
Explanations for Problem 3.6 of Lab session 5

We are asked to build a simple text editor. We will create a program which is a simple

command line text editor (i.e. no windows, mouse or screen positioning).

The limitations of this editor are:

• Can cope with files of up to 3000 lines of at most 300 characters per line (see symbolic

constants MAX_LINE and MAX_LINE_LEN defined in ted.h)

• All commands are one letter commands followed by optional parameters

• It supports the following commands:

o s – set the line for current operation
o h - show help on commands

o i - insert user provided text before current line; end input with Ctrl/Z
o a - append user provided text after current line; end input with Ctrl/Z
o Delete operations:

� d with no parameters deletes current line

� d lineNo : delete line lineNo

� d from, to : delete all lines in interval [from, to]

o Copy operations

� c with no parameters copies current line to scrap

� c lineNo : copy line lineNo

o c from, to : copy all lines in interval [from, to]

o p - paste : pastes scrap buffer before current line
o Cut operations

� k with no parameters cuts current line to scrap

� k lineNo : cut line lineNo

� k from, to : cut all lines in interval [from, to]

o View operations

� v with no parameters lists current line

� v lineNo : list line lineNo

� v from, to : list all lines in interval [from, to]

o n filename – name file to which to write editor buffer contents

o Load operations

� l with no parameters loads file whose name was given with the n

command

� l fileName - load fileName into editor

o Write operations

� w with no parameters writes editor buffer to the file whose name was

given with the n command

� w fileName - write editor buffer to fileName. If file exists it is overwritten

o q - quit without saving changes
o e - exit and write changes to named file

To achieve this functionality we will design a program composed of three modules:

• A module containing the execution starting point – i.e. the function main

• A dispatcher module, called dispatch, which accepts commands from the user

• A support module, called ted, containing the functions which implement editor

functionality

The program is actually an infinite loop in the dispatcher, waiting for user commands. When a

command is accepted, the appropriate function in the support module is called to execute that

command.

The implementation uses three string arrays: lines, scrap, and buffer.

• The array lines contains the text to be edited.

• The array scrap is used as scrap area for commands copy, cut and paste.

• The array buffer is used for getting text from the user for commands insert and append.

There are two auxiliary functions, moveUp and moveDown. moveUp moves a block of text to

make room for text to be inserted. moveDown copies over deleted text the rest of lines array

overwriting the deleted area. Note that cut is implemented by an invocation of copy and then of

delete.

