
Iosif Ignat, Marius Joldoș Laboratory Guide 9. Character strings

T.U. Cluj-Napoca Computer Programming 1

CHARACTER STRINGS

1. Overview

The learning objective of this lab session is to:

 Understand the internal representation of character strings

 Acquire skills in manipulating character strings with standard string handling functions.

2. Brief theory reminder

2.1. Internal memory representation of a character string

 A character string is stored as one-dimensional array of char type. Each character is

represented on a byte by its ASCII code. The last character in the string is the null character (’\0’).

The name of the array that stores the string is a constant pointer of the character string.

 We have the following relations:

 string[i], where i [0,16] represents the ASCII code of the ith character of the string;

 string + i, where i [0,16] is the address of the ith character of the string;

 *(string + i) has the same effect as string[i].

 A string may be declared also as follows:

 char *const string=”CHARACTER STRING”;

 An array of strings may be declared as:

char *tab[]={string_0, string _1,…, string _n};

 In this case, tab[i], for i [0, n], is a pointer to the string ”string_i”.

 The statement:

 printf(”%s\n”, tab[i]);

will display the text string_i .

2.2. Standard string handling functions

The standard input/output functions for strings are:

- gets/puts;

- scanf/printf;
- sscanf/sprintf

They were presented in Lab. 1.

Iosif Ignat, Marius Joldoș Laboratory Guide 9. Character strings

T.U. Cluj-Napoca Computer Programming 2

 Next we present string handling functions with prototype in string.h.

2.2.1. String length

The length of a string (without ’\0’) is returned by the function strlen, having the prototype:

unsigned strlen (const char *s);

Example:

/* Program L8Ex1.c */

/* The usage of the function strlen */
#include <stdio.h>

#include <conio.h>
#include <string.h>

#define alpha "Press a key!"

int main(void)

{
 char string1[]="STRING OF CHARACTERS";

 char * string2="STRING OF CHARACTERS";

 int n1, n2, n3;

 n1=strlen(string1);
 n2=strlen(string2);

 n3=strlen("STRING OF CHARACTERS");
 /* The values of n1, n2 and n3 are the same, i.e. 20 */

 printf("\n n1=%d n2=%d n3=%d\n", n1, n2, n3);

 printf("%s\n",alpha);
 getchar();

 return 0;
}

2.2.2. String copy

 To copy a string, from a source memory area (of address source) into another memory area (of
address dest) you can use the function strcpy, having the prototype:

 char *strcpy (char *dest, const char *source);

Notes:

 The copy includes the ASCII null character.

 The function returns the address of the destination.

To copy of no more than n characters of a string from a source memory area (having the address
source) into another memory area (having the address dest) you can use the function strncpy,

having the prototype:

 char *strncpy (char *dest, const char *source, unsigned n);

After the last character that is transferred, you must append a null ASCII character (’\0’).

Obviously, if n is greater than the length of the source string, the entire source string is copied.

 Example:

/* Program L8Ex2.c */

Iosif Ignat, Marius Joldoș Laboratory Guide 9. Character strings

T.U. Cluj-Napoca Computer Programming 3

/* Usage of the function strcpy */
#include <stdio.h>

#include <string.h>
#define alpha "\nPress a key!"

int main(void)
{

 char string1[]="STRING OF CHARACTERS";
 char *string2="STRING OF CHARACTERS";

 char string3[100], string4[100], string5[100];

 strcpy(string3, string1);

 printf("\nstring3: %s\n", string3);
 strcpy(string4, "Standard string handling functions");

 printf("\nstring4: %s\n", string4);
 strncpy(string5, string2, 9); /* string5 contains STRING OF */

 string5[6]='\0';

 printf("\nstring5: %s\n", string5);
 printf(alpha);

 getchar();
 return 0;

}
2.2.3. String concatenation

Appending a source character string, located in a memory area of address source, after the last

character before ‘\0’ of another string located in a memory area of dest, is done using the function
strcat, having the prototype:

char *strcat(char *dest, const char *source);

It is important to put the ASCII character null (’\0’) at the end of the resulting string. The function
returns the address of the destination.

You can take only n characters from the source string, using the function strncat, having the
prototype:

char *strncat (char *dest, const char *source, unsigned n);

The null ASCII character is automatically appended to the result string. If n is greater than the length
of the source string, strncat has the effect of strcat.

Example:

/* Program L8Ex3.c */

/* Usage of the function strcat */
#include <stdio.h>

#include <string.h>
#define alpha "\nPress a key!"

int main(void)
{

 char string1[]="STRING1 OF CHARACTERS";
 char *string2="STRING2 OF CHARACTERS";

 char string3[100];
 int i;

 strcpy(string3, string1);

Iosif Ignat, Marius Joldoș Laboratory Guide 9. Character strings

T.U. Cluj-Napoca Computer Programming 4

 strcat(string1, string2);

 printf("\nstring1: %s\n", string1);
 strncat(string3, string2, 5);

 /* After the last character of the string string3, '\0' is placed by default */
 for (i=0; i <= strlen(string3)+1; ++i) printf("%x", string3[i]);

 printf("\n string3: %s\n", string3);

 printf(alpha);
 getchar();

 return 0;
}

2.2.4. String comparison

The comparison of two string is done by taking sequentially the pairs of characters located on

the i th position in the compared strings, based on their ASCII codes, until:

- the i th character in the first string is reached, and it’s different from the

corresponding i th character from the second string;

- the end of one of the compared strings, or the end of both strings is reached.

The comparison is done using the function strcmp having the prototype:

int strcmp(const char *string1, const char * string2);

This function returns:

- a negative value if the string having the address string1 is less than the string

having the address string2;
- zero if the two strings are equal;

- a positive value if the string having the address string1 is greater than the string
having the address string2;

If only the first n characters from the two strings are to be compared, use the function strncmp
having the prototype:

int strncmp (const char * string1, const char * string2, unsigned n);

If the lowercase and uppercase letters are considered identical, then use the corresponding

functions:

int stricmp (const char *sir1, const char *sir2);

int strnicmp (const char *sir1, const char *sir2, unsigned n);

Example:

/* Program L8Ex4.c */

/* The usage of strcmp function*/

#include <stdio.h>
#include <string.h>

#define alpha "\nPress a key!"

int main(void)

{
 char string1[100]="STRING OF CHARACTERS";

 char *string2="STRING of characters";

 int i, j, k, l;

 i=strcmp(string1, string2); /* i<0 , then string1< string2 */
 printf("\ni=%d\n", i);

Iosif Ignat, Marius Joldoș Laboratory Guide 9. Character strings

T.U. Cluj-Napoca Computer Programming 5

 j=strncmp(string1, string2, 3); /* j=0 , then the first 3 characters from string1 and

string2 are equal */
 printf("\nj=%d\n", j);

 k=stricmp(string1, string2); /* k=0, the two strings are equal */
 printf("\nk=%d\n", k);

 l=strnicmp(string1, "STRING of 22 characters", 6); /*l=0 */

 printf("\nl=%d\n", l);
 printf(alpha);

 getchar();
 return 0;

}

3. Lab Tasks

3.1. Analyze and execute the examples provided above.

3.2. Write a function to extract, from a source string, a substring identified by the position in the source

string and by the length expressed as a number of characters.

3.3. Write a function to insert a source character string in the context of a destination character string,

in a given position.

3.4. Write a function to delete a substring from a given character string, specifying the beginning

position and the length of the substring.

3.5. Write a function to verify if a given string is a substring of another character string. If it is, specify
the beginning position of the substring.

3.6. Write two functions, the first to convert an integer or real number into a string of characters, and

the second to perform the inverse operation.

3.7. Write a program to read n strings of characters and display both the longest string and the biggest

one as seen as an alphanumeric sequence.

3.8. Read from the keyboard the author, the title and the publication year for a number of n books.

Display the following:
a) the names of the authors in alphabetic order;

b) the names of the authors and the titles of their books in order of the publication year.

3.9. Read from the keyboard the names of n kings and the corresponding year limits of their state
leading periods. Display the name of all the kings in alphabetic order, and the number of years they

ruled.

 3.10. Read from the keyboard strings of at most 80 characters, representing integer or real non-

exponential numbers, separated by spaces. Compute the sum of the real numbers and of the integer
numbers of each string, except the incorrect values.

An incorrect value is a character string delimited by spaces, containing non-numeric characters, or

having the length greater than 5.

	1. Overview
	2. Brief theory reminder
	2.1. Internal memory representation of a character string
	2.2. Standard string handling functions
	2.2.1. String length
	2.2.2. String copy
	2.2.3. String concatenation
	2.2.4. String comparison

	3. Lab Tasks

