C

Computer programming

"He who loves practice without
theoQ/ is like the sailor who
boards ship without a ruder and
compass and never knows where

he may cast."
Leonardo da Vinci

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldos

el

{ﬁ Outline

= File handling = Applications
= High level 1I/0O = Combinatorial
. fopen generation:
P generating subsets
= fclose
= Cross product
= fread (Cartesian product)
= fwrite = Combinations
u fsetposl fgetposl = Permutations
fte||, fseek = Arrangements

= Power set

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldos

C High level I/O. Files and Streams

= C views each file as a sequence of bytes

« File ends with the end-of-file marker
= Or, file ends at a specified byte

= Stream created when a file is opened

= Provide communication channel between files and programs
= Opening a file returns a pointer to a FILE structure

= Example file pointers:

= stdin - standard input (keyboard)
= stdout - standard output (screen)
= stderr - standard error (screen)

s FILE structure

= File descriptor - Index into operating system array called the open
file table

= File Control Block (FCB) - Found in every array element, system
uses it to administer the file

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldos

C Files and Streams

= Read/Write functions in standard library
= fgetc - reads one character from a file

= Takes a FFILE pointer as an argument
» fgetc(stdin) equivalent to getchar ()

= fputc - writes one character to a file
= Takes a FILE pointer and a character to write as an argument
« fputc('a', stdout) equivalentto putchar('a')

« fgets - read a line from a file

= fputs - write a line to a file

« fscanf / fprintf - file processing equivalents of
scanf and print£f

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldos 4

C Creating a Sequential Access File

= C imposes no file structure
= No notion of records in a file
= Programmer must provide file structure

= Creating a File
« FILE *myPtr; - Creates a FILE pointer
= myPtr = fopen("myFile.dat", openmode) ;
= Function fopen returns a FILE pointer to file specified
= Takes two arguments - file to open and file open mode
= If file not opened, NULL returned
= fprintf - like print£, except first argument is a FILE pointer
(the file receiving data)
« feof (FILE pointer)- returns true if end-of-file indicator (no
more data to process) is set for the specified file

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldos

» Creating a Sequential Access File

» fclose (FILE pointer) - closes specified file

= Performed automatically when program ends
= Good practice to close files explicitly

= Details

=« Each file must have an unique name and will have a different
pointer

= All file processing must refer to the file using the pointer

= Each mode can have a 'b' (for binary, e.g. ab, wb, rb+) after mode
letter Mode Description

r Open a file for reading.
w Create a file for writing. If the file already exists, discard the current
contents.
a Append; open or create a file for writing at end of file.
r+ | Open a file for update (reading and writing).
w+ | Create a file for update. If the file already exists, discard the current
contents.
a+ | Append; open or create a file for update; writing is done at the end

of the file.
T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldos

C Attaching a file to an open stream

m freopen(const char *filename, const char
*mode, FILE *stream)

= Most common use: associate a file with one of the standard
streams

=« Example: cause program begin writing to foo.txt

if (freopen(“foo.txt”, “w”, stdout) == NULL)
{

// error foo.txt cannot be opened
}

= Effect: close any other file previously associated to stdout ; then
open foo. txt and associate it with stdout.

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldos

C Reading Data from a Sequential Access File

= Reading a sequential access file
= Create a FILE pointer, link it to the file to read
myPtr = fopen("myFile.dat", "r");
= Use £scanf to read from the file
= Like scanf, except first argument is a FILE pointer
fscanf (myPtr, "%d%s%f", &myInt, &myString, &myFloat);
= Data read from beginning to end
= File position pointer - indicates number of next byte to be
read/written
= Not really a pointer, but an integer value (specifies byte location)
= Also called byte offset
= rewind (myPtr) - repositions file position pointer to beginning of
the file (byte 0)
= Cannot be modified without the risk of destroying other data

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldos

. Random Access Files

= Random access files
= Access individual records without searching through other records
= Instant access to records in a file
= Data can be inserted without destroying other data

= Data previously stored can be updated or deleted without
overwriting.

= Implemented using 7ixed /ength records
= Sequential files do not have fixed length records

0 100 200 300 400 500

l l l l l l } byte offsets
—— —— —— N—— —— ——
100 100 100 100 100 100
bytes bytes bytes bytes bytes bytes

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldos

C Creating a Random Access File

s Data

»« Data unformatted (stored as "raw bytes") in random
access files

= All data of the same type (ints, for example) use the same
memory

= All records of the same type have a fixed length
= Data not human readable

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldos

10

C Creating a Random Access File

= Unformatted I/O functions

« fwrite - Transfer bytes from a location in memory to a

file
« fread - Transfer bytes from a file to a location in
memory
m fwrite(&number, sizeof(int), 1, myPtr),
=« &number - Location to transfer bytes from
sizeof (int) - Number of bytes to transfer

1 - For arrays, number of elements to transfer

In this case, "one element" of an array is being transferred
myPtr - File to transfer to or from

fread similar

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldos

11

Writing Data Randomly to a Random Access
. File

= Writing data: fwrite

size t fwrite(const void *ptr, size t size, size t
nelem, FILE *stream) ;

= ptr = pointer to memory area where info to write is stored
= size = size in bytes of one element
= nelem = number of elements to write

= E.g. writing structs

fwrite(&myObject, sizeof (struct myStruct), 1,
myPtr) ;

= sizeof - Returns size in bytes of object in parentheses
= [0 write several array elements

= Pointer to array as first argument
= Number of elements to write as third argument

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldos

12

Reading Data Sequentially from a Random
» Access File. Removing a file

= Reading data: fread
size t fread(void *ptr, size t size, size t nelem,
FILE *stream) ;
= ptr = pointer to memory area where read info will be stored
= size = size in bytes of one element
= nelem = humber of elements to write

=« Example:
fread(&client, sizeof (struct clientData), 1, myPtr);

= Can read several fixed-size array elements
= Provide pointer to array
= Indicate number of elements to read

= To read multiple elements, specify in third argument

= Removing a file
int unlink(const char *path to file)

= returns O if successful, and -1 on error

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldos 13

C File position

/* return file position indicator */

long ftell (FILE *stream);

int fgetpos (FILE *stream, fpos t *pos);

/* set file position indicator to zero */

void rewind (FILE *stream) ;

/* set file position indicator */

int fseek (FILE *stream, long offset, int ptrname);

int fsetpos (FILE *stream, const fpos t *pos);

ftell returns the current value (measured in characters) of the file
position indicator if stream refers to a binary file.

= For a text file, a ‘magic’ number is returned, which may only be used on a
subsequent call to £seek to reposition to the current file position indicator.

= On failure, -1L is returned and errno is set.
rewind sets the current file position indicator to the start of the file

indicated by stream. The file's error indicator is reset by a call of
rewind. No value is returned.

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldos 14

C

File position

= fseek allows the file position indicator for stream to be set
to an arbitrary value éfor binary files), or for text files, only

to a position obtaine

from £tell, as follows:

For both functions, on success, zero is returned; on failure, non-
zero is returned and errno is set.

In the general case, the file position indicator is set to offset bytes
(characters) from a point in the file determined by the value o
ptrname. Offset may be negative. The values of ptrname may be
SEEK SET, SEEK CUR, and SEEK END. The latter is not
necessarily guaranteed to work properly on binary streams.

For text files, offset must either be zero or a value returned from a
previous call to ftell for the same stream, and the value of
ptrname must be SEEK SET.

fseek clears the end of file indicator for the given stream and
erases the memory of any ungetec. It works for both input and

output.
Zero is returned for success, non-zero for a forbidden request.

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldos 15

. File position

= For £tell and f£seek it must be possible to encode the
value of the file position indicator into a 1ong. This may

not work for very long files, so the Standard introduces
fgetpos and £setpos which have been specified in a

way that removes the problem.

s fgetpos stores the current file position indicator for
stream in the object pointed to by pos. The value stored is
‘magic’ and only used to return to the specified position for
the same stream using £setpos.

s fsetpos works as described above, also clearing the

stream's end-of-file indicator and forgetting the effects of
any ungetc operations.

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldos 16

C Example: text file

#include <stdio.h>
#include <stdlib.h>
int main(int argc, char *argv][])

{

}

char ch, s[100], filename[]="textfile.txt";

int i;

FILE *fp;

/* create file */

fp = fopen(filename, "w");

printf ("\nInput lines of text for file. End with Ctrl/Z\n");
while ((ch = getc(stdin)) !'= EOF) putc(ch, £fp);

fclose (£fp) ;

/* add text to file */

fp = fopen(filename, "r+");

fseek (fp, 01, SEEK END) ;

printf ("\nInput lines text to add to file. End with Ctrl/Z\n");
while (fgets(s, sizeof(s), stdin) != NULL) fputs(s, £fp);
fclose (fp) ;

/* display contents */

printf ("\nLines of the file (numbered) :\n");

i=1;
fp = fopen(filename, "r");
while (fgets(s, sizeof(s), fp) != NULL) printf("%d: %$s", i++, s);

fclose (fp) ;

system ("PAUSE") ;
return O;

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldos

17

. Cross product

= Considern sets of positive integers: 4,, 4,,..., 4.

= Set 4, for i=1, 2, ..., n has n, elements

= The cross product (Cartesian product, set direct
product, product set) is required. i.e.

n
A xA, x...xA = HAZ.
, i=1
= having H n. elements which will
i=1

be generated in a vector, p=[p, p,... p,]

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldos

18

o T,
{ . Cross product algorithm

= Set every element of vector p to 1.
= This is the first element of the cross product

s Find next element as follows:

= Find the highest index i for which p; <n,

If such an index cannot be found then all
elements have been generated. Stop

» Find next element of the cross product as
{plapzapz lapz—l—la ’ 1}

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldos

19

Cross product implementation. Non
. recursive

#include <stdio.h> {
#define MAXN 10 int i, prodNb, p[MAXN];
void listProduct(int n, int B | _ _
prodNb, int p[]) for (i =1; i <= n; i++) pl[i] = 1;
{ listProduct (n, prodNb, p):;
int i i=n;
ot s while (i > 0)
printf ("\n%$3d ", prodNDb) ; {
fo;‘ (1 =1; 1 <=nf i++) pl[il++; //find highest such as p[i] > nElem[i]
printf (" %24", p[i]): if (p[i] > nElem[i])
if (prodNb % 20 == 0) {
getch() ; pli] = 1;
} .
void crossProdNonRec (int n, }
int nElem|[]) else
/* n = number of sets; {
nElem = vector with number prodib++;
of elements per set */ listProduct(n, prodNb, p);

i = n;

}

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldos

20

Cross product implementation. Non
. recursive

int main(int argc, char *argv[])
{
int i, n, nElem[MAXN]
printf ("\nNumber of sets [<%d]=", MAXN); scanf("%d", &n);
for (1 = 1; i <= n; i++)
{
printf ("Number of elements in set %d=", 1i);
scanf ("%d", &nElem[i]) ;
}
printf ("\nThe members of the cross product") ;
printf ("\nNo. Elements") ;
crossProdNonRec (n, nElem) ;
getchar () ;
return O;

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldos

Cross product implementation.

. Recursive

#include <stdio.h>
#include <conio.h>
#define MAXN 10

int prodNb, p[MAXN],
nElem[MAXN] ;

void listProduct(int n)

{

int i;

printf ("\n%3d ", prodNb);
for (i = 1; i <=n; i++)
printf (" %2d", pl[i]):;

if (prodNb % 20 == 0)
getch () ;

void crossProdRec(int n, int i)

/* n = number of sets; nElem =
vector with number of elements
per set */

int j;

for (j = 1; j <=nElem[i]; j++)
{
pli] = J;
if (i< n) crossProdRec(n, i+l);
else
{
prodNb++;
listProduct(n) ;

}

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldos 22

Cross product implementation.
. Recursive

int main(int argc, char *argv[])
{
int i, n;
printf ("\nNumber of sets [<%d]=", MAXN); scanf("%d", &n);
for (i =1; i <= n; i++)
{
printf ("Number of elements in set %d=", 1),
scanf ("%$d", &nElem[il]) ;

}
printf ("\nThe members of the cross product") ;

printf ("\nNo. Elements") ;
crossProdRec(n, 1);
getch () ;

return 0;

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldos

1:"-"1
., Combinations

If

s Let P be a set of n elements

= All ways of picking £ unordered elements of
the » elements = generating all subsets with
k <n elements of P such as any two subsets
are distinct

= 1he number of subsets is the binomial
coefficient or choice number and read

"n choose k"

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldos 24

C Combinations algorithm

s First subset is p={1, 2, ..., k}
= Given a subset, its successor is found as follows:

= Going from kdown to 1 find index 7 which satisfies the
relationships p. < n—k+i

Py =n—k+i+1

D =n—1
P, =n

= Successor set is:
P Do DL, p+2,., p+n—k+1j

= The last subset is:
in—k+1L,n—k+2,..., n—1,n}

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldos 25

Combinations algorithm
. implementation. Non recursive

void combinNonRec (int n, int k)

{
int p[MAXN];
int 1, j, combinNb;
for (i=1; i <=k; i++) p[i]l=i; /* first combination */
listCombin (k, combinNb, p);
i=xk;
while (i > 0) /* generate the next combinations */
{
pl[il++; // find index satisfying relation set
if (p[i] > n - k + i) i--;
else
{
for (J =1+ 1; ; J <=k; j++) pljl=p[3-1] + 1;
combinNb++;
listCombin (k, combinNb, p);
i=xk;
}
}
}

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldos

Combinations algorithm
» implementation. Recursive

void combinRec(int n, int k, int i)

{

int j;
for (j = p[i-1]+1; j <= n-k+i; J++)
{

pli]l = J;

if (1 < k) combinRec(n, k, i+l);

else

{

combinNb++;

listCombin(k, combinNb, p);
}

}
}
= Notes
= Array p, and combinNb must be global
= Invocation is: combinRec (n, k, 1)

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldos

27

C Generating Permutations

= For instance 35241 is the permutation that maps 1 to 3, 2
to5,63to2,4to4, and 5to 1.

= We know that there are 7! permutations on
{1IZI3I4ISI6I7}'
= Suppose we want to list them all. Is there an efficient way to do
so? It turns out to be fairly simple to list them lexicographically.

= The only hard question is, given one permutation, how do we find
the next one?

= The lexicographically first permutation is
12..n

= and the last is
nn-1..1

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldos 28

o,
{__ Generating Permutations

= It is intuitively reasonable that if the final digits of
a permutation are in descending order, then no
rearrangement will make them larger.

= For instance in 125/643 we cannot produce a larger
number by rearranging the 7643.

= Instead we must increase the next most significant digit
(the 5) by the next larger digit in 7643 (the 6).

= Then the remaining digits (the 5 and the 743) must be
arranged to form the smallest number possible.

= Thus the next permutation in lexicographic order is
1263457.

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldos 29

&

Generating permutations in
lexicographical order

a. First permutationisp= {1, 2, ...n }

b. Given vector p=|p, p, ... p,| the next permutation
is found as follows:

1.

W

Look from n down to 1 for the highest valued index
which satisfies the relationships:

Pi <Pi+1
Pis1”Pivr~ = Dy,

. Find the maximum element, p,>p, of p, .|, p, r,..., P,

Swap p, with p;

Revert p. .., p;19,---» P, DY SWapping p,., and p,, p.,»
and p,_, a.s.0.

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldos 30

Permutations implementation. Non
. recursive

void permNonRec (int n) { void swap (int *i, int ¥*j)
int p[MAXN]; {
int i, k, permNb = 0; int temp;
temp = *i;
/* first permutation, step a */ *% = *3;
for (i = 1; i <= n; i++) p[i] = i; *j = temp;
listPerm(n, ++permNb, p); }
do /* generate the next permutations */ |)] o
void revert(int p[], int i, int n,

-t . int k)

i=n-1;

while (p[i] > p[i+l] && i > 0) i--; /* -

step bl */

for (j = 1; j <= k; j++)

if (i > 0) { swap (p[i+]j], pIn+l-3]);

for (k = n; pl[i] > p[k]; k--); /*
step b2 */
swap(&p[i], &pl[k]); /* step b3 */
revert(p, i, n, (n - i) / 2);
listPerm(n, ++permNb, p);
}
} while (i > 0);

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldos 31

C A note on swapping

= Swapping integers in place

void swap(int *i, int *j)

{
*i += *j; // i ==1i + j
*j = %3 - *j;// j == i + j - j == i
*i —=*j; [/ i=1+ 3 -1i==3
}
void swap(int *i, int *j)
{
*i ~= j; // a == a’*b;
*j A= *i;// b == bA(aAb) : :
*i A= *j;// a == (a”b)”* (b*(a”b)) final b final a
}
a b a™b b*(a"b) (a™b)(b*(a"b))
Second version 0| O 0 0 0
based on proof on the ol 1 1 0 1
nearby table, where a 11 o 1] 0
and b are bit positions
1| 1 0 1 1

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldos

Permutations implementation.

.~ Recursive
void permRec (int nb) s Notes
{ int i, j; = (Generates recursively

if (nb ==1)

{

}

permNb++;
listperm() ; o

else

{

}

permRec(nb - 1) ;

for (i = 1; i <= nb - 1; i++)

{

}

swap(p[i], p[nb]);
permRec (nb - 1) ;

swap(pl[i], plnb]); ~

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldos

permutations of elements p,
D ... Py With p, in position
n

Then swaps p; with p, for /
=1..n-1, and generates all
permutations

Array p, n, and permNb
must be globals

First permutation must be
initialized separately

Invocation: permRec (n)
Order is not loxicographic

33

Generating k permutations of n

&

s For set p={1, 2, ..., n} and k < n, positive

= generate all k-subsets such any two subsets

must differ either in the composing elements or
in their order

= Algorithm idea:

= generate all combinations of n elements taken
k, and, for each combination

= generate the k/ permutations

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldos 34

Generating k£ permutations of »
» implementation

void arrange(int n, int m, int i) {
int j, k, r;
for (j = p[i-1] + 1; j <= n - m + i; j++) // recursively generate combinations

pli] = 3’
if (i < m) arrange(n, m, i + 1);
else
{
arrNb++;
listArrang(m, p):;

for (k = 1; k <= m; k++) v[k] = p[k]; // save combination
do // nonrecursively permute combination

{

k=m-1;

while (v[k] > v[k + 1] && k > 0) k--;

if (k > 0) {
for (r = m; v[k] > v[r];, r--);
swap (&v[k], &v[r]);
revert(k, m, (m - k) / 2);
arrNb++;
listArrang(m, v);

}
}
while (k > 0);

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldos 35

. Generating a power set

= We wish to generate all 2" subsets of set
A={a,...,a } (power set)
= All subsets of 4={q,....,a,} can be divided to two groups
= Ones that contain a,
= Ones that does not contain a,,

= Ones that does not contain a, are all subsets of

{a,....a, }
= When we have all subsets of {a,,...,a,_;} we can create all
subsets of {a,,...,a, } by adding all elements with a, inserted

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldos 36

. Generating a power set

Again, we try to generate all subsets without generating
power sets of smaller sets

We can associate 2”7 subsets of n elements set 4={q,,...,a,}
with 27 bit strings b,...5,

= b= 11if g;is element of set

= b= 0if g;is not element of set

For 3 elements set {a,, a,, a;}

= 000 — the empty set

= 111 — the set itself

= 110 — subset {a,, a,}

We can create bit strings by generating binary numbers
from 0 to 27-1

Example:
Bit strings 000 001 010 011 100 101 110 111
Subsets & a; a, a,,a; a, a;,a; a;,a, a,;,a,,a,

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldos 37

C Generating a power set. Non recursive

void allSubsetsNR(int n)
{

int i, setNb, p[MAXN]; // p[i]l=1 if element i is a member,
/ i.e p is a characteristic vector

setNb=1;

for (i=1l; i<=n; i++) p[i]=0; /*empty set */

listSet(n, setNb, p);

for (i=n; i>0;) /* generate next subsets */

{

%f (p[i] == 0)
pli] = 1;
setNb++;
listSet(n, setNb, p):;
i = n;

}

else

{ .

P[l] = 0;
i--;
}

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldos 38

C Generating a power set. Recursive

void allSubsetsRec(int n, int 1)

{

int j;

for (j=0; j <= 1; Jj++)

{
pli]l = 3;
if (i < n)

allSubsetsRec(n, i+l);

else

{
setNb++;

listSet(n, setNb);

void listSet(int n, int

setNDb)
int 1i;

printf ("\n%3d { ", setNb);
for (1 = 1; i <=n; i++)
if (p[i] == 1)
printf (" %24,", 1i);
printf("\b }");

if (setNb % 20 == 0)
getch() ;

Note that array p and variable
setNb must be global

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldos

C Reading

= Deitel: chapter 11
= Prata: chapter 13
= King: chapter 22

= Supplemental:

= R. Sedgewick:
http://www.cs.princeton.edu/~rs/talks/perms.p
df

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldos 40

http://www.cs.princeton.edu/~rs/talks/perms.pdf
http://www.cs.princeton.edu/~rs/talks/perms.pdf

el

{5‘ Summary

= File handling = Applications
= High level 1I/0O = Combinatorial
. fopen generation:
P generating subsets
= fclose
= Cross product
= fread (Cartesian product)
= fwrite = Combinations
u fsetposl fgetposl = Permutations
fte||, fseek = Arrangements

= Power set

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldos 41

