
T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldoş 1

Computer programming

"He who loves practice without
theory is like the sailor who
boards ship without a ruder and
compass and never knows where
he may cast."

Leonardo da Vinci

Outline

 File handling
 High level I/O

 fopen

 fclose

 fread

 fwrite

 fsetpos, fgetpos,
ftell, fseek

 Applications
 Combinatorial

generation:
generating subsets
 Cross product

(Cartesian product)

 Combinations

 Permutations

 Arrangements

 Power set

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldoş 2

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldoş 3

High level I/O. Files and Streams

 C views each file as a sequence of bytes
 File ends with the end-of-file marker

 Or, file ends at a specified byte

 Stream created when a file is opened
 Provide communication channel between files and programs

 Opening a file returns a pointer to a FILE structure

 Example file pointers:

 stdin - standard input (keyboard)

 stdout - standard output (screen)

 stderr - standard error (screen)

 FILE structure
 File descriptor - Index into operating system array called the open

file table

 File Control Block (FCB) - Found in every array element, system
uses it to administer the file

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldoş 4

Files and Streams

 Read/Write functions in standard library
 fgetc - reads one character from a file

 Takes a FILE pointer as an argument

 fgetc(stdin) equivalent to getchar()

 fputc - writes one character to a file

 Takes a FILE pointer and a character to write as an argument

 fputc('a', stdout) equivalent to putchar('a')

 fgets - read a line from a file

 fputs - write a line to a file

 fscanf / fprintf - file processing equivalents of
scanf and printf

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldoş 5

Creating a Sequential Access File

 C imposes no file structure

 No notion of records in a file

 Programmer must provide file structure

 Creating a File
 FILE *myPtr; - creates a FILE pointer

 myPtr = fopen("myFile.dat", openmode);

 Function fopen returns a FILE pointer to file specified

 Takes two arguments - file to open and file open mode

 If file not opened, NULL returned

 fprintf - like printf, except first argument is a FILE pointer

(the file receiving data)

 feof(FILE pointer)- returns true if end-of-file indicator (no

more data to process) is set for the specified file

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldoş 6

Creating a Sequential Access File

 fclose(FILE pointer) - closes specified file

 Performed automatically when program ends

 Good practice to close files explicitly

 Details

 Each file must have an unique name and will have a different
pointer

 All file processing must refer to the file using the pointer

 Each mode can have a 'b' (for binary, e.g. ab, wb, rb+) after mode
letter Mode Description

r Open a file for reading.

w Create a file for writing. If the file already exists, discard the current
contents.

a Append; open or create a file for writing at end of file.

r+ Open a file for update (reading and writing).

w+ Create a file for update. If the file already exists, discard the current
contents.

a+ Append; open or create a file for update; writing is done at the end
of the file.

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldoş 7

Attaching a file to an open stream

 freopen(const char *filename, const char

*mode, FILE *stream)

 Most common use: associate a file with one of the standard
streams

 Example: cause program begin writing to foo.txt

if (freopen(“foo.txt”, “w”, stdout) == NULL)

{

 // error foo.txt cannot be opened

}

 Effect: close any other file previously associated to stdout ; then
open foo.txt and associate it with stdout.

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldoş 8

Reading Data from a Sequential Access File

 Reading a sequential access file
 Create a FILE pointer, link it to the file to read

 myPtr = fopen("myFile.dat", "r");

 Use fscanf to read from the file

 Like scanf, except first argument is a FILE pointer

fscanf(myPtr, "%d%s%f", &myInt, &myString, &myFloat);

 Data read from beginning to end

 File position pointer - indicates number of next byte to be
read/written

 Not really a pointer, but an integer value (specifies byte location)

 Also called byte offset

 rewind(myPtr) - repositions file position pointer to beginning of
the file (byte 0)

 Cannot be modified without the risk of destroying other data

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldoş 9

Random Access Files

 Random access files

 Access individual records without searching through other records

 Instant access to records in a file

 Data can be inserted without destroying other data

 Data previously stored can be updated or deleted without
overwriting.

 Implemented using fixed length records

 Sequential files do not have fixed length records

 0 200 300 400 500

byte offsets}

} } } } } }

100

100

bytes
100

bytes
100

bytes
100

bytes
100

bytes
100

bytes

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldoş 10

Creating a Random Access File

 Data

 Data unformatted (stored as "raw bytes") in random
access files

 All data of the same type (ints, for example) use the same

memory

 All records of the same type have a fixed length

 Data not human readable

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldoş 11

Creating a Random Access File

 Unformatted I/O functions

 fwrite - Transfer bytes from a location in memory to a

file

 fread - Transfer bytes from a file to a location in

memory

 fwrite(&number, sizeof(int), 1, myPtr);

 &number - Location to transfer bytes from

 sizeof(int) - Number of bytes to transfer

 1 - For arrays, number of elements to transfer

 In this case, "one element" of an array is being transferred

 myPtr - File to transfer to or from

 fread similar

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldoş 12

Writing Data Randomly to a Random Access
File

 Writing data: fwrite
size_t fwrite(const void *ptr, size_t size, size_t

nelem, FILE *stream);

 ptr = pointer to memory area where info to write is stored

 size = size in bytes of one element

 nelem = number of elements to write

 E.g. writing structs
fwrite(&myObject, sizeof (struct myStruct), 1,

myPtr);

 sizeof - Returns size in bytes of object in parentheses

 To write several array elements
 Pointer to array as first argument

 Number of elements to write as third argument

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldoş 13

Reading Data Sequentially from a Random
Access File. Removing a file

 Reading data: fread
 size_t fread(void *ptr, size_t size, size_t nelem,

FILE *stream);
 ptr = pointer to memory area where read info will be stored
 size = size in bytes of one element
 nelem = number of elements to write

 Example:
fread(&client, sizeof (struct clientData), 1, myPtr);

 Can read several fixed-size array elements
 Provide pointer to array
 Indicate number of elements to read

 To read multiple elements, specify in third argument

 Removing a file
 int unlink(const char *path_to_file)

 returns 0 if successful, and -1 on error

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldoş 14

File position
/* return file position indicator */

long ftell(FILE *stream);

int fgetpos(FILE *stream, fpos_t *pos);

/* set file position indicator to zero */

void rewind(FILE *stream);

/* set file position indicator */

int fseek(FILE *stream, long offset, int ptrname);

int fsetpos(FILE *stream, const fpos_t *pos);

 ftell returns the current value (measured in characters) of the file
position indicator if stream refers to a binary file.
 For a text file, a ‘magic’ number is returned, which may only be used on a

subsequent call to fseek to reposition to the current file position indicator.

 On failure, -1L is returned and errno is set.

 rewind sets the current file position indicator to the start of the file
indicated by stream. The file's error indicator is reset by a call of
rewind. No value is returned.

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldoş 15

File position

 fseek allows the file position indicator for stream to be set
to an arbitrary value (for binary files), or for text files, only
to a position obtained from ftell, as follows:
 For both functions, on success, zero is returned; on failure, non-

zero is returned and errno is set.

 In the general case, the file position indicator is set to offset bytes
(characters) from a point in the file determined by the value of
ptrname. Offset may be negative. The values of ptrname may be
SEEK_SET, SEEK_CUR, and SEEK_END. The latter is not
necessarily guaranteed to work properly on binary streams.

 For text files, offset must either be zero or a value returned from a
previous call to ftell for the same stream, and the value of
ptrname must be SEEK_SET.

 fseek clears the end of file indicator for the given stream and
erases the memory of any ungetc. It works for both input and
output.

 Zero is returned for success, non-zero for a forbidden request.

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldoş 16

File position

 For ftell and fseek it must be possible to encode the
value of the file position indicator into a long. This may
not work for very long files, so the Standard introduces
fgetpos and fsetpos which have been specified in a
way that removes the problem.

 fgetpos stores the current file position indicator for
stream in the object pointed to by pos. The value stored is
‘magic’ and only used to return to the specified position for
the same stream using fsetpos.

 fsetpos works as described above, also clearing the
stream's end-of-file indicator and forgetting the effects of
any ungetc operations.

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldoş 17

Example: text file
#include <stdio.h>
#include <stdlib.h>
int main(int argc, char *argv[])
{
 char ch, s[100], filename[]="textfile.txt";
 int i;
 FILE *fp;
 /* create file */
 fp = fopen(filename, "w");
 printf("\nInput lines of text for file. End with Ctrl/Z\n");
 while ((ch = getc(stdin)) != EOF) putc(ch, fp);
 fclose(fp);
 /* add text to file */
 fp = fopen(filename, "r+");
 fseek(fp, 0l, SEEK_END);
 printf("\nInput lines text to add to file. End with Ctrl/Z\n");
 while (fgets(s, sizeof(s), stdin) != NULL) fputs(s, fp);
 fclose(fp);
 /* display contents */
 printf("\nLines of the file (numbered):\n");
 i=1;
 fp = fopen(filename, "r");
 while (fgets(s, sizeof(s), fp) != NULL) printf("%d: %s", i++, s);
 fclose(fp);
 system("PAUSE");
 return 0;
}

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldoş 18

Cross product

 Considern sets of positive integers: A1, A2,..., An.

 Set Ai , for i=1, 2, ..., n has ni elements

 The cross product (Cartesian product, set direct
product, product set) is required. i.e.

 having elements which will

 be generated in a vector, p=[p1 p2... pn]

n

i

in AAAA
1

21 ...

n

i

in
1

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldoş 19

Cross product algorithm

 Set every element of vector p to 1.

 This is the first element of the cross product

 Find next element as follows:

 Find the highest index i for which pi < ni.

 If such an index cannot be found then all
elements have been generated. Stop

 Find next element of the cross product as

 {p1, p2, pi -1, pi +1,1, 1, ..., 1}

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldoş 20

Cross product implementation. Non
recursive

#include <stdio.h>

#define MAXN 10

void listProduct(int n, int
prodNb, int p[])

{

 int i;

 printf("\n%3d ", prodNb);

 for (i = 1; i <=n; i++)
printf(" %2d", p[i]);

 if (prodNb % 20 == 0)
getch();

}

void crossProdNonRec(int n,
int nElem[])

/* n = number of sets;

 nElem = vector with number
of elements per set */

{

 int i, prodNb, p[MAXN];

 prodNb = 1;

 for (i = 1; i <= n; i++) p[i] = 1;

 listProduct(n, prodNb, p);

 i = n;

 while (i > 0)

 {

 p[i]++; // find highest such as p[i] > nElem[i]

 if (p[i] > nElem[i])

 {

 p[i] = 1;

 i--;

 }

 else

 {

 prodNb++;

 listProduct(n, prodNb, p);

 i = n;

 }

 }

}

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldoş 21

Cross product implementation. Non
recursive

int main(int argc, char *argv[])

{

 int i, n, nElem[MAXN];

 printf("\nNumber of sets [<%d]=", MAXN); scanf("%d", &n);

 for (i = 1; i <= n; i++)

 {

 printf("Number of elements in set %d=", i);

 scanf("%d", &nElem[i]);

 }

 printf("\nThe members of the cross product");

 printf("\nNo. Elements");

 crossProdNonRec(n, nElem);

 getchar();

 return 0;

}

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldoş 22

Cross product implementation.
Recursive

#include <stdio.h>

#include <conio.h>

#define MAXN 10

int prodNb, p[MAXN],

nElem[MAXN];

void listProduct(int n)

{

 int i;

 printf("\n%3d ", prodNb);

 for (i = 1; i <=n; i++)

printf(" %2d", p[i]);

 if (prodNb % 20 == 0)

getch();

}

void crossProdRec(int n, int i)

/* n = number of sets; nElem =
vector with number of elements
per set */

{

 int j;

 for (j = 1; j <=nElem[i]; j++)

 {

 p[i] = j;

 if (i< n) crossProdRec(n, i+1);

 else

 {

 prodNb++;

 listProduct(n);

 }

 }

}

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldoş 23

Cross product implementation.
Recursive

int main(int argc, char *argv[])

{

 int i, n;

 printf("\nNumber of sets [<%d]=", MAXN); scanf("%d", &n);

 for (i = 1; i <= n; i++)

 {

 printf("Number of elements in set %d=", i);

 scanf("%d", &nElem[i]);

 }

 printf("\nThe members of the cross product");

 printf("\nNo. Elements");

 crossProdRec(n, 1);

 getch();

 return 0;

}

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldoş 24

Combinations

 Let P be a set of n elements

 All ways of picking k unordered elements of
the n elements = generating all subsets with
k ≤ n elements of P such as any two subsets

are distinct

 The number of subsets is the binomial
coefficient or choice number and read

 "n choose k "

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldoş 25

Combinations algorithm

 First subset is p={1, 2, ..., k}

 Given a subset, its successor is found as follows:

 Going from k down to 1 find index i which satisfies the
relationships

 Successor set is:

 The last subset is:

np
np

iknp
iknp

k

k

i

i

1
...

1

1

1

}1...,,2,1...,,,{ 21 knppppp iii

},1...,,2,1{ nnknkn

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldoş 26

Combinations algorithm
implementation. Non recursive

void combinNonRec(int n, int k)

{

int p[MAXN];

int i, j, combinNb;

for (i=1; i <=k; i++) p[i]=i; /* first combination */

listCombin(k, combinNb, p);

i = k;

while (i > 0) /* generate the next combinations */

{

 p[i]++; // find index satisfying relation set

 if (p[i] > n – k + i) i--;

 else

 {

 for (j = i + 1; ; j <= k; j++) p[j]=p[j-1] + 1;

 combinNb++;

 listCombin(k, combinNb, p);

 i = k;

 }

}

}

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldoş 27

Combinations algorithm
implementation. Recursive

void combinRec(int n, int k, int i)

{

int j;

for (j = p[i-1]+1; j <= n-k+i; j++)

{

 p[i] = j;

 if (i < k) combinRec(n, k, i+1);

 else

 {

 combinNb++;

 listCombin(k, combinNb, p);

 }

}

}

 Notes
 Array p, and combinNb must be global

 Invocation is: combinRec(n, k, 1)

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldoş 28

Generating Permutations

 For instance 35241 is the permutation that maps 1 to 3, 2
to 5, 3 to 2, 4 to 4, and 5 to 1.

 We know that there are 7! permutations on
{1,2,3,4,5,6,7}.
 Suppose we want to list them all. Is there an efficient way to do

so? It turns out to be fairly simple to list them lexicographically.

 The only hard question is, given one permutation, how do we find

the next one?

 The lexicographically first permutation is

 1 2 ... n

 and the last is

 n n -1 ... 1

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldoş 29

Generating Permutations

 It is intuitively reasonable that if the final digits of
a permutation are in descending order, then no
rearrangement will make them larger.

 For instance in 1257643 we cannot produce a larger
number by rearranging the 7643.

 Instead we must increase the next most significant digit
(the 5) by the next larger digit in 7643 (the 6).

 Then the remaining digits (the 5 and the 743) must be
arranged to form the smallest number possible.

 Thus the next permutation in lexicographic order is
1263457.

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldoş 30

Generating permutations in
lexicographical order

a. First permutation is p = {1, 2, ... n }

b. Given vector p=[p1 p2 ... pn] the next permutation
is found as follows:
1. Look from n down to 1 for the highest valued index

which satisfies the relationships:

 pi <pi +1

 pi +1> pi +2>...> pn

2. Find the maximum element, pk> pi of pi +1 , pi +2,..., pn

3. Swap pk with pi

4. Revert pi +1 , pi +2,..., pn by swapping pi+1 and pn , pi+2
and pn-1, a.s.o.

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldoş 31

Permutations implementation. Non
recursive

void permNonRec(int n) {

 int p[MAXN];

 int i, k, permNb = 0;

 /* first permutation, step a */

 for (i = 1; i <= n; i++) p[i] = i;

 listPerm(n, ++permNb, p);

 do /* generate the next permutations */

 {

 i = n - 1;

 while (p[i] > p[i+1] && i > 0) i--; /*
step b1 */

 if (i > 0) {

 for (k = n; p[i] > p[k]; k--); /*
step b2 */

 swap(&p[i], &p[k]); /* step b3 */

 revert(p, i, n, (n - i) / 2);

 listPerm(n, ++permNb, p);

 }

 } while (i > 0);

}

void swap(int *i, int *j)

{

 int temp;

 temp = *i;

 *i = *j;

 *j = temp;

}

void revert(int p[], int i, int n,

int k)

{

 int j;

 for (j = 1; j <= k; j++)

 swap(p[i+j], p[n+1-j]);

}

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldoş 32

A note on swapping

 Swapping integers in place
void swap(int *i, int *j)

{

 *i += *j; // i == i + j

 *j = *i - *j;// j == i + j – j == i

 *i -= *j; // i == i + j – i == j

}

void swap(int *i, int *j)

{

 *i ^= j; // a == a^b;

 *j ^= *i;// b == b^(a^b)

 *i ^= *j;// a == (a^b)^(b^(a^b))

}
a b a^b b^(a^b) (a^b)^(b^(a^b))

0 0 0 0 0

0 1 1 0 1

1 0 1 1 0

1 1 0 1 1

Second version

based on proof on the

nearby table, where a

and b are bit positions

final a final b

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldoş 33

Permutations implementation.
Recursive

void permRec(int nb)
{

int i, j;

if (nb == 1)
{
 permNb++;
 listperm();
}
else
{
 permRec(nb – 1);
 for (i = 1; i <= nb – 1; i++)
 {
 swap(p[i], p[nb]);
 permRec(nb – 1);
 swap(p[i], p[nb]);
 }
}

}

 Notes
 Generates recursively

permutations of elements p1
p2 ... pn-1 with pn in position
n

 Then swaps pi with pn for i
=1..n-1, and generates all
permutations

 Array p, n, and permNb
must be globals

 First permutation must be
initialized separately

 Invocation: permRec(n)

 Order is not loxicographic

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldoş 34

Generating k permutations of n

 For set p={1, 2, ..., n} and k ≤ n, positive

 generate all k-subsets such any two subsets

must differ either in the composing elements or
in their order

 Algorithm idea:

 generate all combinations of n elements taken

k, and, for each combination

 generate the k! permutations

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldoş 35

Generating k permutations of n

implementation

void arrange(int n, int m, int i) {
 int j, k, r;
 for (j = p[i-1] + 1; j <= n - m + i; j++) // recursively generate combinations
 {
 p[i] = j;
 if (i < m) arrange(n, m, i + 1);
 else
 {
 arrNb++;
 listArrang(m, p);

 for (k = 1; k <= m; k++) v[k] = p[k]; // save combination
 do // nonrecursively permute combination
 {
 k = m - 1;
 while (v[k] > v[k + 1] && k > 0) k--;
 if (k > 0) {
 for (r = m; v[k] > v[r]; r--);
 swap(&v[k], &v[r]);
 revert(k, m, (m - k) / 2);
 arrNb++;
 listArrang(m, v);
 }
 }
 while (k > 0);
 }
 }
}

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldoş 36

Generating a power set

 We wish to generate all 2n subsets of set
A={a1,...,an} (power set)

 All subsets of A={a1,...,an} can be divided to two groups

 Ones that contain an

 Ones that does not contain an

 Ones that does not contain an are all subsets of

{a1,...,an-1}

 When we have all subsets of {a1,...,an-1} we can create all

subsets of {a1,...,an} by adding all elements with an inserted

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldoş 37

Generating a power set

 Again, we try to generate all subsets without generating
power sets of smaller sets

 We can associate 2n subsets of n elements set A={a1,...,an}
with 2n bit strings b1...bn
 bi = 1 if ai is element of set
 bi = 0 if ai is not element of set

 For 3 elements set {a1, a2, a3}
 000 – the empty set
 111 – the set itself
 110 – subset {a1, a2}

 We can create bit strings by generating binary numbers
from 0 to 2n-1

 Example:
 Bit strings 000 001 010 011 100 101 110 111
 Subsets a3 a2 a2,a3 a1 a1,a3 a1,a2 a1,a2,a3

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldoş 38

Generating a power set. Non recursive

void allSubsetsNR(int n)
{
 int i, setNb, p[MAXN]; // p[i]=1 if element i is a member,

 // i.e p is a characteristic vector
 setNb=1;
 for (i=1; i<=n; i++) p[i]=0; /*empty set */
 listSet(n, setNb, p);
 for (i=n; i>0;) /* generate next subsets */
 {
 if (p[i] == 0)
 {
 p[i] = 1;
 setNb++;
 listSet(n, setNb, p);
 i = n;
 }
 else
 {
 p[i] = 0;
 i--;
 }
 }
}

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldoş 39

Generating a power set. Recursive

void allSubsetsRec(int n, int i)

{

 int j;

 for (j=0; j <= 1; j++)

 {

 p[i] = j;

 if (i < n)

 allSubsetsRec(n, i+1);

 else

 {

 setNb++;

 listSet(n, setNb);

 }

 }

}

void listSet(int n, int
setNb)

{

 int i;

 printf("\n%3d { ", setNb);

 for (i = 1; i <=n; i++)

 if (p[i] == 1)

 printf(" %2d,", i);

 printf("\b }");

 if (setNb % 20 == 0)
getch();

}

 Note that array p and variable
setNb must be global

Reading

 Deitel: chapter 11

 Prata: chapter 13

 King: chapter 22

 Supplemental:

 R. Sedgewick:
http://www.cs.princeton.edu/~rs/talks/perms.p
df

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldoş 40

http://www.cs.princeton.edu/~rs/talks/perms.pdf
http://www.cs.princeton.edu/~rs/talks/perms.pdf

Summary

 File handling
 High level I/O

 fopen

 fclose

 fread

 fwrite

 fsetpos, fgetpos,
ftell, fseek

 Applications
 Combinatorial

generation:
generating subsets
 Cross product

(Cartesian product)

 Combinations

 Permutations

 Arrangements

 Power set

T.U. Cluj-Napoca - Computer Programming - lecture 10 - M. Joldoş 41

