
Iosif Ignat & Marius Joldoș Laboratory Guide 2. Standard I/O

T.U. Cluj-Napoca Computer Programming 1

Standard I/O in C

1. Overview

The learning objective of this lab is:
 To understand the structure of simple, one function programs in C

 To use simple input and output statements (reading/writing from/to the standard I/O files).

2. Brief theory reminder

The standard device is the one used to start a program. There are two files attached to this device:

the standard input file (named stdin) and the standard output file (named stdout). These files are
sequential files.

The frequently used C/C++ library functions for I/O operations are:

 For input: getch, getche, gets, scanf, sscanf ;

 For output: putch, puts, printf, sprintf.

Macros getchar, for input, and putchar, for output, supplement these set.

2.1. getch, getche and putch functions (MS-DOS/Windows specific)

The functions presented in this section are non-portable (platform-specific). They must be
avoided in portable programs.

getch reads without echoing a character when a character is input from the keyboard. The key
may have an ASCII code or a special function attached. In the first case, the function returns the ASCII

code for that character. In the second case the function must be invoked twice: at the first call, it returns

the value zero, and at the second call it returns a specific value for the pressed key.
getche has similar functionality. The difference is that the read character is echoed.

When getch or getche are invoked, the system waits for a key to be pressed.
putch sends to the output device (e.g. screen) a character which corresponds to the ASCII code

used as its argument. Printable characters have ASCII codes in the range [32,126]. Codes outside this
range cause various image patterns to be displayed. This function returns its argument.

The prototypes for these functions are in the header file conio.h1. They are as follows:

1 conio.h is a header file used in old MS-DOS compilers, to create text mode user interfaces, however, it is not part

of the C programming language, the C standard library, ISO C or by POSIX.
This header declares several useful library functions for performing "console input and output" from a program. Most
C compilers that target DOS, Windows 3.x, Phar Lap, DOSX, OS/2, or Win32 have this header and supply the
concomitant library functions in the default C library. Most C compilers that target UNIX and Linux do not have this
header and do not supply the concomitant library functions.
The library functions declared by conio.h vary significantly from compiler to compiler. As originally implemented in

Microsoft's Visual C++ the various functions mapped directly to the first few DOS int 21h functions. But the library
supplied with Turbo C++ and Borland C++ did not use the DOS API but instead accessed video RAM directly for
output and used BIOS interrupt calls.
Compilers that targeted non-DOS operating systems, such as Linux, Win32 and OS/2, provided different
implementations of these functions.

Iosif Ignat & Marius Joldoș Laboratory Guide 2. Standard I/O

T.U. Cluj-Napoca Computer Programming 2

 int getch(void);

 int getche(void);
 int putch(int ch);

A usage example is:

 /* Program L1Ex1.c */

#include <conio.h>
int main()

{
putch(getch());

getch();

return 0;
}

2.2. gets and puts functions

gets reads with echo from the standard input device an ASCII string, and places this string in the
variable given as its argument. Upon return reading continues with:

 Character '\n' (newline), which is replaced by character '\0' (null). In this case, gets return the

start address for the memory area where read characters are stored.

 End of file marker (CTRL/Z). In this case, gets returns the value zero.

puts displays on the standard output device a character string corresponding to the ASCII codes of

the characters stored at the address given as its argument. The null character ('\0') is interpreted as newline
('\n'). This function returns the code of the last displayed character or the value –1 in case that an error

occurred.
Prototypes for these functions can be founding the header file stdio.h. They are:

 char *gets (char *s);
int puts (const char *s);

Here *s denotes a pointer to an ASCII string (e.g. a string variable).

 A usage example is:

 /* Program L1Ex2.c */

 #include <stdio.h>
int main()

{

 char s[200];
 printf("\nPlease input a character string and press ENTER\n");

 gets(s);
 printf("\nThe character string is\n");

 puts(s);

return 0;
 }

Iosif Ignat & Marius Joldoș Laboratory Guide 2. Standard I/O

T.U. Cluj-Napoca Computer Programming 3

2.3. scanf and printf

scanf is intended for inputting data which are interpreted as specified by formatting information.

Input data are converted from their external representations to the corresponding internal

representations and are stored in the variables provided as arguments. End of input is signaled when the
ENTER key is pressed.

The prototype for scanf is located in the header file named stdio.h, and is as follows:

 int scanf(const char *format , variable list);

 scanf returns the number of input fields successfully converted or the value –1 (EOF) if the end

of file (EOF for short) is encountered during conversion. EOF can be signaled by pressing CTRL/Z in
Windows/MS-DOS operating systems.

 The format for scanf is specified as a character string enclosed in double quotation marks (").
The format string includes format specifiers, which define the conversion rules from output to input

representations. A format specifier is composed of:

 The character '%'.

 The optional character '*', which indicates that the result of the input data conversion will not be

assigned to any variable.
 An optional decimal number, which defines the maximum length of the field controlled by the

format specifier.

 One or two letters, which define the type of conversion.

The field controlled by the format begins with the first non-whitespace character (whitespace means

blanks or tabs), and is terminated, as the case stands:

 At the character following a whitespace.

 At the character which does not satisfy the type of conversion.

 At the character where the maximum length of the field is reached.

When using the standard input, the data is read after the user presses the ENTER key. The address

of a variable is specified as &variable_name for scalars and as array_variable_name (note that
there is no & in front) for single dimensional arrays (e.g. for character strings).

The letters defining the type of conversion are given in the table below.

Letter Type of read data

 c Character (char)

 s Character string (char *)

d Decimal integer

o Octal integer

x, X Hexadecimal integer

u Unsigned integer

f Floating point (real)

number

ld, lo, lx, lX Long

lu Unsigned long

lf/Lf Double/long double

printf is used for printing formatted data, e.g. on the screen. Data are converted from the internal
representation into an external representation using the specified format descriptors.

The prototype for printf is located in the header file stdio.h, and is as follows:

Iosif Ignat & Marius Joldoș Laboratory Guide 2. Standard I/O

T.U. Cluj-Napoca Computer Programming 4

 int printf(const char *format ,expression list);

The format is, as with scanf, given as a character string. It contains character sequences which

are to be printed and format descriptors.
A format descriptor (aka format specifier) contains:

 The character '%'.

 An optional minus ('-') character, which specifies that the data to be printed will be left-justified

(the default justification is right-justification).

 An optional decimal number, which defines the minimum length (character count) of the field

which will hold the printed data.
 And optional dot ('.') followed by a decimal number specifying the precision.

 One or two letters, which define the type of conversion. In addition to the letters used with

scanf, letters 'e' or 'E' can also be used for printing floating point data (in single or double

precision) in scientific notation, letters 'g' or 'G' specifying that the floating point data is to be
printed in either the usual way or in scientific notation such as it yields a field of a minimum

length.

printf returns the number of successfully printed characters on success, and -1 in case an error occurs.

Usage examples:

/* Program L1Ex3.c */

#include <stdio.h>
int main()

{
 int a;

 float b, c;

 printf("\nPlease input the integer value of a=");
 scanf("%5d",&a);

 printf("\nPlease input the value of the real number b=");
 scanf("%5f",&b);

c=a+b;
printf("\nthe value of the sum c=a+b is: %6.3f\n",c);

return 0;

}

2.4. sscanf and sprintf

As a difference from the functions scanf and printf, sscanf and sprintf have a supplemental first

argument indicating the memory area holding ASCII strings. sscanf uses that area to read characters
instead the standard input. For sprintf the memory area indicated by its first argument is used for

output, instead of the standard output device (e.g instead of the screen).
 Prototypes for these functions are supplied in stdio.h:

int sscanf (const char *buffer, const char *format ,variable list);

int sprintf (char *buffer, const char *format ,expression list);

 Usage sample:

 /* Program L1Ex4.c */

Iosif Ignat & Marius Joldoș Laboratory Guide 2. Standard I/O

T.U. Cluj-Napoca Computer Programming 5

 #include <stdio.h>

 int main()
{

 char s[100], q[100];
 int a, b;

 float c, d;

 printf ("\nInput on the same row values for integer a and real c\n\
 separated by a whitespecs character\n\

 and followed by ENTER\n");
 // gets(s); DANGEROUS. NO CONTROL ON THE NUMBER OF CHARS

// instead, use, e.g.
 fgets(s, sizeof(s), stdin);

 sscanf(s,"%d %f", &a, &c);

 printf("\n a=%4d c=%8.3f\n", a, c);
 sprintf(q,"%4d %8.3f\n", a, c);

 sscanf(q,"%d %f",&b,&d);
 printf("\n b=%5d d=%9.4f\n",b,d);

 return 0;

}

2.5. getchar and putchar

The getchar macro enables reading with echo of ASCII characters (no special keys allowed). The

characters keyed in are placed in a buffer and not converted till the ENTER key is pressed. Upon return,
the ASCII code of the first input character is returned. When invoked again the next input character is

returned, a.s.o. When EOF is encountered, getchar returns the value –1.
The putchar macro prints the character given as an argument.

 Macros getchar and putchar are defined in stdio.h as follows:

 int getchar(void);

 int putchar (int c);

and are invoked in the same way as getch and putch.

 Usage example:

 /* Program L1Ex5.c */

 #include <stdio.h>

 int main()
 {

 putchar(getchar());

 putchar('\n');
 return 0;

 }

3. Lab Tasks

3.1. Run the programs given as examples and analyze the output.

3.2. Write a program to check how getch is executed when a special key (F1 to F12, CTRL/another key)

is pressed. Hint: print the value returned as a decimal/hexadecimal number.

Iosif Ignat & Marius Joldoș Laboratory Guide 2. Standard I/O

T.U. Cluj-Napoca Computer Programming 6

3.3. Write a program to check what putch outputs when its argument is a value outside the range

character values [32,126].

3.4. Write a program to print the ASCII codes for the keys of your keyboard. Hint: use printf() with a
proper descriptor for output.

3.5. Write a program to print the characters corresponding to the ASCII codes in the range [32,126].

3.6. Write a program to containing invocation(s) of gets(s), where s is an array. Check the contents of
each array member. Hint: use the debugger to set a breakpoint after the invocation of gets() and

inspect the memory area containing the result. Why the newline character ('\n') was replaced by '\0'?

3.7. Write a program to read a lowercase letter string and print the corresponding uppercase letter string.

Note that there is no function which operates on strings and converts uppercase->lowercase and
viceversa.

3.8. Write a program to read a string with only capitals (uppercase letters), and print the corresponding

lowercase letter string.

3.9. Write a program to calculate the sum, difference, product and quotient of a pair of real numbers.

Output the results in a tabular format, similar to the one below (you do not have to draw lines):

x y x+y x-y x*y x/y

3.10. Write a program to print the number π = 3.14159265 using various (floating point) format

descriptors.

3.11. Write a program to print an integer read from the standard input as an octal and a hexadecimal

number.

	1. Overview
	2. Brief theory reminder
	2.1. getch, getche and putch functions (MS-DOS/Windows specific)
	2.2. gets and puts functions
	2.3. scanf and printf
	2.4. sscanf and sprintf
	2.5. getchar and putchar

	3. Lab Tasks

