
Algorithm Design Techniques 

(III) 

Minimax. Alpha-Beta Pruning. 

Search Tree Strategies 

(backtracking revisited, branch 

and bound). Local Search. 
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Tic-Tac-Toe Game Tree (partly) 
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 Leaves that are wins for B 
– player using "‘o"’ to mark 
squares – get value -1, 
draws are 0, and wins for 
A, +1.  

 We proceed up the tree. 
On level 8,there’s one 
empty square and it’s A’s 
turn, the values for the 
unresolved board are the 
"‘maximum"’ of one child at 
level 9.  

 On level 7, it is B’s move 
and we take the value for 
an interior node the 
minimum of the values of 
its children.  

 If the root has value +1, 
player A has a winning 
strategy, if 0 neither of 
them has, if -1, player B 
has one. 

Level 8 

Level 7 

Level 9 



Minimax Algorithm 

 Helps find the best move, by working backwards from the end of the 

game.  

 At each step it assumes that  
• player A is trying to maximize the chances of A winning, while on the next turn 

• player B is trying to minimize the chances of A winning (i.e., to maximize B's own 

chances of winning).  

 At terminal node (leaf):  
• The minimax value of the terminal node is given by the evaluation function 

(1=loss, 0=draw, 1=win) 

 At a non-terminal MAX node:  
• Calculate the minimax values of its successor nodes. 

• The minimax value of the MAX node is the maximum of the minimax values of its 

successor nodes 

 At a non-terminal MIN node:  
• Calculate the minimax values of its successor nodes. 

• The minimax value of the MIN node is the minimum of the minimax values of its 

successor nodes 

 For chess: cca 1040 different legal positions; 35100 nodes in average 

game tree 
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Alpha-beta pruning 

 This algorithm is for heuristic search of best moves on 
game trees of games of two players, assuming that 
both players apply the best tactics, i.e. they do as 
good moves as possible on the basis of the available 
knowledge. It is a concretization of the branch and 
bound search. 

 

 This algorithm gives the same result as the minimax 
procedure for the games of two players. This 
algorithm lies in the ground of many game programs 
for chess and other games. 
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alpha-beta Algorithm 

 alpha = best (largest) minimax value MAX is guaranteed to reach 

 beta = best (smallest) minimax value MIN is guaranteed to reach 

 Call: MaxValue(root, , +) 
MaxValue(state, alpha, beta) 

if node is a terminal node (or to be treated like one) then 

 return the value of the evaluation function for that node 

else 

 for each successor state s of state  

  do alpha  max(alpha, MinValue(s, alpha, beta)) 

  if alpha ≥ beta then return beta 

return alpha 

MinValue(state, alpha, beta) 

if node is a terminal node (or to be treated like one) then 

 return the value of the evaluation function for that node 

else 

 for each successor state s of state  

  do alpha  min(alpha, MaxValue(s, alpha, beta)) 

  if alpha ≥ beta then return alpha 

return alpha 
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Example of Alpha-Beta Pruning 
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 http://www.ndsu.nodak.edu/instruct/juell/vp/cs724s01/alpha/alpha.html 

 http://www.emunix.emich.edu/~evett/AI/AlphaBeta_movie/sld001.htm      

http://www.ndsu.nodak.edu/instruct/juell/vp/cs724s01/alpha/alpha.html
http://www.emunix.emich.edu/~evett/AI/AlphaBeta_movie/sld001.htm


minimaxAB Algorithm 

 

/* alpha is the best score for max along the path to state    

 beta  is the best score for min along the path to state       

 returns VALUE of best operator    

 need additional code to return operator */  

 

int minimaxAB(state, player, depth, alpha, beta)          

 if (depth == limit or state is terminal) 

    return the static evaluation of state 

 if (player is min) 

  until all successors, s, are examined or alpha > beta 

       val=minimaxAB(s, max, depth+1, alpha, beta) 

       if (val < beta) beta = val 

  return beta          

 if (player is max) 

    until all successors, s, are examined or alpha > beta 

       val=minimaxAB(s, min, depth+1, alpha, beta) 

       if (val > alpha) alpha = val  

  return alpha 
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Negamax – minimaxAB simplified 
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function negamax(node, depth, α, β, color)  

 if node is a terminal node or depth = 0  

  return color * the heuristic value of node  

 else  

  foreach child of node  

   α := max(α, -negamax(child, depth-1, -β, -α, -color)) 

  {the following if statement constitutes alpha-beta pruning}  

   if α≥β  

    break  

 return α 

 variant formulation of minimax search that relies on 
the zero-sum property of a two-player game: 

  max(a, b) = -min(-a, -b) 

 

http://en.wikipedia.org/wiki/File:Minmaxab.gif 

http://en.wikipedia.org/wiki/File:Minmaxab.gif


 

 

 If the solution graph is generated, one vertex at a 
time, top down, the following terminology is 
relevant in the context of a search tree. 
• A dead vertex is one for which either: 

1. all children have been generated; or 

2. further expansion is not necessary (because the entire 
subtree of which it is a root may be pruned). 

• A live vertex is one which has been generated, but which 
is not yet dead. 

• The E-vertex is the parent of the vertex which is currently 
being generated. 

• A bounding function is used to kill live vertices via some 
evaluation function which establishes that the vertex 
cannot lead to an optimal solution, rather than by 
exhaustively expanding all of its children. 
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Terminology for Search Tree Strategies 



Search Strategies 

 Backtracking: 

• Vertices are kept in a stack. 

• The top of the stack is always the current E-vertex. 

• As children of the current E-vertex are generated, they 

are pushed onto the top of the stack. 

• As soon as a new child w of the current E-vertex is 

generated, w becomes the new E-vertex. 

• Vertices which are popped from the stack are dead. 

• A bounding function is used to kill live vertices (i.e., 

remove them from the stack) without generating all of 

their children. 
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Search Strategies 

 Branch-and-bound: 

• Vertices are kept in a vertex pool, which may be a stack, 

queue, priority queue, or the like.  

• As children of the current E-vertex are generated, they are 

inserted into the vertex pool. 

• Once a vertex becomes the E-vertex, it remains so until it 

dies. 

• The “next” element in the vertex pool becomes the new E-

vertex when the current E-vertex dies. 

• Vertices which are removed from the vertex pool are dead. 

• A bounding function is used to kill live vertices (i.e., remove 

them from the vertex pool) without generating all of their 

children. 
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Effective BackTracking 

 Effective use of backtracking requires a good 

bounding function. 

• E.g. the discrete knapsack problem, a bounding function 

provides a simple-to-compute upper bound on the amount 

of profit which may be obtained by taking a leaf of the 

subtree of the current vertex as a solution. 

• An extremely simple bounding function: adding the profits 

of all items which are yet to be considered. 

• If (xI, x2, …, xi){0, 1}i have already been chosen, then 


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Effective Backtracking (2) 

 Better bounding function : 

• Generate the solution of an associated fractionary knapsack 
problem; specifically 

• If (xI, x2, …, xj){0, 1}j have already been chosen as a partial 
solution, let A be the fractionary knapsack problem with 

 

 

 

 

 

• Solve this problem using a greedy-style method and take the 
profit of that solution to be the bound. 

• The profit of the solution to the fractionary knapsack problem will 
always yield a profit at least as large as that for its discrete 
counterpart, so this computation does provide an upper bound. 
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Example 

 01 Knapsack for capacity W=8 

• Two distinct orderings of items 

• Solution to the fractionary knapsack problem used 

as bounding function (value of B) 

• Heuristic: if the solution to the fractionary 

(continuous) problem = solution to 0-1 problem, 

the subtree has been solved optimally 

• In any case the profit per weight ratio ordering on 

the remaining objects must be used to obtain the 

fractionary knapsack solution required for the 

bounding function 
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Knapsack Example (1) 

i 1 2 3 4 

vi 5 6 2 1 

wi 4 5 3 2 
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Dark grey=killed 

Light grey=exact 

Nodes = profit, weight 



Knapsack Example(2) 

i 1 2 3 4 

vi 1 2 5 6 

wi 2 3 4 5 
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Dark grey=killed 

Light grey=exact 

Nodes = profit, weight 



Binary search as branch-and-bound 

 The functions left(p), right(p) and val(p) are for selecting 

the left or right subtree and taking the value of the node p 

(of the root of the tree). 

 

 binsearch(x, p) 

  if empty(p) then failure 

  else if val(p) = x then success 

  else if val(p) < x then binsearch(x, right(p)) 

  else binsearch(x, left(p)) 
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Branch and Bound 

 General strategy: generate all children of the 

current E-vertex before selecting a new E-

vertex. 

• Strategies for selecting a new E-vertex: 

• LIFO order: depth first, using a stack. 

•FIFO order: breadth first, using a queue. 

•Best-first order: use a priority queue. 

• In each case, a bounding function is also 

used to kill vertices. 
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Example – the 8 puzzle 

 Eight tiles move about nine squares 

 The goal configuration is: 

 

 

 Tiles are moved from the initial configuration to reach the 
goal configuration 

 

 

 

 

 Notation for direction where the empty slot “moves”: 

ℓ = left, r = right, u=up, d=down 

1 2 3 

4 5 6 

7 8 
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1 2 3 

4 8 5 

7 6 

1 2 3 

4 5 

7 8 6 

1 2 3 

4 5 

7 8 6 

1 2 3 

4 5 6 

7 8 

   



Depth-first 

Expansion 

for the 8-

puzzle 
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LIFO order, 

using a stack 



Breadth-first Expansion for the 8-puzzle 
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FIFO order, 

using a queue 



Best-first Search with Branch and Bound 

 A cost function, c is associated with a best-first 
strategy 

 c(v) is the cost of finding a solution from vertex v  

 Reasonable measure of cost: number of additional 
vertices which must be generated in order to obtain 
a solution 

 Problem: c(v) is very difficult to compute, in general 
(without generating the solution first) 
• Therefore, an approximation ĉ is used 

• For the 8-puzzle, an appropriate approximation might be: 

ĉ = number of tiles which are out of place 

• Here, the empty slot is not considered as a tile 
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Best-first Expansion for the 8-puzzle 
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Best-first order, 

using a priority 

queue 



Desirable Properties for ĉ 

 Key properties: 

• ĉ should be easy to compute 

• ĉ should give a good approximation for c 

 Commonly used form for ĉ : 

ĉ(v)= ĝ(v)+k(v) 
 where: 

• ĝ(v) : an estimate of the cost to reach a solution vertex 

from v 
• k(v) : a weighted function of the cost to reach vertex 

from the root 
 In the 8-puzzle example: 

• ĝ(v) : the number of tiles which are out of place 

• k(v)=0 
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Selection of k(v) 

 k(v)=0 

• A cost already incurred into should not enter 
into the evaluation  

 k(v)>0 

• k(v)=0 favors deep searches 

• If |ĝ(v)c(v)| is large, then at very deep level the 
wrong path may get expanded 

• k(v) adds a breadth first component 

 Possible choice of k(v) for the 8-puzzle: 
length of path from the root to v 
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Important properties for ĉ 

 It is important to know whether a leaf vertex 

reached in the process is an optimal solution 

 An approximate cost function ĉ must be admissible, 

i.e. for all vertex pairs (v, w)  

ĉ(v) < ĉ(w)  c(v) < c(w) 

 where c(v) is the value of the best  leaf beneath 

vertex v   

 Hard in practice. Weaker condition: 

• ĉ(v)  c(v) for all vertices 

• ĉ(v) = c(v) for all answer vertices 
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0-1 Knapsack with Branch and Bound 

 Leaf vertex v is identified with the solution vector 

(xi, x2, …, xn) which defines a path from the root to 

v 

 Its’a a maximization problem, reverse inequalities 

 Definition for cost 
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0-1 Knapsack with Branch and Bound 

 Approximation function for a vertex x at depth j in 

the tree 

 

  

 where                                        denotes the profit 

obtain in the solution of the fractionary knapsack 

problem with items                                         and 

capacity W 

 Vertex-killing function: 
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0-1 Knapsack with Branch and Bound 

                                                   is the value obtained by 

applying a greedy strategy, with items ordered by profit for 

a knapsack with capacity 

 

 

 

 The vertex is killed whenever  

 

 

 Evaluation also halted when the computation of ĉ(x) yields 

an exact solution of the fractionary knapsack problem. 
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0-1 Knapsack w/ Branch and Bound Example 
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0-1 Knapsack w/ Branch and Bound Example 
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TSP Branch and Bound Example 

 Consider the traveling salesman problem. A 
salesman has to visit each of n cities (at 
least) once each, and wants to minimize total 
distance traveled. 

 Consider the route problem to be the problem 
of finding the shortest route through a set of 
cities visiting each city once 

 Split the node into two child problems 
• Shortest route visiting city A first 

• Shortest route not visiting city A first 

 Continue subdividing similarly as the tree 
grows 
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Bounding Heuristics 

 A heuristic is a rule of thumb. That is, a heuristic 

is generally a good idea but some times it doesn't 

work.  

 An example of a heuristic for packing a suitcase 

might be, put in the big items first such as your 

shoes, then put the small items in using up the 

remaining fragmented space.  

 For the TSP we might have heuristics for 

selecting the next city to visit. Maybe go to the 

nearest?  
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TSP (again) 
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 Lower bound for cost of any TSP tour: 



TSP example 
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TSP Inferences 

 Consider the edges in lexicographic order 

 Each time we branch, by considering the two 
children of a node, we try to infer additional 
decisions regarding which edges must be included 
or excluded from tours represented by those nodes. 
Rules for these inferences are: 

• If excluding an edge (x, y) would make it impossible for x or 

y to have as many as two adjacent edges in the tour, then 
(x, y) must be included. 

• If including (x, y) would cause x or y to have more than two 
edges adjacent in the tour, or would complete a non-tour 
cycle with edges already included, then (x, y) must be 
excluded. 
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TSP Pruning 

 When we branch, after 

making what inferences 

we can, we compute 

lower bounds for both 

children.  

• If the lower bound for a child 

is as high or higher than the 

lowest cost tour found so far, 

we can prune  that child and 

need not construct or 

consider its descendants. 
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Another graph for 

TSP 



TSP 

Pruning 

Example 
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Local Search Algorithms 

 Sometimes an optimal solution may be obtain if: 

• Start with a random solution. 

• Apply to the current solution a transformation from some 

given set of transformations to improve the solution. The 

improvement becomes the new "current" solution. 

• Repeat until no transformation in the set improves the 

current solution. 

 Note: the method makes sense if we we can restrict our set 

of transformations to a small set, so we can consider all 

transformations in a short time (e.g. for a problem of size n, 

O(n2)…O(n3) transformations) 

 Transformations are called local transformations, and the 

method is called local search 
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Local Search Example: the MST problem 
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Transformation: 

remove an edge 

and add another 

to decrease cost 

Start 



Some conclusions 

 Backtracking 

• easy to implement 

• little memory required 

• slow to run 

 Branch & Bound 

• difficult to implement 

• large amounts of memory 

required 

• maybe faster than 

backtracking 

 Dynamic Programming 

• tricky to see the solution 

construction 

• some memory requirements 

• polynomially fast 

• easy to implement, 

especially via memoization 

 Greedy Algorithms 

• polynomially fast 

• little memory required 

• need proofs for optimality of 

solution, or the solution may 

be suboptimal 
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P and NP 

 If there’s an algorithm to solve a problem that runs 
in polynomial time, the problem is said to be in set 
P. 

 If the outcome of an algorithm to solve a problem 
can be verified in polynomial time, the problem is 
said to be in the set NP (non-deterministic 
polynomial). 

 There is a set of problems in NP for which a 
polynomial solution to one is a solution to all. The 
set is called NP-complete. 

 If such a polynomial solution exists, P=NP. 

 It is not known whether P  NP or P = NP. 
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Examples of NP Complete Problems 

 

 Traveling Salesman Problem 

 0/1 Knapsack Problem 

 Graph Coloring Problem: can you color a 

graph using k ≥ 3 colors such that no 

adjacent vertices have the same color? 
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Reading 

 

 AHU, chapter 10, sections 4 and 5 

 Preiss, chapter: Algorithmic Patterns and 

Problem Solvers, section Backtracking 

Algorithms 

 CLR, chapter 35, section 3, CLRS chapter 

34, sections 1-3 

 Notes 
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