
Iosif Ignat, Marius Joldoș Laboratory Guide 4. Statements

T.U. Cluj-Napoca Computer Programming 1

STATEMENTS in C

1. Overview

The learning objective of this lab is:

 To understand and proper use statements of C/C++ language, both the simple and structured

ones: the expression statement, the empty statement, the composed statement, the “if"
statement, the “switch" statement and the repetitive statements.

 To correctly develop small programs using C statements

2. Brief theory reminder

The structured program is a program having a control structure built only based on:
- Sequential structure;

- Alternative and selective structure;
- Repetitive structure.

In the C/C++ languages there are also statements like return, break, continue and goto,

that assures a great flexibility in writing C/C++ programs.

2.1. The expression statement:

 The syntax of this statement is:

 expression;

i.e. after the expression it is written “;".

This statement is used as assignment statement or as a function call statement. A usage example is:

 /* Program L3Ex1.c */

 /*The program displays the maximum of two integers */

 #include <stdio.h>
 int main()

 {

 int a, b, c;
 printf("\nPlease input two integers, a and b\n");

 scanf("%d %d", &a, &b);
 c=a>b? a: b;

 printf("\nThe maximum of a=%d and b=%d is c=%d\n",a,b,c);

return 0;
 }

2.2. The empty statement

This statement consists of a single ‘;’ (the semicolon character), and has no effect. This

statement is used when an dummy statement is needed according the syntax requirements of a
composed or repetitive statement.

Usage example:

for(i = 0, s = 0; i < n; s = s + a[i], ++i);

2.3. The composite statement

Iosif Ignat, Marius Joldoș Laboratory Guide 4. Statements

T.U. Cluj-Napoca Computer Programming 2

A composite statement consists of a sequence of statements enclosed between braces (i.e. ‘{‘

and ‘}’), sometimes preceded by declarations, as follows:
 {

 declarations;
 statements;

 }

This statement is used when only one statement is needed according the syntax requirements
of a program context, but the computational process requires more than one statement.

An usage example is given in L3Ex2.c :

/* Program L3Ex2.c */

/* Computes of the roots of the equation a*x^2 +b*x +c =0 */
#include <stdio.h>

#include <math.h>
int main()

{
float a, b, c, delta, x1, x2;

 printf("\nComputes of the roots of the equation\n\ta*x^2 +b*x +c =0\n");

printf("Please input values for a, b, and c\n");
 scanf("%f %f %f", &a, &b, &c);

 if (a!=0)
 {

 delta=b*b-4*a*c;

if (delta >= 0)
{

x1=(-b-sqrt(delta))/(2*a);
x2=(-b+sqrt(delta))/(2*a);

printf("\nThe equation has the roots x1=%g and x2=%g\n", x1, x2);

}
 else

{
x1=-b/(2*a);

x2=sqrt(-delta)/(2*a);
printf("\n\nThe equation has complex roots x1=%g-j*%g\

and x2=%g+j*%g\n", x1, x2, x1, x2);

}
}

else printf("\nEquation is not of second order (i.e. a=0)\n");
return 0;

}

2.4. The conditional statement „if"

This statement has two forms:

a) if (expression)
 statement

b) if (expression)

 statement_1
else statement_2

The effect is:

- the evaluation of the expression “expression".
- if the result of the evaluation is true the statement „statement" it is executed in case a)

and, in case b) the statement “statement_1", after the control is switched to the statement

that immediately follows the if statement.

Iosif Ignat, Marius Joldoș Laboratory Guide 4. Statements

T.U. Cluj-Napoca Computer Programming 3

- if the result of the evaluation of the expression “expression" is false, there are the following

cases:
a) control is switched to the statement that follows immediately the if statement, and,

b) statement “statement_2" is executed; then control is switched to the statement that
logically follows the „if" statement.

Notes:

a) The statements “statement", “statement_1", “statement_2" may contain any
jump statement (i.e. statements that transfer the control directly to statements that

are not necessarily placed immediately after the „if" statement).
b) The statement „if" may contain other „if" statements. In such a case it is important

to handle the „else" branch carefully, in order to combine it correctly with the logically
corresponding „if" statement.

Usage example: Program L3Ex2.c (see 2.3).

2.5. The selection statement „switch"

The syntax of the „switch" statement is:

switch (expression)
{

 case C1: statement_sequence_1;
 break;

 case C2: statement_sequence_2;

 break;
 …...

 case Cn: statement_sequence_n;
 break;

 default: statement_sequence;

}

The effect of switch statement is:
a) Evaluation of the expression “expression";

b) The result of the evaluation is compared with the integer constants C1, C2, …, Cn. If this

result is equal with constant Ci, it is executed the statement “ statement_sequence_i",
then it is executed the statement placed immediately after the „switch" statement. If the

result of the evaluation does not match any of the constants C1, C2, …, Cn, the sequence
„statement_sequence", placed after the label “default", is executed.

Notes:
a) The default branch is optional. If the branch „default" is missing and the value

of the expression „expression" does not match none of the constants C1, C2,

…, Cn, the statement switch has no effect.
b) If the keyword break is missing, all the statements that follow there are executed,

until either a break keyword or the end of the switch statement is encountered.
c) The structured switch statement may be replaced by an appropriate set of nested

if statements.

Usage example:

 /* Program L3Ex3.c */

 /* Operations on integers of the form OPERAND1 operator OPERAND2 */

 #include <stdio.h>

 #include <stdlib.h>
 int main()

 {
int operand1, operand2, result;

char operation;

Iosif Ignat, Marius Joldoș Laboratory Guide 4. Statements

T.U. Cluj-Napoca Computer Programming 4

printf("\nInput an infix expression without spaces\n");
scanf("%d%c%d", &operand1, &operation, &operand2);

switch(operation)
{

 case '+': result=operand1+operand2;

 break;
case '-': result=operand1-operand2;

break;
case '*': result=operand1*operand2;

break;
case '/': if (operand2!=0) result = operand1/operand2;

break;

default: exit(1);
 }

printf("\n%d %c %d = %d\n", operand1, operation, operand2, result);
return 0;

}

2.6. The loop statement „while"

The general syntax of the statement „while" is:

while (expression)

statement

The effect of the statement while is:
a) Evaluation of the expression „expression";

b) If the result of the evaluation is true, it is executed the statement „statement" and it is

performed again the step a). If the result of the evaluation is false, it is executed the
statement that is placed immediately after the statement while.

a. Observations:
c) In case that the expression „expression" is false from the beginning, then the statement

“statement" is never executed.

d) In the body of the statement while it is necessary to have some statements which change
the value of the variables from the expression “expression".

Usage example:

/* Program L3Ex4.c */

/* Computes of the greatest common divisor (gcd) and
 the smallest commom multiple (scm) of two natural numbers, a and b */

#include <stdio.h>
int main()

{

 int a, b, a1, b1, gcd, scm, remainder;
 printf("Computes of the greatest common divisor (gcd) and\n");

printf("the smallest commom multiple (scm) of two natural numbers, a and b"0;
 printf("Input value for a=");

 scanf("%d", &a);

 printf("Input value for b=");
 scanf("%d", &b);

 /* Computation of gcd */
 a1=a;

b1=b;

Iosif Ignat, Marius Joldoș Laboratory Guide 4. Statements

T.U. Cluj-Napoca Computer Programming 5

 while ((remainder=a1%b1)!=0)

{
a1=b1;

 b1=remainder;
 }

 gcd=b1;

 scm=a*b/gcd;
 clrscr();

 printf("a=%d b=%d gcd(a,b)=%d scm=%d", a, b, gcd, scm);
return 0;

 }

2.7. The loop statement „for"

The syntax of the statement for is:

for (expr1; expr2; expr3)

 statement

where:

- expr1, expr2, expr3 are expressions;
- „statement" is the body of the „for" loop.

The for loop, can also be expressed using the while loop as follows:

expr1;
while (expr2)

{
statement;

 expr3;

 }

Note: expr1, expr2, expr3 may be empty, but the presence of “;" is mandatory.

Usage example:

/* Program L3Ex5.c */

/* Computes the arithmetic mean value of n real numbers */
#include <stdio.h>

int main()

{
 float a[100], mean, sum;

 int i, n;

 printf("Computes the arithmetic mean value of n (<100) real numbers\n");

 printf("\nInput the number of terms, n=");
scanf("%d",&n);

 printf("\nInput the terms\n");
 for(i=0, sum=0; i<n; ++i)

 {
 printf("a[%2d]=", i);

 scanf("%f",&a[i]);

 sum+=a[i];
 }

 mean=sum/n;
 printf("\nMEAN=%g\n", mean);

return 0;

Iosif Ignat, Marius Joldoș Laboratory Guide 4. Statements

T.U. Cluj-Napoca Computer Programming 6

}

2.8. The loop statement „do-while"

The loop statement “do-while" executes the test at the end of the loop. Its syntax is:

do
statement

while (expression);

The effect in terms of the statement „while" is:

statement;

while(expression)
statement;

Note that the body of the loop is executed at least once.

Usage example:

/* Program L3Ex6.c */

/* Computes the greatest common divisor (gcd) and smallest common multiple (smc)

Of two natural numbers, a and b */

#include <stdio.h>
int main()

{
 int a, b, a1, b1, gcd, smc, remainder;

 printf("Computes of the greatest common divisor (gcd) and\n");

printf("the smallest commom multiple (scm) of two natural numbers, a and b");

 printf("Input a value for a=");
 scanf("%d",&a);

 printf("Input a value for b=");
 scanf("%d",&b);

 /* Find the gcd */

 a1=a;
b1=b;

 do{
 remainder=a1%b1;

 a1=b1;
 b1=remainder;

 }

 while (remainder != 0);
 gcd=a1;

 smc=a*b/gcd;
 clrscr();

 printf("a=%d b=%d gcd(a,b)=%d smc=%d", a, b, gcd, smc);

 return 0;
 }

2.9. The statements „continue" and „break"

The statements „continue" and „break" may be used only in the body of a loop.
The statement “continue" makes control leave the current iteration and continue with the first

statement in the case of the statement for. For the while and do-while statements: execution
continues with the evaluation of the expression which determines whether the loop will be executed

again or not.

Iosif Ignat, Marius Joldoș Laboratory Guide 4. Statements

T.U. Cluj-Napoca Computer Programming 7

The statement „break" breaks the loop (for, while, do while), and the statement

immediately following the loop gets executed.

2.10. The unconditional jump statement „goto"

The statement goto is used to jump between different locations in a program. The destination

is always a labeled statement.
A label is a name, followed by the colon character “:" , such as:

 label:
The syntax of the statement goto is:

goto label;

Example:

 …

 goto alfa;
 …

 alfa: if () …
 …

2.11. The standard function „exit"

The prototype of the standard function exit is described in stdlib.h and process.h as:

void exit(int code);

The function exit causes the end of the program. The value of the integer „code" is zero for
a normal termination and different from zero in case of errors.

3. Lab Tasks

3.1 Analyze and execute of the programs given as examples in Section 2.

3.2. Four pairs of real numbers are acquired from the standard input, representing the

vertices of a polygon with 4 edges. Establish the nature of this polygon.

3.3. Real numbers of a sequence of size n are read from the standard input. Find and print to
standard output: the minimum and the maximum values of this sequence, and their positions

(indices) in the sequence.

3.4. Write a program to generate all the prime numbers less than or equal to a natural

number, n.

3.5. Read from the standard input a natural number, n. Find the greatest perfect square
that is less than or equal to n. Then find the least prime number that is greater than or equal to n.

3.6. Read from the standard input a natural number, n. Check if this number is palindrome.

3.7. Read from the standard input the hexadecimal digits of an integer hexadecimal number.
Find and display the equivalent decimal number.

3.8. Read from the standard input the degree and the coefficients of the polynomial p(x) =

a0+a1x1+ ... + anxn . Compute and display the value of the polynomial for x = x0 (x0 is read from

the standard input).

3.9. Write a program to perform the operations +,-,, / on two polynomials:

Iosif Ignat, Marius Joldoș Laboratory Guide 4. Statements

T.U. Cluj-Napoca Computer Programming 8

 A(x)=a0 +a1x1+...+ anxn

 B(x)=b0 +b1x1+......+ bmxm
 The degrees and the coefficients are read from the keyboard.

3.11. Given a system of n equations with n unknown variables, write a program to solve this

system using a numeric method.

3.12. Compute the polynomials P(x) and Q(x) from the relation:

 n, ai , bi , ci are read from the standard input.

3.13. Given a sequence of n real numbers sorted in ascending order, verify if a given value,
x, exists in the given sequence, and display this value and its position.

3.14. Given a sequence of n integer numbers, extract the maximum length subsequence

which is in ascending order.

3.15. For a capability test there exists a set of n questions, each question, i , having a value of pi

points. Write a program which generates all the tests with q questions, each such test having
assigned between a and b points.

3.16. Given two strings of n and m integer elements, compute:

a) The string that contains all the elements belonging to both strings.

b) The string of all the elements of the two given strings, written once.
c) The string of the elements from the first string, without the elements that are also in the

second string.

3.17. Given a real number a written in base 10, write a program to convert this number in base
B, where B ≤ 16.

3.18. Given a natural number n,
a) Find the number obtained by eliminating those digits that appear more than once in that

number.
b) Find the number obtained by switching the first digit with the last one, the second with the

next to last one, and so on.

c) Find the biggest number that could be obtained by a combination of its digits.

3.19. Given a matrix of n n elements all 0 or 1, verify if this matrix is symmetric.

3.20. Read a sentence from the standard input. Compute the number of the words and find and

display the longest one.

n

i ii

i

cxb

a

XP

XQ

1)(

)(

	1. Overview
	2. Brief theory reminder
	2.1. The expression statement:
	2.2. The empty statement
	2.3. The composite statement
	2.4. The conditional statement „if"
	2.5. The selection statement „switch"
	2.6. The loop statement „while"
	2.7. The loop statement „for"
	2.8. The loop statement „do-while"
	2.9. The statements „continue" and „break"
	2.10. The unconditional jump statement „goto"
	2.11. The standard function „exit"

	3. Lab Tasks

