
Algorithm Design Techniques

(III)

Minimax. Alpha-Beta Pruning.

Search Tree Strategies

(backtracking revisited, branch

and bound). Local Search.

DSA - lecture 10 - T.U.Cluj-Napoca - M. Joldos 1

Tic-Tac-Toe Game Tree (partly)

DSA - lecture 10 - T.U.Cluj-Napoca - M. Joldos 2

 Leaves that are wins for B
– player using "‘o"’ to mark
squares – get value -1,
draws are 0, and wins for
A, +1.

 We proceed up the tree.
On level 8,there’s one
empty square and it’s A’s
turn, the values for the
unresolved board are the
"‘maximum"’ of one child at
level 9.

 On level 7, it is B’s move
and we take the value for
an interior node the
minimum of the values of
its children.

 If the root has value +1,
player A has a winning
strategy, if 0 neither of
them has, if -1, player B
has one.

Level 8

Level 7

Level 9

Minimax Algorithm

 Helps find the best move, by working backwards from the end of the

game.

 At each step it assumes that
• player A is trying to maximize the chances of A winning, while on the next turn

• player B is trying to minimize the chances of A winning (i.e., to maximize B's own

chances of winning).

 At terminal node (leaf):
• The minimax value of the terminal node is given by the evaluation function

(1=loss, 0=draw, 1=win)

 At a non-terminal MAX node:
• Calculate the minimax values of its successor nodes.

• The minimax value of the MAX node is the maximum of the minimax values of its

successor nodes

 At a non-terminal MIN node:
• Calculate the minimax values of its successor nodes.

• The minimax value of the MIN node is the minimum of the minimax values of its

successor nodes

 For chess: cca 1040 different legal positions; 35100 nodes in average

game tree

DSA - lecture 10 - T.U.Cluj-Napoca - M. Joldos 3

Alpha-beta pruning

 This algorithm is for heuristic search of best moves on
game trees of games of two players, assuming that
both players apply the best tactics, i.e. they do as
good moves as possible on the basis of the available
knowledge. It is a concretization of the branch and
bound search.

 This algorithm gives the same result as the minimax
procedure for the games of two players. This
algorithm lies in the ground of many game programs
for chess and other games.

DSA - lecture 10 - T.U.Cluj-Napoca - M. Joldos 4

alpha-beta Algorithm

 alpha = best (largest) minimax value MAX is guaranteed to reach

 beta = best (smallest) minimax value MIN is guaranteed to reach

 Call: MaxValue(root, , +)
MaxValue(state, alpha, beta)

if node is a terminal node (or to be treated like one) then

 return the value of the evaluation function for that node

else

 for each successor state s of state

 do alpha  max(alpha, MinValue(s, alpha, beta))

 if alpha ≥ beta then return beta

return alpha

MinValue(state, alpha, beta)

if node is a terminal node (or to be treated like one) then

 return the value of the evaluation function for that node

else

 for each successor state s of state

 do alpha  min(alpha, MaxValue(s, alpha, beta))

 if alpha ≥ beta then return alpha

return alpha

DSA - lecture 10 - T.U.Cluj-Napoca - M. Joldos 5

Example of Alpha-Beta Pruning

DSA - lecture 10 - T.U.Cluj-Napoca - M. Joldos 6

 http://www.ndsu.nodak.edu/instruct/juell/vp/cs724s01/alpha/alpha.html

 http://www.emunix.emich.edu/~evett/AI/AlphaBeta_movie/sld001.htm

http://www.ndsu.nodak.edu/instruct/juell/vp/cs724s01/alpha/alpha.html
http://www.emunix.emich.edu/~evett/AI/AlphaBeta_movie/sld001.htm

minimaxAB Algorithm

/* alpha is the best score for max along the path to state

 beta is the best score for min along the path to state

 returns VALUE of best operator

 need additional code to return operator */

int minimaxAB(state, player, depth, alpha, beta)

 if (depth == limit or state is terminal)

 return the static evaluation of state

 if (player is min)

 until all successors, s, are examined or alpha > beta

 val=minimaxAB(s, max, depth+1, alpha, beta)

 if (val < beta) beta = val

 return beta

 if (player is max)

 until all successors, s, are examined or alpha > beta

 val=minimaxAB(s, min, depth+1, alpha, beta)

 if (val > alpha) alpha = val

 return alpha

DSA - lecture 10 - T.U.Cluj-Napoca - M. Joldos 7

Negamax – minimaxAB simplified

DSA - lecture 10 - T.U.Cluj-Napoca - M. Joldos 8

function negamax(node, depth, α, β, color)

 if node is a terminal node or depth = 0

 return color * the heuristic value of node

 else

 foreach child of node

 α := max(α, -negamax(child, depth-1, -β, -α, -color))

 {the following if statement constitutes alpha-beta pruning}

 if α≥β

 break

 return α

 variant formulation of minimax search that relies on
the zero-sum property of a two-player game:

 max(a, b) = -min(-a, -b)

http://en.wikipedia.org/wiki/File:Minmaxab.gif

http://en.wikipedia.org/wiki/File:Minmaxab.gif

 If the solution graph is generated, one vertex at a
time, top down, the following terminology is
relevant in the context of a search tree.
• A dead vertex is one for which either:

1. all children have been generated; or

2. further expansion is not necessary (because the entire
subtree of which it is a root may be pruned).

• A live vertex is one which has been generated, but which
is not yet dead.

• The E-vertex is the parent of the vertex which is currently
being generated.

• A bounding function is used to kill live vertices via some
evaluation function which establishes that the vertex
cannot lead to an optimal solution, rather than by
exhaustively expanding all of its children.

DSA - lecture 10 - T.U.Cluj-Napoca - M. Joldos 9

Terminology for Search Tree Strategies

Search Strategies

 Backtracking:

• Vertices are kept in a stack.

• The top of the stack is always the current E-vertex.

• As children of the current E-vertex are generated, they

are pushed onto the top of the stack.

• As soon as a new child w of the current E-vertex is

generated, w becomes the new E-vertex.

• Vertices which are popped from the stack are dead.

• A bounding function is used to kill live vertices (i.e.,

remove them from the stack) without generating all of

their children.

DSA - lecture 10 - T.U.Cluj-Napoca - M. Joldos 10

Search Strategies

 Branch-and-bound:

• Vertices are kept in a vertex pool, which may be a stack,

queue, priority queue, or the like.

• As children of the current E-vertex are generated, they are

inserted into the vertex pool.

• Once a vertex becomes the E-vertex, it remains so until it

dies.

• The “next” element in the vertex pool becomes the new E-

vertex when the current E-vertex dies.

• Vertices which are removed from the vertex pool are dead.

• A bounding function is used to kill live vertices (i.e., remove

them from the vertex pool) without generating all of their

children.

DSA - lecture 10 - T.U.Cluj-Napoca - M. Joldos 11

Effective BackTracking

 Effective use of backtracking requires a good

bounding function.

• E.g. the discrete knapsack problem, a bounding function

provides a simple-to-compute upper bound on the amount

of profit which may be obtained by taking a leaf of the

subtree of the current vertex as a solution.

• An extremely simple bounding function: adding the profits

of all items which are yet to be considered.

• If (xI, x2, …, xi){0, 1}i have already been chosen, then





n

ij

jvbound
1

DSA - lecture 10 - T.U.Cluj-Napoca - M. Joldos 12

Effective Backtracking (2)

 Better bounding function :

• Generate the solution of an associated fractionary knapsack
problem; specifically

• If (xI, x2, …, xj){0, 1}j have already been chosen as a partial
solution, let A be the fractionary knapsack problem with

• Solve this problem using a greedy-style method and take the
profit of that solution to be the bound.

• The profit of the solution to the fractionary knapsack problem will
always yield a profit at least as large as that for its discrete
counterpart, so this computation does provide an upper bound.

1

1 2,{ , , }

j

i i

i

j j n

capacity W x w

items item item item



 

 





DSA - lecture 10 - T.U.Cluj-Napoca - M. Joldos 13

Example

 01 Knapsack for capacity W=8

• Two distinct orderings of items

• Solution to the fractionary knapsack problem used

as bounding function (value of B)

• Heuristic: if the solution to the fractionary

(continuous) problem = solution to 0-1 problem,

the subtree has been solved optimally

• In any case the profit per weight ratio ordering on

the remaining objects must be used to obtain the

fractionary knapsack solution required for the

bounding function

DSA - lecture 10 - T.U.Cluj-Napoca - M. Joldos 14

Knapsack Example (1)

i 1 2 3 4

vi 5 6 2 1

wi 4 5 3 2

DSA - lecture 10 - T.U.Cluj-Napoca - M. Joldos 15

Dark grey=killed

Light grey=exact

Nodes = profit, weight

Knapsack Example(2)

i 1 2 3 4

vi 1 2 5 6

wi 2 3 4 5

DSA - lecture 10 - T.U.Cluj-Napoca - M. Joldos 16

Dark grey=killed

Light grey=exact

Nodes = profit, weight

Binary search as branch-and-bound

 The functions left(p), right(p) and val(p) are for selecting

the left or right subtree and taking the value of the node p

(of the root of the tree).

 binsearch(x, p)

 if empty(p) then failure

 else if val(p) = x then success

 else if val(p) < x then binsearch(x, right(p))

 else binsearch(x, left(p))

DSA - lecture 10 - T.U.Cluj-Napoca - M. Joldos 17

Branch and Bound

 General strategy: generate all children of the

current E-vertex before selecting a new E-

vertex.

• Strategies for selecting a new E-vertex:

• LIFO order: depth first, using a stack.

•FIFO order: breadth first, using a queue.

•Best-first order: use a priority queue.

• In each case, a bounding function is also

used to kill vertices.

DSA - lecture 10 - T.U.Cluj-Napoca - M. Joldos 18

Example – the 8 puzzle

 Eight tiles move about nine squares

 The goal configuration is:

 Tiles are moved from the initial configuration to reach the
goal configuration

 Notation for direction where the empty slot “moves”:

ℓ = left, r = right, u=up, d=down

1 2 3

4 5 6

7 8

DSA - lecture 10 - T.U.Cluj-Napoca - M. Joldos 19

1 2 3

4 8 5

7 6

1 2 3

4 5

7 8 6

1 2 3

4 5

7 8 6

1 2 3

4 5 6

7 8

  

Depth-first

Expansion

for the 8-

puzzle

DSA - lecture 10 - T.U.Cluj-Napoca - M. Joldos 20

LIFO order,

using a stack

Breadth-first Expansion for the 8-puzzle

DSA - lecture 10 - T.U.Cluj-Napoca - M. Joldos 21

FIFO order,

using a queue

Best-first Search with Branch and Bound

 A cost function, c is associated with a best-first
strategy

 c(v) is the cost of finding a solution from vertex v

 Reasonable measure of cost: number of additional
vertices which must be generated in order to obtain
a solution

 Problem: c(v) is very difficult to compute, in general
(without generating the solution first)
• Therefore, an approximation ĉ is used

• For the 8-puzzle, an appropriate approximation might be:

ĉ = number of tiles which are out of place

• Here, the empty slot is not considered as a tile

DSA - lecture 10 - T.U.Cluj-Napoca - M. Joldos 22

Best-first Expansion for the 8-puzzle

DSA - lecture 10 - T.U.Cluj-Napoca - M. Joldos 23

Best-first order,

using a priority

queue

Desirable Properties for ĉ

 Key properties:

• ĉ should be easy to compute

• ĉ should give a good approximation for c

 Commonly used form for ĉ :

ĉ(v)= ĝ(v)+k(v)
 where:

• ĝ(v) : an estimate of the cost to reach a solution vertex

from v
• k(v) : a weighted function of the cost to reach vertex

from the root
 In the 8-puzzle example:

• ĝ(v) : the number of tiles which are out of place

• k(v)=0

DSA - lecture 10 - T.U.Cluj-Napoca - M. Joldos 24

Selection of k(v)

 k(v)=0

• A cost already incurred into should not enter
into the evaluation

 k(v)>0

• k(v)=0 favors deep searches

• If |ĝ(v)c(v)| is large, then at very deep level the
wrong path may get expanded

• k(v) adds a breadth first component

 Possible choice of k(v) for the 8-puzzle:
length of path from the root to v

DSA - lecture 10 - T.U.Cluj-Napoca - M. Joldos 25

Important properties for ĉ

 It is important to know whether a leaf vertex

reached in the process is an optimal solution

 An approximate cost function ĉ must be admissible,

i.e. for all vertex pairs (v, w)

ĉ(v) < ĉ(w)  c(v) < c(w)

 where c(v) is the value of the best leaf beneath

vertex v

 Hard in practice. Weaker condition:

• ĉ(v)  c(v) for all vertices

• ĉ(v) = c(v) for all answer vertices

DSA - lecture 10 - T.U.Cluj-Napoca - M. Joldos 26

0-1 Knapsack with Branch and Bound

 Leaf vertex v is identified with the solution vector

(xi, x2, …, xn) which defines a path from the root to

v

 Its’a a maximization problem, reverse inequalities

 Definition for cost











































leafnon afor
))d((RightChil

))((LeftChild
max

t)much weigh (too vertex leaf illegalan for

 ofpath on thetex answer ver feasible afor

)(
1

xc

xc

xxv

xc

n

i

ii

DSA - lecture 10 - T.U.Cluj-Napoca - M. Joldos 27

0-1 Knapsack with Branch and Bound

 Approximation function for a vertex x at depth j in

the tree

 where denotes the profit

obtain in the solution of the fractionary knapsack

problem with items and

capacity W

 Vertex-killing function:





j

i

ii

j

i

ii xwWnjxvxc
11

)),,1(FKnap(Profit)(ˆ

},,{ ,21 njj itemitemitem 

DSA - lecture 10 - T.U.Cluj-Napoca - M. Joldos 28

)),,ap(Profit(FKn Wqp

}),,({)(1

1

nj

j

i

ii itemitemGreedyxvxu 



 

0-1 Knapsack with Branch and Bound

 is the value obtained by

applying a greedy strategy, with items ordered by profit for

a knapsack with capacity

 The vertex is killed whenever

 Evaluation also halted when the computation of ĉ(x) yields

an exact solution of the fractionary knapsack problem.





j

i

ii xwW
1

DSA - lecture 10 - T.U.Cluj-Napoca - M. Joldos 29

}),,Greedy({ 1 nj itemitem 

})generatedbeen has |)(max({)(ˆ xxuUxc 

0-1 Knapsack w/ Branch and Bound Example

DSA - lecture 10 - T.U.Cluj-Napoca - M. Joldos 30

0-1 Knapsack w/ Branch and Bound Example

DSA - lecture 10 - T.U.Cluj-Napoca - M. Joldos 31

TSP Branch and Bound Example

 Consider the traveling salesman problem. A
salesman has to visit each of n cities (at
least) once each, and wants to minimize total
distance traveled.

 Consider the route problem to be the problem
of finding the shortest route through a set of
cities visiting each city once

 Split the node into two child problems
• Shortest route visiting city A first

• Shortest route not visiting city A first

 Continue subdividing similarly as the tree
grows

DSA - lecture 10 - T.U.Cluj-Napoca - M. Joldos 32

Bounding Heuristics

 A heuristic is a rule of thumb. That is, a heuristic

is generally a good idea but some times it doesn't

work.

 An example of a heuristic for packing a suitcase

might be, put in the big items first such as your

shoes, then put the small items in using up the

remaining fragmented space.

 For the TSP we might have heuristics for

selecting the next city to visit. Maybe go to the

nearest?

DSA - lecture 10 - T.U.Cluj-Napoca - M. Joldos 33

TSP (again)

DSA - lecture 10 - T.U.Cluj-Napoca - M. Joldos 34

 Lower bound for cost of any TSP tour:

TSP example

DSA - lecture 10 - T.U.Cluj-Napoca - M. Joldos 35

TSP Inferences

 Consider the edges in lexicographic order

 Each time we branch, by considering the two
children of a node, we try to infer additional
decisions regarding which edges must be included
or excluded from tours represented by those nodes.
Rules for these inferences are:

• If excluding an edge (x, y) would make it impossible for x or

y to have as many as two adjacent edges in the tour, then
(x, y) must be included.

• If including (x, y) would cause x or y to have more than two
edges adjacent in the tour, or would complete a non-tour
cycle with edges already included, then (x, y) must be
excluded.

DSA - lecture 10 - T.U.Cluj-Napoca - M. Joldos 36

TSP Pruning

 When we branch, after

making what inferences

we can, we compute

lower bounds for both

children.

• If the lower bound for a child

is as high or higher than the

lowest cost tour found so far,

we can prune that child and

need not construct or

consider its descendants.

DSA - lecture 10 - T.U.Cluj-Napoca - M. Joldos 37

Another graph for

TSP

TSP

Pruning

Example

DSA - lecture 10 - T.U.Cluj-Napoca - M. Joldos 38

Local Search Algorithms

 Sometimes an optimal solution may be obtain if:

• Start with a random solution.

• Apply to the current solution a transformation from some

given set of transformations to improve the solution. The

improvement becomes the new "current" solution.

• Repeat until no transformation in the set improves the

current solution.

 Note: the method makes sense if we we can restrict our set

of transformations to a small set, so we can consider all

transformations in a short time (e.g. for a problem of size n,

O(n2)…O(n3) transformations)

 Transformations are called local transformations, and the

method is called local search

DSA - lecture 10 - T.U.Cluj-Napoca - M. Joldos 39

Local Search Example: the MST problem

DSA - lecture 10 - T.U.Cluj-Napoca - M. Joldos 40

Transformation:

remove an edge

and add another

to decrease cost

Start

Some conclusions

 Backtracking

• easy to implement

• little memory required

• slow to run

 Branch & Bound

• difficult to implement

• large amounts of memory

required

• maybe faster than

backtracking

 Dynamic Programming

• tricky to see the solution

construction

• some memory requirements

• polynomially fast

• easy to implement,

especially via memoization

 Greedy Algorithms

• polynomially fast

• little memory required

• need proofs for optimality of

solution, or the solution may

be suboptimal

DSA - lecture 10 - T.U.Cluj-Napoca - M. Joldos 41

P and NP

 If there’s an algorithm to solve a problem that runs
in polynomial time, the problem is said to be in set
P.

 If the outcome of an algorithm to solve a problem
can be verified in polynomial time, the problem is
said to be in the set NP (non-deterministic
polynomial).

 There is a set of problems in NP for which a
polynomial solution to one is a solution to all. The
set is called NP-complete.

 If such a polynomial solution exists, P=NP.

 It is not known whether P  NP or P = NP.

DSA - lecture 10 - T.U.Cluj-Napoca - M. Joldos 42

Examples of NP Complete Problems

 Traveling Salesman Problem

 0/1 Knapsack Problem

 Graph Coloring Problem: can you color a

graph using k ≥ 3 colors such that no

adjacent vertices have the same color?

DSA - lecture 10 - T.U.Cluj-Napoca - M. Joldos 43

Reading

 AHU, chapter 10, sections 4 and 5

 Preiss, chapter: Algorithmic Patterns and

Problem Solvers, section Backtracking

Algorithms

 CLR, chapter 35, section 3, CLRS chapter

34, sections 1-3

 Notes

DSA - lecture 10 - T.U.Cluj-Napoca - M. Joldos 44

