
Computer Programming

“Learn science first and then continue
with the practice born from that science”

Leonardo da Vinci

Outline

 Who and What

 Problem solving
process

 Stages

 Algorithm

 Definition, features,
ways to describe

 Programming
Languages

 C Introduction

 Basic program
structure

 Data Types

 Constants and
Variables

 Simple I/O

 scanf

 printf

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş 2

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş

Who and What

 Who:

 Marius Joldoş: lectures + laboratory supervision

 Marius.Joldos@cs.utcluj.ro

 http://users.utcluj.ro/~jim/CP

 Laboratory supervision

 Ciprian.Pocol@cs.utcluj.ro

 Ion.Giosan@cs.utcluj.ro

 Alex Cosma

3

mailto:Marius.Joldos@cs.utcluj.ro
http://users.utcluj.ro/~jim/CP
mailto:Ciprian.Pocol@cs.utcluj.ro
mailto:Ion.Giosan@cs.utcluj.ro

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş

Who and What

 What: Computer Programming

 Lectures: 2 hours/week, 14 weeks – every
Thursday, 18:00 hours, G. Bariţiu 26-28, room
P03

 Laboratory work: 2 hours/week, 14 weeks, as
scheduled for each half-group, Dorobanţilor 71-
73, room D1

 Self-study: 84 hours

 Worth 5 credits (1/12 of a years total)

4

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş

Where are the rooms?

5

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş

How you identify the place

 Panorama from the opposite sidewalk

bus stop,

46B

6

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş

How you identify the place

 Cross the street (on-demand traffic lights)

7

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş

How you identify the place
 Yellow

building

 at the front

 Enter

 Climb down
left

 Door on the
right is for
room D1

 Door in front
is for room
D2

8

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş

What: Computer Programming

 What you will acquire
 As theory

 To describe algorithms in pseudo-code

 To modularize an algorithm

 C(C++) foundations (w/o objects...)

 Some algorithms

 As abilities
 How to design and implement algorithms in C(C++)

 An adequate programming style

 Master some algorithms (numeric, set)

9

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş

What: Computer Programming

 Lectures
 1. Problem solving process. C Introduction

 2. Variables. Expressions

 3. Statements. Programming Style.

 4. Functions

 5. Modular programming

 6. Pointers and pointer operations. Memory
allocation/de-allocation

10

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş

What: Computer Programming

 Lectures

 7. Midterm

 8. Pointers and functions

 9. Recursion

 10. Data types: structure, union, enumeration

 11. Files

 12. Algorithms sample design and implementation

 13. More program samples

 14. Wrap-up and review

11

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş

What: Computer Programming

 Laboratory work
 0. Using Codeblocks IDE.

 1. Standard I/O

 2. Expressions

 3. Statements I

 4. Statements II

 5. Functions

 6. Modular programming

12

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş

What: Computer Programming

 Laboratory work

 7. Pointers

 8. Recursion

 9. Character strings

 10. Data types: structure, union, enumeration

 11. Files – high level

 12. Wrap up

 13. Laboratory test

13

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş

What: Computer Programming

 Course info resources
 Handouts (pdf, slides, on course web page)

 Laboratory guide (pdf, on course web page)

 http://users.utcluj.ro/~jim/CP

 Brian Kernighan, Dennis Ritchie The C Programming
Language. Prentice Hall, 2
edition,. 1988

 Paul Deitel, Harvey Deitel, C How to Program, 6/E,
Pearson Education, 2010

 Stephen Prata, C Primer Plus, 5/E, Sams, 2004

 K.N. King, C Programming. A Modern Approach,
W.W. Norton, 2008

14

http://users.utcluj.ro/~jim/CP

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş

What: Computer Programming

 To get your credits

 Attend classes

 Study, learn

 Do the assignments

 Grading

 Laboratory evaluation (LE) + written exam (WE)

 LE ≥ 5 and WE ≥ 5

 Formula: 0.35*LE + 0.65*WE

15

Problem solving process

 Process from problem specification (i.e.
what) to concrete program

 Steps:

 Definition (what)

 Analysis (what)

 Algorithm development (how)

 Coding and debugging

 Testing

 Documentation (in every step)

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş 16

Rigorous approach to solving problems

 First construct an exact model in terms of
which we can express allowed solutions.

 Finding such a model is already half the
solution. Any branch of mathematics or science
can be called into service to help model the
problem domain.

 Once we have a suitable mathematical
model, we can specify a solution in terms of
that model.

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş 17

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş

Defining a problem

 Basic requirements for a well-posed
problem:

 The known information is clearly specified.

 We can determine when the problem has been
solved.

 The problem does not change during its
attempted solution.

18

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş

Algorithm

 Given both the problem and the device, an
algorithm is the precise characterization of a
method of solving the problem, presented in a
language comprehensible to the device. An
algorithm is characterized by these properties:
 Application of the algorithm to a particular input set or

problem description results in a finite sequence of
actions.

 The sequence of actions has a unique initial action.

 Each action in the sequence has a unique successor.

 The sequence terminates with either a solution to the
problem, or a statement that the problem is unsolvable
for that set of data.

19

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş

Algorithm features

 An algorithm has

 A domain (set of input values)

 A range (set of output values)

 Input, output and intermediate data are
denoted by symbolic names or identifiers
 Using identifiers, and algorithm shows its

applicability for any values with its domain

20

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş

Algorithm example

 Convert a number from base 10 to base B, where
B ≥2

1. Read the number to convert, n, and the target base, B.
2. Assign to counter i a value of 1.
3. Assign to C the quotient resulted from the division of n

by B, and assign to R, the remainder of that division.
4. If C=0, goto step 8, otherwise continue with next step.
5. Increment the counter i by 1.
6. Assign the value C to n.
7. Goto step 3.
8. Write the remainders in reverted order, i.e. Ri , Ri -1,...

,R1.
9. Stop.

21

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş

Algorithm execution example
Step n B i C R1 R2 R3

–       

1 1987 16     

2 1987 16 1    

3 1987 16 1 124 3  

4 1987 16 1 124 3  

5 1987 16 2 124 3  

6 124 16 2 124 3  

7 124 16 2 124 3  

3 124 16 2 7 3 12 

4 124 16 2 7 3 12 

5 124 16 3 7 3 12 

6 7 16 3 7 3 12 

7 7 16 3 7 3 12 

3 7 16 3 0 3 12 7

4 7 16 3 0 3 12 7

8 7 16 3 0 3 12 7

22

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş

Algorithm features

 Repeated execution for different input data results in
different sequences of states.

 A sequence of states an algorithm passes through is called
a computation.

 Domain is infinite →infinite computation.

 An algorithm operates with variable and constant values.

 n, B, C, i, R are variables (their values changes)

 n, B, C, i occupy a single memory location

 R needs more locations (one for each of Ri , Ri -1,... ,R1)

 Algorithms execute sequentially as long as there are no
jumps as results of decisions

23

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş

Algorithm general requirements

 Finiteness, i.e. The algorithm terminates after a number
of steps. This property is also called potential
realizability. In the example, C becomes 0, then step 8 is
executed and computation stops.

 Well-defined, i.e. Each step is expressed non-
ambiguously

 Effectiveness, i.e. The running time should be as short
as possible, and the memory requirements as low as
possible

 Universality, i.e. To allow for a class of problems to be
solved using it.

24

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş

Algorithm description

 Flowcharts - graphically depict the logical steps
to carry out a task and show how the steps
relate to each other.
 Use geometric symbols connected by arrows (flow

lines).

 Within each symbol is a phrase presenting the activity
at that step.

 The shape of a symbol indicates the type of operation
that is to take place.

 The flow is from top to the bottom of each page.

 Advantage: provides for good presentation of tasks,
easy to follow.

 Disadvantage: time-consuming to write and update.
25

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş

Algorithm description. Flowchart example

n10>0?

Convert n10

to base 2

Get |n10|

Convert |n10|

to base 2

Get one’s

complement

and add 1

Stop

Start

Yes No  Obtain two’s
complement
representation
for a decimal
number, n10

26

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş

Algorithm description. Pseudocode

 Pseudocode – uses English-like
statements which outline a particular task
or process.
 short version of the actual computer code.

 Advantages:
 Can be translated into a programming language

easily.

 Compact

 Looks like the final code.

27

Algorithm description.
Pseudocode example

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş 28

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş

Algorithm description. Hierarchy

chart

 Hierarchy charts similar to a company’s
organization chart.

 Displays the overall program structure,
describes what each part (module) does, and
the relations between modules.

 Read from top to bottom and from left to
right.

 Mainly used for initial planning of a program
by creating independent parts.

29

What Is Programming?

 Programming =

 the process of taking an algorithm and
encoding it into a notation, a programming
language, so that it can be executed by a
computer.

 the important first step = the need to have the
solution

 No algorithm => no program.

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş 30

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş

Programming Languages

 Programming language: notation for writing
programs
 Specific syntax

 Use keywords with well-defined semantics

 Program: data description + processing
statements

 Programming: program development =
algorithm development + coding in an
appropriate programming language

31

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş

Programming Languages

 Short history:
http://www.princeton.edu/~ferguson/adw/programming_languages.shtml

 1955, John W. Backus (IBM) – FORTRAN (1957)

 John McCarthy (MIT) - LISP

 1960, Peter Naur – Algol 60

 1959, a committee COBOL

 1964, BASIC

 1970 Alain Colmerauer and Philippe Roussel - Prolog

 1971, Niklaus Wirth (ETHZ) – Pascal

 1972, Dennis M. Ritchie and Brian W. Kernighan – C

 1980, Bjarne Stroustrup (AT&T) – C++

 1995, Sun Microsystems – Java

 2000+, Microsoft C#

http://www.levenez.com/lang/history.html

32

http://www.princeton.edu/~ferguson/adw/programming_languages.shtml
page01.gif

Higher level languages

 Programming Paradigms:
 Imperative Programming: describes the exact sequences

of commands to be executed
 Structured programming, procedural programming

 FORTRAN, C, PASCAL, …

 Object oriented programming
 C++, Java, C#, …

 Declarative programming: program describes what it
should do, not how

 Functional programming
 Lisp, ML, …

 Logic Programming
 Prolog

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş 33

Compilers/Interpreters

Compiler
Source

Code
Machine

Code

Executable
Program

Input
 data

Output

 data

Interpreter

Source
Code

Input
 data

Output

 data

Compiler: analyzes program and
translates it into machine language

Executable program: can be run
independently from compiler as many

times => fast execution

Interpreter: analyzes and executes
program statements at the same time

Execution is slower
Easier to debug program

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş 34

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş

From Source to Executable

 Compilation: source code ==> relocatable object code
(binaries)

 Linking: many relocatable binaries (modules plus libraries) ==>
one relocatable binary (with all external references satisfied)

 Loading: relocatable ==> absolute binary (with all code and
data references bound to the addresses occupied in memory)

 Execution: control is transferred to the first instruction of the
program

 At compile time (CT), absolute addresses of variables and
statement labels are not known.

 In static languages (such as Fortran), absolute addresses are
bound at load time (LT).

 In block-structured languages, bindings can change at run time
(RT).

35

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş

From source code to executable

 Using a compiler

36

The C Programming Language

 Developed by Dennis Ritchie at AT&T Bell Laboratories in the early

1970s

 Growth of C tightly coupled with growth of Unix: Unix was written

mostly in C

 Success of PCs: need of porting C on MS-DOS

 Many providers of C compilers for many different platforms => need

for standardization of the C language

 1990: ANSI C (American National Standards Institute)

 International Standard Organization: ISO/IEC 9899:1990

 1999: standard updated: C99, or ISO/IEC 9899:1999

 2011: C11 (formerly C1X) is an informal name for ISO/IEC 9899:2011

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş 37

C Features

 C = low-level language
 suitable language for systems programming

 C = small language
 relies on a “library” of standard functions

 C = permissive language
 it assumes that you know what you’re doing, so it

allows you a wider degree of latitude than many
languages. It doesn’t mandate the detailed error-
checking found in other language

 T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş 38

C Strengths

 Efficiency: intended for applications where
assembly language had traditionally been used.

 Portability: hasn’t splintered into incompatible
dialects; small and easily written

 Power: large collection of data types and operators

 Flexibility: not only for system but also for
embedded system commercial data processing

 Standard library

 Integration with UNIX

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş 39

Weaknesses

 Error-prone

 Freedom has a price

 Difficult to understand

 Using good style helps

 Difficult to modify

 Good (in-code) documentation helps

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş 40

C fundamentals

 Keywords

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş

auto double int struct
break else long switch

case enum register typedef
char extern return union

const float short unsigned
continue for signed void

default goto sizeof volatile
do if static while

41

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş

Program structure

 A program is composed of one or more functions,
of which one is mandatory: function main

 The other defined functions are user-defined

 A C program basically has the following form:

 Preprocessor Commands

 Type definitions

 Function prototypes -- declare function types and
variables passed to a function.

 Variables

 Functions

42

The format in C

 Statements are terminated with semicolons

 Indentation is nice to be used for increased readability.

 Free format: white spaces and indentation is ignored by
compiler

 C is case sensitive – pay attention to lower and upper
case letters when typing !
 All C keywords and standard functions are lower case

 Typing INT, Int, etc instead of int is a compiler error

 Strings are placed in double quotes

 New line is represented by \n (Escape sequence)

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş 43

The first C program

#include <stdio.h>

int main (void)

{

 printf ("Programming is fun.\n");

 return 0;

}

uses standard library

input and output functions

(printf)

the program

begin of program

end of program

statements

main: a special name that indicates where the program must begin execution. It is

a special function.

first statement: calls a routine named printf, with argument the string of

characters “Programming is fun \n”

last statement: finishes execution of main and returns to the system a status

value of 0 (conventional value for OK)

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş 44

Compiling and running C
programs

Editor

Compiler

Linker

Source code

file.c

Object code

file.obj

Executable code

file.exe

Libraries

IDE (Integrated

Development

Environment)

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş 45

C Compilers and IDE’s

 One can:
 use a text editor to edit source code, and then use independent

command-line compilers and linkers
 use an IDE: everything together + facilities to debug, develop and

organize large projects

 There are several C compilers and IDE’s that support
various C compilers

 Lab: CodeBlocks, Free Software (under the GNU General
Public License)
 Works with gcc (GNU C Compiler)

 supports the C99 standard
 available on Windows and Unix

 The GNU Project (http://www.gnu.org/): launched in 1984 in order
to develop a complete Unix-like operating system which is free
software - the GNU system.

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş 46

http://www.codeblocks.org/
http://www.gnu.org/

Debugging program errors

Editor

Compiler

Linker

Source code

file.c

Object code

file.obj

Executable code

file.exe

Libraries

Syntactic

Errors

Semantic

Errors
T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş 47

Syntax and Semantics

 Syntax errors: violation of programming language
rules (grammar)

 "Me speak English good."

 Use valid C symbols in wrong places

 Detected by the compiler

 Semantics errors: errors in meaning:

 "This sentence is excellent French."

 Programs are syntactically correct but don’t produce the
expected output

 User observes output of running program

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş 48

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş

Identifiers and symbols

 A source program is composed of tokens separated by
whitespace (space ’ ’, tab ’\t’, newline ’\n’)

 Tokens=identifiers and symbols

 Identifiers=names of constants, types, variables,
functions

 Name=sequence of letters and digits and underscore,
first character is letter or underscore

 Name length limited to 31 characters (ANSI C)

 Example identifiers:

 Correct: A a alpha a1 a_1 AnIdentifier

 Bad: A! 2alpha a*

49

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş

Identifiers and symbols

 Symbols are groups of characters which
are not identifiers. E.g.
 Operators: + ++ && < <= != > etc.

 Numeric constants: 20.5 30 0x2d;

 Characters: ’A’ ’z’ ’7’

 Character strings: ”C/C++ Programming
Language”

50

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş

Comments
 Comments are used to facilitate understanding of programs, and ease program

maintenance and teamwork
 C comments are specified as

/* comment */

 Example (excerpt form NASA Style Guide, p. 79)
/***

*

* FUNCTION NAME: GetReference

*

* ARGUMENT LIST:

*

* Argument Type IO Description

* ------------- -------- -- ---------------------------------

* ref_type int I Type of reference data requested

* = 1, S/C position vector

* = 2, S/C velocity vector

* ...

*

* RETURN VALUE: void

*

***/

void GetReference(int ref_type, double t_request, double t_wait,

double ref_vector[3])
51

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş

Comments
 C++ also allows single line comments:
 // comment

 Example from NASA C++ style guide
(http://aaaprod.gsfc.nasa.gov/WebSite/Files/Cplus/C++)

//

// Main sequence: get and process all user requests

//

while (!finish())

{

 inquire();

 if (requestcode !=0)

 {

 //If the request code is non-zero, then perform

 //intermediate processing to generate request information

 generateRequestInfo(requestCode);

 }

 process();

}

52

C Data Types

 char, int, float, double

 long int (long), short int (short), long double

 signed char, signed int

 unsigned char, unsigned int

 1234L is long integer

 1234 is integer

 12.34 is float

 12.34L is long float

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş 53

C Basic Integer Types

 Type (32 bit)

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş

Type (32 bit) Smallest Value Largest Value

short int -32,768(-215) 32,767(215-1)

unsigned short int 0 65,535(216-1)

int -2,147,483,648(-231) 2,147,483,648(231-1)

unsigned int 0 4,294,967,295

long int -2,147,483,648(-231) 2,147,483,648(231-1)

unsigned long int 0 4,294,967,295

54

C Floating Types

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş

float single-precision floating-point
double double-precision floating-point

long double extended-precision floating-point

Type Smallest
Positive Value

Largest Value Precision

float 1.17*10-38 3.40*1038 6 digits

double 2.22*10-308 1.79*10308 15 digits

double x; long double x;
scanf(“%lf”, &x); scanf(“%Lf”, &x);
printf(“%lf”, x); printf(“%Lf”, x);

55

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş

Constants

 A constant has a type and a value which
cannot be changed during run time

 Integer constants:

 Decimal: string of decimal digits optionally
preceded by a sign

 To indicate length and signedness:

 L, l: long

 U, u: unsigned

 UL, ul, LU, lu: unsigned long

 Examples: 100, 100L, 100U, 100ul

56

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş

Constants. Integers

 Octal constants

 Begin with a zero and contain only octal digits

 Are unsigned or unsigned long

 Examples: 0144 (=100 decimal), 0176 (=126)

 Hexadecimal

 Begin with 0x or 0X and contain only hex digits

 Are unsigned or unsigned long

 Examples: 0xab1 (=2737 decimal)

57

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş

Constants. Character

 Character
constants have
their ASCII code
as a value and int
as a type

 Printable
characters:
’printable_char’,
e.g. ’Z’, ’s’

 Escape sequences

Sequence Meaning

\a Alert (ANSI C).

\b Backspace.

\f Form feed.

\n Newline.

\r Carriage return.

\t Horizontal tab.

\v Vertical tab.

\\ Backslash (\).

\' Single quote (').

\" Double quote (").

\? Question mark (?).

\0oo Octal value. (o represents an

octal digit.)
\xhh Hexadecimal value. (h represents

a hexadecimal digit.)
58

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş

Constants. Character strings

 Character string: a sequence of characters included
between double quotes
 Escape sequence may appear in the sequence

 Examples:
”character string”

”an apostrophe, ’, is represented as usual”

”GNU \”C\” Compiler”

 If continued on next line, at the end of the continued line
\ followed by the Enter key must be typed, e.g. “this
is a continued\

line”

 Memory area pattern:

0 1 2 ... n-1 n

ASCII
code

ASCII
code

ASCII
code

... ASCII
code

‘\0’

59

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş 60

Variable declaration

 For simple variables:
type identifier , identifier ;

 type identifier , identifier ;

 Examples:

 int i, j, k;

 char c;

 double x, y;

 For array variables:
base_type identifier[lim] [lim]  ,
identifier[lim] [lim] ;

 Indices run from 0 to lim-1.
 Limits are constant expressions, evaluated at compile time
 Examples:

 int alpha[100];

 double matrix[10][15];

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş 61

 If interactive processing, then:

 The standard terminal is the terminal used to run the
program. Three files are attached to it:

 Input file (stdin)

 Output file (stdout)

 Error file (stderr)

 C/C++ do not have statements for reading and
writing. I/O operations are achieved by functions
with prototypes in stdio.h

 Note: conio.h is an extension, it is NOT part of the
standard

Standard I/O functions

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş 62

 Character oriented
 getch: reads without echoing a character from stdin
 getche: similar, but echoes its input
 For both execution waits for a new character to become

available
 putch: prints the character whose ASCII code is its

parameter
 Printable characters have codes in the range [32, 126]

 Prototypes in conio.h:
 int getch(void);

 int getche(void);

 int putch(int ch);

Non-portable functions:
getch, getche, putch

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş 63

 Example:
#include <conio.h> /* non-portable! */

int main(void)

{

 putch(’\r’); putch(’\n’); /* CR+LF */

 putch(getch());

 putch(’\r’); putch(’\n’); /* CR+LF */

 putch(getche());

 getch();

 return 0;

}

Non-portable functions:
getch, getche, putch

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş 64

 gets:
 Reads characters from the stream stdin up to the next

newline character, and stores them in the string given
as argument

 The newline character is discarded.
 If gets encounters a read error or end-of-file, it returns

a null pointer; otherwise it returns its argument.
 Warning: The gets function is very dangerous because

it provides no protection against overflowing the string
s. The GNU library includes it for compatibility only.
You should always use fgets or getline instead.

 Prototype:

 char *gets(char *s);

Function gets

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş 65

Functions gets

 puts:
 Writes the string given as an argument to the

stream stdout followed by a newline.

 The terminating null character of the string is
not written.

 puts is the most convenient function for printing
simple messages.

 Returns the code of the last output character

 Prototype:

 int puts(const char *s);

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş 66

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 char s[200];

 printf(”\nInput a character string and press
Enter\n”);

 gets(s); /* the character string is stored at the
address where s points */

 printf(”\nThe string you input is:\n”);

 puts(s);

 system(“PAUSE”);

 return 0;

}

Functions gets and puts. Example

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş 67

 scanf
 reads formatted input from the stream stdin under the

control of the template string given as its first argument.
 The next arguments are optional arguments, and are

pointers to the places which receive the resulting values.
 The return value is normally the number of successful

assignments.
 If an end-of-file condition is detected before any

matches are performed, including matches against
whitespace and literal characters in the template, then
EOF is returned.

 Prototype:
int scanf(const char *template, pointer);

Function scanf

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş 68

 A scanf template string contains format specifiers
 A scanf template string has the general form:
 % flags width type conversion

 In more detail, an input conversion specification consists of an initial '%'
character followed in sequence by:
 An optional flag character, *, which says to ignore the text read

for this specification.
 An optional decimal integer that specifies the maximum field

width.
 Reading of characters from the input stream stops either when this

maximum is reached or when a non-matching character is found,
whichever happens first.

 Most conversions discard initial whitespace characters (those that don't
are explicitly documented), and these discarded characters don't count
towards the maximum field width.

 String input conversions store a null character to mark the end of the
input; the maximum field width does not include this terminator.

 An optional type modifier character.
 A character that specifies the conversion to be applied.

Function scanf. Template string

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş 69

 Table of input conversions (1)

Function scanf. Table of output conversions I

%d Matches an optionally signed integer written in
decimal.

%i Matches an optionally signed integer in any of the
formats that the C language defines for specifying
an integer constant.

%o Matches an unsigned integer written in octal
radix.

%u

Matches an unsigned integer written in decimal
radix

%x, %X Matches an unsigned integer written in
hexadecimal radix.

%e, %f, %g,

%E, %G

Matches an optionally signed floating-point
number.

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş 70

 Table of input conversions (2)

Function scanf. Table of output conversions II

%s Matches a string containing only non-whitespace
characters

%[Matches a string of characters that belong to a specified
set.

%c Matches a string of one or more characters; the number of
characters read is controlled by the maximum field width
given for the conversion.

%p

Matches a pointer value in the same implementation-
defined format used by the %p output conversion for
printf.

%n This conversion doesn't read any characters; it records the
number of characters read so far by this call.

%% Matches an literal % given in the input stream

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş 71

 Scan sets
 Set of characters enclosed in square brackets []

 Preceded by % sign

 Scans input stream, looking only for characters in scan set
 Whenever a match occurs, stores character in specified array

 Stops scanning once a character not in the scan set is found

 Inverted scan sets

 Use a caret ^: "%[^aeiou]"

 Causes characters not in the scan set to be stored

 Skipping characters
 Include character to skip in format control

 Or, use * (assignment suppression character)

 Skips any type of character without storing it

Function scanf. Scan sets

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş 72

 Usage examples for scanf
 Read a character
 char ch;

 scanf(”%c”, &ch);

 Read a character string
 char s[40];

 scanf(”%s”, s);

 Read three integers with values in decimal, octal, and hexadecimal
respectively

 int a, b, c;

 scanf(”%d %o %x”, &a, &b, &c);

 Read reals of type float, double, long double
 float x;

 double y;

 long double z;

 scanf(”%f %lf %Lf”, &x, &y, &z);

Function scanf. Examples

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş 73

 printf

 prints the optional arguments under the control
of the template string template to the stream
stdout.

 returns the number of characters printed, or a
negative value if there was an output error.

 Prototype:

int printf (const char *template,

...)expression_list);

Function printf

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş 74

 A printf template string contains format specifiers
 A printf template string has the general form:
 %  param-no $ flags width  . precision  type

conversion

 In more detail, an output conversion specification consists of an initial
‘%’ character followed in sequence by:
 An optional specification of the parameter used for this format. Normally

the parameters to the printf function are assigned to the formats in the
order of appearance in the format string.

 The param-no part of the format must be an integer in the range of 1 to the
maximum number of arguments present to the function call.

 Zero or more flag characters that modify the normal behavior of the
conversion specification.

 An optional decimal integer that specifies the minimum field width.
 This is a minimum value; if the normal conversion produces more characters

than this, the field is not truncated. Normally, the output is right-justified within
the field.

 You can also specify a field width of *. This means that the next argument in
the argument list (before the actual value to be printed) is used as the field
width.

 The value must be an int. If the value is negative, this means to set the –flag
and to use the absolute value as the field width.

Function printf. Template string I

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş 75

 printf template string format specifiers (cont’d)
 An optional precision to specify the number of digits to be written

for the numeric conversions.
 If the precision is specified, it consists of a period (.) followed

optionally by a decimal integer (which defaults to zero if omitted).
 You can also specify a precision of *. This means that the next

argument in the argument list (before the actual value to be printed) is
used as the precision. The value must be an int, and is ignored if it is
negative.

 If you specify * for both the field width and precision, the field width
argument precedes the precision argument. C library versions other
than GNU may not recognize this syntax.

 An optional type modifier character, which is used to specify the
data type of the corresponding argument if it differs from the
default type. (For example, the integer conversions assume a type
of int, but you can specify h, l, or L for other integer types.)

 A character that specifies the conversion to be applied.
 Conversion characters are the same as for scanf, except for %[which

is not used here

Function printf. Template string II

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş 76

 Table of output conversions (1)

Function printf. Table of output conversions I

%d %i Print an integer as a signed decimal number.

%u Print an integer as an unsigned decimal number.

%o Print an integer as an unsigned octal number.

%x %X

Print an integer as an unsigned hexadecimal number.
%x uses lower-case letters and %X uses upper-case.

%f Print a floating-point number in normal (fixed-point)
notation

%e, %E, Print a floating-point number in exponential notation.
%e uses lower-case letters and %E uses upper-case.

%g, %G

Print a floating-point number in either normal or
exponential notation, whichever is more appropriate for
its magnitude. %g uses lower-case letters and %G
uses upper-case.

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş 77

 Table of output conversions (2)

Function printf. Table of output conversions II

%a %A Print a floating-point number in a hexadecimal fractional
notation which the exponent to base 2 represented in
decimal digits. %a uses lower-case letters and %A uses
upper-case.

%c Print a single character.

%s

Print a string.

%p Print the value of a pointer.

%n Get the number of characters printed so far.

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş 78

 Modifier flags for integer conversions:
 –: Left-justify the result in the field (instead of the

normal right-justification).
 +: For the signed %d and %i conversions, print a

plus sign if the value is positive.
 #:

 For %o conversion, forces the leading digit to be 0, as if by
increasing the precision.

 For %x or %X, prefixes a leading 0x or 0X to the result.
 Doesn't do anything useful for the %d, %i, or %u conversions.

 0: Pad the field with zeros instead of spaces. The zeros
are placed after any indication of sign or base.

 This flag is ignored if the – flag is also specified, or if a precision
is specified.

Function printf. Flags for integer conversions

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş 79

 Example of integer numbers printing (from libc help)
 Values printed are, in order: 0, 1, -1, 100000

Specifier:
"|%5d|%-5d|%+5d|%+-5d|% 5d|%05d|%5.0d|%5.2d|%d|\n“

Output:
| 0|0 | +0|+0 | 0|00000| | 00|0|

| 1|1 | +1|+1 | 1|00001| 1| 01|1|

| -1|-1 | -1|-1 | -1|-0001| -1| -01|-1|

|100000|100000|+100000|+100000| 100000|100000|100000|100000|100000|

Specifier:
"|%5u|%5o|%5x|%5X|%#5o|%#5x|%#5X|%#10.8x|\n"

Output:
| 0| 0| 0| 0| 0| 0| 0| 00000000|

| 1| 1| 1| 1| 01| 0x1| 0X1|0x00000001|

|100000|303240|186a0|186A0|0303240|0x186a0|0X186A0|0x000186a0|

Function printf. Example: integer

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş 80

 Modifier flags for floating point number conversions
 – : Left-justify the result in the field. Normally the result is right-

justified.

 +: Always include a plus or minus sign in the result.
 If the result doesn't start with a plus or minus sign, prefix it with a

space instead. Since the + flag ensures that the result includes a sign,
this flag is ignored if you supply both of them.

 #: Specifies that the result should always include a decimal point,
even if no digits follow it. For the %g and %G conversions, this
also forces trailing zeros after the decimal point to be left in place
where they would otherwise be removed.

 0: Pad the field with zeros instead of spaces; the zeros are placed
after any sign. This flag is ignored if the '-' flag is also specified.

 A type modifier is supported: L
 An uppercase L specifies that the argument is a long double.

Function printf. Flags for integer conversions

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş 81

 Example of floating number printing (from libc help)

 Values printed are, in order:0, 0.5, 1, -1, 100, 1000, 10000, 12345,
100000, 123456

Specifier: "|%13.4a|%13.4f|%13.4e|%13.4g|\n"

Output:
| 0x0.0000p+0| 0.0000| 0.0000e+00| 0|

| 0x1.0000p-1| 0.5000| 5.0000e-01| 0.5|

| 0x1.0000p+0| 1.0000| 1.0000e+00| 1|

| -0x1.0000p+0| -1.0000| -1.0000e+00| -1|

| 0x1.9000p+6| 100.0000| 1.0000e+02| 100|

| 0x1.f400p+9| 1000.0000| 1.0000e+03| 1000|

| 0x1.3880p+13| 10000.0000| 1.0000e+04| 1e+04|

| 0x1.81c8p+13| 12345.0000| 1.2345e+04| 1.234e+04|

| 0x1.86a0p+16| 100000.0000| 1.0000e+05| 1e+05|

| 0x1.e240p+16| 123456.0000| 1.2346e+05| 1.235e+05|

Function printf. Example: floating

point

Reading

 King, chapters 1, 2, 3

 Prata, chapters 1, 2, 3

 Deitel, chapter 2, 3.1, 3.2, 3.3, chapter 9

 (see slide 14 for complete book names)

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş 82

Summary

 Who and What

 Problem solving
process

 Stages

 Algorithm

 Definition, features,
ways to describe

 Programming
Languages

 C Introduction

 Basic program
structure

 Data Types

 Constants and
Variables

 Simple I/O

 scanf

 printf

T.U. Cluj-Napoca - Computer Programming - lecture 1 - M. Joldoş 83

