64 6.50
3 0.81 122 | 3 0.14 1.77
4 1.10 099 | 4 1.54 1.56
5 1.09 156 | 5 -0.01 | 1.58
6 -0.13 | 1.46 | RMS error 1.13 3.18
7 -0.02 | 0.94 | ID (Fig. 9(c)) | €x €y
8 1.76 1.02 |1 2.09 -0.27
9 1.81 0.69 | 2 -0.01 | -2.30
10 1.21 0.84 | 3 1.65 -1.26
RMS error 1.09 1.25 | RMS error 1.54 1.52

For the static scenarios and QVGA resolution images the
RMS error of the projections was inside the 1.25 pixels range.
For the real traffic scenarios and VGA resolution images the
errors were inside the 2.5 pixels range (which is obvious due
to the doubled pixel size / focal length) with some out-of-the-
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Fig. 8: Projection of 3D points on the grayscale and on the infrared image

(a) Projection error with QVGA images (Sce-
nario 1)

(c) Projection error with VGA images (Scenario 2)

Fig. 9: Scenarios used to evaluate the data alignment accuracy.

range errors. The projection errors are mainly influenced by
the manual correlation process of the feature points used in
the tests but can also occur due to motion blur like effects in
the thermal footprint in the case of dynamic scenarios.

B. Camera Synchronization

Our system uses one FLIR PathfindIR infrared camera and
two synchronized JAI video cameras. PahfindIR has a 19mm
focal length and provides 320 x 240 PAL (25Hz) images. The
experimental setup used to detect the relaxing period o of
PathfindIR consists of a table fan having a colored band and a
heat emanating electrical circuitry attached to one of its wings.
This way the wing position is clearly visible in both grayscale
and infrared images. The exposure time of grayscale cameras
was fixed and we ran the table fun at different speeds. We
started recording frames while changing the delay A of the
trigger incrementally. We filtered out un-synchronized frames
and obtained a relaxing period of 23ms for synchronized
frames. Similar results were obtained when we repeated the
tests for different exposure values.

C. Pedestrian Detection

For assessing the performance of the trained pedestrian
detectors we use the log-average miss rate computed on a
dataset we have created. The dataset contains about 2000
annotated frames for both intensity and infrared cameras. The
images contain about 3000 pedestrians.

We perform a comparative evaluation as follows:

1) For a given threshold value of the grayscale pedestrian
detector we compute the true positive rate and the false
positive rate when it is evaluated on grayscale images.

2) For a given threshold value of the infrared pedestrian
detector we compute the true positive rate and the false
positive rate when it is evaluated on infrared images.

3) For the given threshold value used for grayscale and
infrared detectors we compute the fused image of de-
tections and count how many pedestrians were detected
correctly (either in grayscale or in infrared), along with
the rate of false positives.



The results are shown in Table III. The threshold value for
either of the detectors represents the classification score above
which detections are considered as being positive.

TABLE III: Numerical evaluation of the pedestrian detection.

Missed Ped. IR TP IR FP Per Image IR

35% 65 % 0.9

Missed Ped. Gray TP Gray FP Per Image Gray

25% 75% 0.7

Missed Ped. Combined | TP Combined | FP Per Image Combined
10% 90% 1

From our experiments we show that the two detectors
complete each other and the overall result is improved. Yet,
the combined solution accuracy depends on the projection
error from the stereo system onto the FLIR images. This
is influenced by the accuracy of the 3D data provided by
the stereo vision system and by the quality of the estimated
extrinsic parameters of the far IR sensor (mainly dependent
on the calibration scenario used).

The true positive rate of the combined classification scheme
is about 90%. A disadvantage of the method is the propagation
of the false positives in both images and we plan to enhance
our detection mechanism with specific constraints for false
positive.

In what follows we present some detection results by which
we show how the two approaches complete each other. First
we show cases of images in which the infrared detector detects
the pedestrians, while the grayscale detector fails:

Secondly we show cases of images in which the grayscale
detector detects the pedestrians, while the infrared detector
fails:

In Fig. 10 and Fig. 11 the number above the detections
represents the classification score of the AdaBoost classifier.

V. CONCLUSION

We have developed an integrated system that performs a
spatio-temporal data alignment between two types of sensors:
a monocular far infrared camera and a stereovision sensor.
This allows to combine the 3D information of the obstacles
with their thermal footprint. This approach augments the
capabilities of the pedestrian detection algorithm, especially
in situations when the detection with only one sensor is
incomplete or less accurate.

The temporal synchronization is done using an original
camera response timing model for free running cameras that
aligns the infrared image with grayscale intensity images cap-
tured by trigger-based cameras. The spatial synchronization is
done by performing the calibration of the extrinsic parameters
of both sensors relative to the same coordinate system. The
data alignment allows to correlate image features between the
grayscale images of the stereovision sensor and the infrared
image with the addition of the 3D information. Based on the
aligned sensorial data we developed a classification fusion
mechanism for combining infrared and grayscale detections
on a unified pedestrian detection stream and we study the
influence of the infrared pedestrian detector on the grayscale
detections and vice-versa.

As future work we envision an improvement of the acqui-
sition frame rate of the fused sensorial system. Currently the
proposed synchronization method discards two out of three
consecutive frames and reduces the maximum running frame
rate from 25Hz to 8.33Hz. This can be avoided through
parallelism by creating a monitoring thread responsible for
acquiring frames continuously without being interrupted by
other processing tasks.

We also plan to improve the correlation mechanism between
grayscale and infrared images not only by projecting the 3D
points from the stereo system to the infrared system, but also
by using a stereo-correspondence mechanism directly between
one of the grayscale images and the infrared image based on
epipolar constraints. This would also require a more accurate
calibration methodology in a more controlled scenario.

ACKNOWLEDGMENT

This work has been supported by UEFISCDI (Romanian
National Research Agency) in the national research project
Cooperative Advanced Driving Assistance System Based on
Smart Mobile Platforms and Road Side Units (SmartCoDrive),
project no. PNII-PCCA 18/2012.

REFERENCES

[1] D. Geronimo, A. M. Lopez, A. D. Sappa, and T. Graf, “Survey of
pedestrian detection for advanced driver assistance systems,” [EEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 32,
no. 7, pp. 1239-1258, 2010.

[2] M. Enzweiler and D. M. Gavrila, “Monocular pedestrian detection:
Survey and experiments,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 31, no. 12, pp. 2179-2195, 2009.

[3] R. Benenson, M. Omran, J. Hosang, , and B. Schiele, “Ten years
of pedestrian detection, what have we learned?” in ECCV, CVRSUAD
workshop, 2014.

[4] T. Gandhi and M. Trivedi, “Pedestrian collision avoidance systems: a
survey of computer vision based recent studies,” in Intelligent Trans-
portation Systems Conference, 2006. ITSC ’06. IEEE, Sept 2006, pp.
976-981.

, “Pedestrian protection systems: Issues, survey, and challenges,”
Intelligent Transportation Systems, IEEE Transactions on, vol. 8, no. 3,
pp. 413-430, Sept 2007.

[6] S. Krotosky and M. Trivedi, “On color-, infrared-, and multimodal-stereo

approaches to pedestrian detection,” Intelligent Transportation Systems,

IEEE Transactions on, vol. 8, no. 4, pp. 619-629, Dec 2007.

P. Dollar, R. Appel, S. Belongie, and P. Perona, “Fast feature pyramids

for object detection,” Pattern Analysis and Machine Intelligence, IEEE

Transactions on, vol. 36, no. 8, pp. 1532-1545, Aug 2014.

P. Dolldr, “Piotr’s Image and Video Matlab Toolbox (PMT),” http://

vision.ucsd.edu/~pdollar/toolbox/doc/index.html.

[9] M. Bertozzi, A. Broggi, C. Caraffi, M. Del Rose, M. Felisa, and
G. Vezzoni, “Pedestrian detection by means of far-infrared stereo
vision,” Comput. Vis. Image Underst., vol. 106, no. 2-3, pp. 194-204,
May 2007. [Online]. Available: http://dx.doi.org/10.1016/j.cviu.2006.
07.016

[10] M. Bertozzi, A. Broggi, M. Felisa, S. Ghidoni, P. Grisleri, G. Vezzoni,
C. Gmez, and M. Rose, “Multi stereo-based pedestrian detection by
daylight and far-infrared cameras,” in Augmented Vision Perception
in Infrared, ser. Advances in Pattern Recognition, R. Hammoud,
Ed. Springer London, 2009, pp. 371-401. [Online]. Available:
http://dx.doi.org/10.1007/978-1-84800-277-7_16

[11] B. Musleh, F. Garca, J. Otamendi, J. M. Armingol, and A. De la
Escalera, “Identifying and tracking pedestrians based on sensor fusion
and motion stability predictions,” Sensors, vol. 10, no. 9, p. 8028,
2010. [Online]. Available: http://www.mdpi.com/1424-8220/10/9/8028

(5]

[7

—

[8

[



[12]

[13]

[14]

[15]

[16]

[17]

(d

(b)

(e)

Fig. 11: Good detections in grayscale that are missing in infrared

A. Pérez Grassi, V. Frolov, and F. Puente Ledn, “Information fusion
to detect and classify pedestrians using invariant features,” Inf.
Fusion, vol. 12, no. 4, pp. 284-292, Oct. 2011. [Online]. Available:
http://dx.doi.org/10.1016/j.inffus.2010.06.002

F. Garcia, A. de la Escalera, J. Armingol, J. Herrero, and J. Llinas,
“Fusion based safety application for pedestrian detection with danger
estimation,” in Information Fusion (FUSION), 2011 Proceedings of the
14th International Conference on, July 2011, pp. 1-8.

J. H. Lee, J.-S. Choi, E. S. Jeon, Y. G. Kim, T. T. Le, K. Y. Shin, H. C.
Lee, and K. R. Park, “Robust pedestrian detection by combining visible
and thermal infrared cameras,” Sensors, vol. 15, no. 5, p. 10580, 2015.
[Online]. Available: http://www.mdpi.com/1424-8220/15/5/10580

B. Besbes, S. Ammar, Y. Kessentini, A. Rogozan, and A. Bensrhair,
“Evidential combination of svm road obstacle classifiers in visible and
far infrared images,” in Intelligent Vehicles Symposium (IV), 2011 IEEE,
June 2011, pp. 1074-1079.

A. Apatean, A. Rogozan, and A. Bensrhair, “Visible-infrared fusion
schemes for road obstacle classification,” Transportation Research
Part C: Emerging Technologies, vol. 35, no. 0, pp. 180 — 192,
2013. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0968090X 13001563

S. Nedevschi, S. Bota, and C. Tomiuc, “Stereo-based pedestrian de-

(18]

[19]

[20]

[21]

tection for collision-avoidance applications,” Intelligent Transportation
Systems, IEEE Transactions on, vol. 10, no. 3, pp. 380-391, 2009.

S. Nedevschi, T. Marita, R. Danescu, F. Oniga, S. Bota, I. Haller,
C. Pantilie, M. Drulea, and C. Golban, “On-board 6d visual
sensor for intersection driving assistance,” in Advanced Microsystems
for Automotive Applications 2010, ser. VDI-Buch, G. Meyer and
J. Valldorf, Eds. Springer Berlin Heidelberg, 2010, pp. 253-264.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-16362-3_25
C. Pantilie, I. Haller, M. Drulea, and S. Nedevschi, “Real-time image
rectification and stereo reconstruction system on the gpu,” in Parallel
and Distributed Computing (ISPDC), 2011 10th International Sympo-
sium on, July 2011, pp. 79-85.

S. Nedevschi, M. Tiberiu, R. Danescu, F. Oniga, and S. Bota, “On-
board stereo sensor for intersection driving assistance architecture and
specification,” in Intelligent Computer Communication and Processing,
2009. ICCP 2009. IEEE 5th International Conference on, Aug 2009,
pp. 409-416.

T. Marita, F. Oniga, S. Nedevschi, T. Graf, and R. Schmidt, “Camera
calibration method for far range stereovision sensors used in vehicles,”
in Intelligent Vehicles Symposium, 2006 IEEE, 2006, pp. 356-363.



