
DSA - lecture 11 - T.U. Cluj-Napoca - M. Joldos 1

Internal sorting

Sorting

DSA - lecture 11 - T.U. Cluj-Napoca - M. Joldos 2

 We assume that objects to be sorted are records

consisting of one or more fields. One of the fields,

called the key is of a type for which a linear

ordering relationship ‘<‘ is defined.

 The sorting problem: to arrange a sequence of

records so that the values of their key fields form a

nondecreasing sequence, i.e. for records r1, r2,...,

rn with key values k1, k2,..., kn respectively, we must

produce the same records in an order

 such that

Sorting

DSA - lecture 11 - T.U. Cluj-Napoca - M. Joldos 3

 Criteria used to evaluate the running time of an

internal sorting algorithm are:

• The number of steps required to sort n records;

• The number of comparisons between keys needed to sort n

records (if the comparison is expensive);

• The number of times the records must be moved

 Simple sorting schemes worth our attention

because they:

• Are easy to code

• Are fastest for small input

• Form a context for developing ground rules

• Are fastest in some special situations

Sorting

DSA - lecture 11 - T.U. Cluj-Napoca - M. Joldos 4

Bubblesort

void bubble(ITEM[] a, int l, int r)

{

 for (int i = l; i < r; i++)

 for (int j = r; j > i; j--)

 compExch(a, j-1, j);

}

For each i from l to r-1, the inner (j) loop puts the minimum element

among the elements in a[i], ..., a[r] into a[i] by passing from right to left

through the elements, compare–exchanging successive elements. The

smallest one moves on all such comparisons, so it "bubbles" to the

beginning.

DSA - lecture 11 - T.U. Cluj-Napoca - M. Joldos 5

Complexity of Bubblesort

 For an array of size N, in the worst case:

• 1st passage through the inner loop: N1

comparisons and N1 swaps

• ...

• (N1)st passage through the inner loop: 1

comparison and 1 swap

• All together: c ((N-1) + (N-2) + ... + 1) +k

 where c is the time required to do one

comparison and one swap

DSA - lecture 11 - T.U. Cluj-Napoca - M. Joldos 6

Complexity of Bubblesort

 c ((N 1) + (N2) + ... + 1) +k

 (N  1) + (N  2) + ... + 1

 +

 1 + 2 +… + (N  1) =

 = N + N + … + N = N  (N  1)

 so our function equals

 c N  (N  1)/2 + k = 1/2c (N2  N) + k

 complexity O(N2).

 1/2c (N2  N) + k  KN2

 for which values of K and N is this inequality true?

 For example, K = c + k and N > 0 (provided N can only take
integer values).

DSA - lecture 11 - T.U. Cluj-Napoca - M. Joldos 7

Selection Sort

void selection(ITEM[] a, int l, int r)

{

 for (int i = l; i < r; i++)

 {

 int min = i;

 for (int j = i+1; j <= r; j++)

 if (less(a[j], a[min]))

 min = j;

 exch(a, i, min);

 }

}

For each i from l to r-1, exchange a[i] with the minimum element in a[i],

..., a[r]. As the index i travels from left to right, the elements to its left are

in their final position in the array (and will not be touched again), so the

array is fully sorted when i reaches the right end.

DSA - lecture 11 - T.U. Cluj-Napoca - M. Joldos 8

Complexity of Selection Sort

 Complexity of selection sort:

• Same number of iterations as for bubblesort in the

worst case

• for some different constant c’

 c’ (N2  N) + k

• also O(N2)

DSA - lecture 11 - T.U. Cluj-Napoca - M. Joldos 9

Insertion Sort

void insertion(ITEM[] a, int l, int r)

{

 int i;

 for (i = r; i > l; i--)

 compExch(a, i-1, i);

 for (i = l+2; i <= r; i++)

 {

 int j = i; ITEM v = a[i];

 while (less(v, a[j-1]))

 {

 a[j] = a[j-1];

 j--;

 }

 a[j] = v;

 }

}

For each i, it sorts the elements a[l], ..., a[i] by moving one

position to the right elements in the sorted list a[l], ..., a[i-1]

that are larger than a[i], then putting a[i] into its proper

position.

DSA - lecture 11 - T.U. Cluj-Napoca - M. Joldos 10

Complexity of Insertion Sort

 Worst case: has to make N  (N  1)/2

comparisons and shifts to the right

• O(N2) worst case complexity

 Best case: array already sorted, no shifts.

DSA - lecture 11 - T.U. Cluj-Napoca - M. Joldos 11

Shellsort

 Insertion sort

• slow because the only exchanges it does involve

adjacent items

• items can move through the array only one place

at a time

 Shellsort

• simple extension of insertion sort that gains speed

by allowing exchanges of elements that are far

apart.

DSA - lecture 11 - T.U. Cluj-Napoca - M. Joldos 12

Shellsort Example

insertion sorting the subfile at

positions 0, 4, 8, 12

insertion sorting the subfile at

positions 1, 5, 9, 13

insertion sorting the subfile at

positions 2, 6, 10, 14

insertion sorting the subfile at

positions 3, 7, 11

we can achieve the same result

by inserting each element into

position into its subfile, going

back four at a time

DSA - lecture 11 - T.U. Cluj-Napoca - M. Joldos 13

Shellsort

void shell(ITEM[] a, int l, int r)

{

 int h;

 for (h = 1; h <= (r-l)/9; h = 3*h+1);

 for (; h > 0; h /= 3)

 for (int i = l+h; i <= r; i++)

 {

 int j = i;

 ITEM v = a[i];

 while (j >= l+h && less(v, a[j-h]))

 {

 a[j] = a[j-h];

 j -= h;

 }

 a[j] = v;

 }

}

The increment sequence 1 4 13

40 121 364 1093 3280 9841 ...

with a ratio between increments

of about one-third, was

recommended by Knuth in 1969

Mergesort

Divide-and-conquer.

To sort A[p .. r]:

1. Divide Step

• If a given array A has zero or one element, simply

return; it is already sorted. Otherwise,

split A[p .. r] into two sub-arrays A[p .. q]

and A[q + 1 .. r], each containing about half of the

elements of A[p .. r]. That is, q is the halfway

point of A[p .. r].

Mergesort

2. Conquer Step

• Conquer by recursively sorting the two sub-

arrays A[p .. q] and A[q + 1 .. r].

3. Combine Step

• Combine the elements back in A[p .. r] by merging

the two sorted subarrays A[p .. q] and A[q + 1 .. r]

into a sorted sequence. To accomplish this step,

we will define a procedure MERGE (A, p, q, r).

Note that the recursion bottoms out when the

sub-array has just one element, so that it is

trivially sorted.

DSA - lecture 12 - T.U.Cluj-Napoca - M. Joldos 16

Merge Sort Algorithm

Note. Algorithm here shows

merge in main memory. See

next slide for secondary

memory.

DSA - lecture 11 - T.U. Cluj-Napoca - M. Joldos 17

 A sorting algorithm sorts in place (in situ) if

additional space for only a constant number of

elements is needed.

• Typically the data to be sorted is a record containing a key,

which determines the sort order, and further satellite data.

• A sorting algorithm is called stable if the order of elements

with equal keys is preserved. Stability is only relevant if

satellite data exists. In practice, this is typically the case.

For our purposes, we assume that the elements consist

only of the keys.

• Heapsort sorts in place, is not stable, and has a running

time of O(n lg n) in the average and worst case.

Heapsort

DSA - lecture 11 - T.U. Cluj-Napoca - M. Joldos 18

 n insert operations for a heap result in O(n log n)

time

 Can we build a heap for n given elements faster?

(O(n))

 Insert elements from a given sequence S in a

priority queue/heap

 After this process the sequence is empty

 Remove the minimum and insert element in S

 Repeat this step until every element is inserted

back in S

Heapsort

DSA - lecture 11 - T.U. Cluj-Napoca - M. Joldos 19

Heapsort – heap in array

boolean less(int i, int j) {

 return pq[i].less(pq[j]);

}

void exch(int i, int j) {

 ITEM t = pq[i]; pq[i] = pq[j]; pq[j] = t;

}

private void swim(int k) {

// bottom up heapify

 while (k > 1 && less(k/2, k))

 { exch(k, k/2); k = k/2; }

}

private void sink(int k, int N) {

// top down heapify

 while (2*k <= N) {

 int j = 2*k;

 if (j < N && less(j, j+1)) j++;

 if (!less(k, j)) break;

 exch(k, j); k = j;

 }

}

ITEM[] pq;

int N;

void makePQ(int maxN) {

 pq = new ITEM[maxN+1];

 N = 0;

}

boolean isEmpty() {

 return N == 0;

}

void insert(ITEM v) {

 pq[++N] = v; swim(N);

}

ITEM getmax() {

 exch(1, N);

 sink(1, N-1);

 return pq[N--];

}

DSA - lecture 11 - T.U. Cluj-Napoca - M. Joldos 20

Heapsort

void sort(ITEM[] a, int l, int r) {

 PQsort(a, l, r);

}

void PQsort(ITEM[] a, int l, int r) {

 int k;

 PQ pq = makePQ(r-l+1);

 for (k = l; k <= r; k++)

 pq.insert(a[k]);

 for (k = r; k >= l; k--)

 a[k] = pq.getmax();

}

DSA - lecture 11 - T.U. Cluj-Napoca - M. Joldos 21

Heapsort Example

Data set: 150 70 30 10 20 60 40 50 140 100 80 90 130 110

DSA - lecture 11 - T.U. Cluj-Napoca - M. Joldos 22

Heapsort Example

DSA - lecture 11 - T.U. Cluj-Napoca - M. Joldos 23

Heapsort Example

DSA - lecture 11 - T.U. Cluj-Napoca - M. Joldos 24

Heapsort Example

DSA - lecture 11 - T.U. Cluj-Napoca - M. Joldos 25

Heapsort Example

DSA - lecture 11 - T.U. Cluj-Napoca - M. Joldos 26

Heapsort Example

DSA - lecture 11 - T.U. Cluj-Napoca - M. Joldos 27

Heapsort Example

DSA - lecture 11 - T.U. Cluj-Napoca - M. Joldos 28

… Heapsort Example

DSA - lecture 11 - T.U. Cluj-Napoca - M. Joldos 29

 Quicksort sorts in place and is not stable

 It has a running time of (n lg n) in the average

case and beats Heapsort by a factor of 2 to 3.

 It has a worst case running time of (n2).

 It follows the divide-and-conquer approach:

• Divide: rearranges elements of A[p…r] into A[p…q] and

A[q+1…r] such that all elements of A[p…q] are less than or

equal to the elements of A[q+1…r], for some q.

• Conquer: sort A[p…q] and A[q+1…r] recursively.

• Combine: since sorting is done in place, no work needed.

Quicksort

DSA - lecture 11 - T.U. Cluj-Napoca - M. Joldos 30

Quicksort Algorithm

Quicksort partitioning

Choose pivot – here is E

scan from the left and stop at the S,

scan from the right and stop at the A

exchange the S and the A

scan from the left; stop at the O,

scan from the right;stop at the E,

exchange the O and the E.

scanning indices cross: continue the scan

from the left until we stop at the R, then

continue the scan from the right (past the

R) until we stop at the E.

To finish the process, we exchange the

partitioning element (the E at the right)

with the R.

DSA - lecture 11 - T.U. Cluj-Napoca - M. Joldos 32

Quicksort Operation

Pivot selection

Partition, recursive

call, pivot selection

DSA - lecture 11 - T.U. Cluj-Napoca - M. Joldos 33

Quicksort operation

Partition, recursive

call, base case

Recursive call, …,

base case, join

DSA - lecture 11 - T.U. Cluj-Napoca - M. Joldos 34

Quicksort operation

Recursive call, pivot

selection

Partition, …, recursive

call, base case

DSA - lecture 11 - T.U. Cluj-Napoca - M. Joldos 35

Quicksort operation

Join, join

DSA - lecture 11 - T.U. Cluj-Napoca - M. Joldos 36

 The worst case for quick-sort occurs when the pivot is the

unique minimum or maximum element

 One of L and G has size n − 1 and the other has size 0

 The running time is proportional to the sum n + (n − 1) + … +

2 + 1

 Thus, the worst-case running time of quick-sort is O(n2)

Running Time of Quicksort

DSA - lecture 11 - T.U. Cluj-Napoca - M. Joldos 37

 Consider a recursive call of quick-sort on a

sequence of size s

• Good call: the sizes of L and G are each less than 3s/4

• Bad call: one of L and G has size greater than 3s/4

 A call is good with probability 1/2

• 1/2 of the possible pivots cause good calls:

Expected Running Time

DSA - lecture 11 - T.U. Cluj-Napoca - M. Joldos 38

 Probabilistic Fact: The expected number of coin tosses

required in order to get k heads is 2k

 For a node of depth i, we expect

• i/2 ancestors are good calls

• The size of the input sequence for the current call is at most

(3/4)i/2n

 Therefore, we have

• For a node of depth 2log4/3n, the expected input size is one

• The expected height of the quick-sort tree is O(log n)

 The amount or work done at the nodes of the same depth

is O(n)

 Thus, the expected running time of quick-sort is O(n log n)

Expected Running Time

DSA - lecture 11 - T.U. Cluj-Napoca - M. Joldos 39

Expected Running Time

DSA - lecture 11 - T.U. Cluj-Napoca - M. Joldos 40

 MergeSort and HeapSort have a worst case

running time of O(n log n), Quicksort has that at

least as average case running time.

• Can we sort asymptotically even faster?

• It turns out that all sorting algorithms which are based on

comparison must have O(n log n) worst case running.

• All the sorting algorithms introduced so far are comparison

sorts and thus must have O(n log n) worst case running.

• If we allow other operations than comparison we can sort in

O(n).

• CountingSort, RadixSort and BucketSort are examples of

such algorithms.

Lower Bound for Sorting, Sorting in Linear Time

DSA - lecture 11 - T.U. Cluj-Napoca - M. Joldos 41

 Assume the input sequence is a1, a2, …, an and assume

that we are – without loss of generality – only allowed to

compare two elements ai and aj by ai  aj.

 The decision tree represents all the possible

comparisons which have to be performed for

establishing the order of the elements.

The Decision-Tree Model (1)

DSA - lecture 11 - T.U. Cluj-Napoca - M. Joldos 42

 The leaves indicate the permutation of elements for
a sorted sequence.

 n! different permutations for ordering n elements 
there must be n! leaves in the tree.

 A path from the root to a leaf determines the
comparisons which have to be performed to
establish the order indicated in the leaf. Hence, the
height of this path = number of comparisons
needed.

 The minimum height of leaves represents the best
case number of comparisons needed to establish
the order of elements. For n elements, this is n – 1
= (n).

The Decision-Tree Model (2)

DSA - lecture 11 - T.U. Cluj-Napoca - M. Joldos 43

 The maximal height of leaves represents the worst
case number of comparisons needed to establish
the order of elements.

 We get a lower bound for the worst case by
observing that a binary tree of height h as no more
than 2h elements, hence we can conclude:

 n!  2h

 or equivalently h ≥ lg (n!). From Stirling’s
approximation we know that n! > (n / e)n, hence

 h ≥ lg (n / e)n

 = n lg n – n lg e

 =  (n lg n)

A Lower Bound for the Worst Case

DSA - lecture 11 - T.U. Cluj-Napoca - M. Joldos 44

 As a consequence, HeapSort and MergeSort are

asymptotically optimal.

 However, algorithms may still differ in their constant

factors. No practical algorithm can achieve the

minimal number of comparisons since this would

imply that the results of all previous decisions are

memorized.

 Furthermore, this is a lower bound for the number

of element comparisons, and thus for the number of

steps. However, algorithms may still differ in the

number of element moves they require.

Interpretation of the Lower Bound

DSA - lecture 11 - T.U. Cluj-Napoca - M. Joldos 45

 CountingSort is an algorithm which requires that the
keys are in the range of 1 to k and exploits the fact
that keys can be used for indexing an array, hence it
is not based on comparison.

 First we count the occurrences of each key of the
sequence A and store the count in array C:

 Then we determine the number of elements which are
less than or equal to each of the keys by calculating
the prefix sums:

Counting Sort

1 2 3 4 5 6

A = 3 4 1 4 1 1

C = 3 0 1 2

C = 3 0 4 6

DSA - lecture 11 - T.U. Cluj-Napoca - M. Joldos 46

 We produce the output in sequence B by going through A

and determining for each element to which position in B

goes by looking that up in C. Then we decrease the entry for

that element in C.

Counting Sort

1 2 3 4 5 6

A = 3 4 1 4 1 1

B = 1

C = 2 3 4 6

B = 1 1 1 3

C = 1 3 4 6

B = 1 1 1 3 4

C = 1 3 4 5

DSA - lecture 11 - T.U. Cluj-Napoca - M. Joldos 47

1. for i 0 to k (k)

2. do C[i] 0 (1)

3. for j 1 to length[A] (n)

4. do C[A[j]] C[A[j]]+1 (1) ((1) (n)= (n))

5. // C[i] contains number of elements equal to i

6. for i 1 to k (k)

7. do C[i] = C[i] + C[i1] (1) ((1) (n)= (n))

8. // C[i] contains number of elements  i.

9. for j length[A] downto 1 (n)

10. do B[C[A[j]]] A[j] (1) ((1) (n)= (n))

11. C[A[j]] C[A[j]]-1 (1) ((1) (n)= (n))

• Total cost is (k+n), suppose k=O(n), then total cost is (n).
Beat (nlg n).

Analisys of Counting Sort

DSA - lecture 11 - T.U. Cluj-Napoca - M. Joldos 48

Example of Counting Sort

DSA - lecture 11 - T.U. Cluj-Napoca - M. Joldos 49

 Suppose you have a sequence of integers to sort.

Consider their decimal representation and

suppose it requires two digits. Then we sort them

by first sorting them by to their last digit and then

by their first digit.

Radix Sort

21 21 14

17  14  17

75 75 21

14 17 75

DSA - lecture 11 - T.U. Cluj-Napoca - M. Joldos 50

 Suppose each digit is in the range of 1 to k

and k is not too large. Then we can use

counting sort to sort on the i-th digit. Thus

each pass over n digits takes (n + k)

 Since there are d passes, the total running

time is (d (n + k)).

 This can also be applied to other sequences

of keys, like year-month-date.

Radix Sort

DSA - lecture 11 - T.U. Cluj-Napoca - M. Joldos 51

 Assume that our keys are real numbers in the

interval [0,1). We create say 10 buckets for each of

the intervals [i / 10, (i +1) / 10) and store each

element in its appropriate bucket.

 Finally we sort the buckets with e.g. insertion sort.

 This takes (n) on average, assuming that the

number are equally distributed and we have chosen

the intervals sufficiently small.

 Again, this is not based on comparisons, rather we

assume that we can multiply the keys by 10 and

take the integer part to select the bucket.

Bucket Sort

DSA - lecture 11 - T.U. Cluj-Napoca - M. Joldos 52

Bucket Sort (Bin Sort) Algorithm

DSA - lecture 11 - T.U. Cluj-Napoca - M. Joldos 53

n length[A] (1)

for i 1 to n O(n)

 do insert A[i] into bucket B[nA[i]] (1) (i.e. total O(n))

for i 0 to n1 O(n)

 do sort bucket B[i] with insertion sort O(ni
2) (i=0

n-1 O(ni
2))

Concatenate bucket B[0],B[1],…, B[n-1] O(n)

Where ni is the size of bucket B[i].

Thus T(n) = (n) + i=0
n-1 O(ni

2)

 = (n) + nO(2-1/n) = (n). Beat (nlg n)

Analysis of Bucket Sort

DSA - lecture 11 - T.U. Cluj-Napoca - M. Joldos 54

Operation of Bucket Sort

DSA - lecture 11 - T.U. Cluj-Napoca - M. Joldos 55

 Even for a simple problem as sorting, there are
many algorithms. Which one should we use? It
depends on the situation:

 Is the size of the input large (e.g. all courses) or
small (e.g. courses a student is taking)?

 For a small input size O(n2) algorithms like
InsertionSort perform better, for a large size
O(n lg n) algorithms.

 Do the elements to be sorted require lots of
memory?
• If so, we can avoid moving them around during sorting by

using an auxiliary sequence with pointers to the elements
instead and moving only the pointers.

• If they are small, we better sort them directly.

Selecting a Sorting Algorithm (1)

DSA - lecture 11 - T.U. Cluj-Napoca - M. Joldos 56

 Can elements have the same keys? If so, do we require a
stable sort?

• O(n2) algorithms tend to be stable, O(n log n) in place algorithms
not.

• However, we can make any unstable algorithm stable by
adding a key with the position of the elements in the original
array. This costs extra space and extra time for the
comparisons.

• If we decided anyway to sort the sequence of pointers
rather than the elements, we can use the position of the
elements in the unsorted sequence in comparisons. In this
case, no additional space is required.

 Do we require guarantees on the sorting time, e.g. in a hard
realtime environment (e.g. in control systems, networks)?

• This rules out Quicksort because of its (n2) worst case behavior

Selecting a Sorting Algorithm (2)

DSA - lecture 11 - T.U. Cluj-Napoca - M. Joldos 57

 Do we have a limited amount of space available, like in
embedded processor?

• This rules out MergeSort since it requires in the order of n extra

space and it makes Quicksort questionable since it requires also
in the order of n extra space in the worst case. However, we can
improve Quicksort to require only in the order of lg n extra space.

 Can the sequence be so large that it does not completely fit
into main memory and virtual memory is going to be used?

• If so, sorting algorithms with good local behavior are to be
preferred.

• If we are at element A[i] in the Heapify procedure of HeapSort, then

the next element accessed with be A[2 i] or A[2 i+1], and so forth, so
elements are accessed all over the array in quick succession.

• The Partition procedure of Quicksort accesses A[i], then A[i+1], etc.,

as well as A[j], then A[j–1], etc., so has a good local behavior. Most

O(n2) algorithms have good local behavior.

Selecting a Sorting Algorithm (3)

DSA - lecture 11 - T.U. Cluj-Napoca - M. Joldos 58

 Is the input so big that is cannot fit into main

memory and too big for virtual memory?

• Then we have to use external sorting algorithms anyway.

 Do we know more about the input which we can

exploit for sorting in (n)?

• If the keys are in a small range of integers (e.g. the age of a

person, year of printing), we can use CountingSort.

• If each key is a sequence of keys which can be compared

on their own we can use RadixSort.

• If the keys are real number over an interval and are

distributed evenly, we can use BucketSort.

Selecting a Sorting Algorithm (4)

DSA - lecture 11 - T.U. Cluj-Napoca - M. Joldos 59

Reading

 AHU, chapter 8

 Preiss, chapter: Sorting Algorithms and

Sorters

 CLR, chapters 7 section 7.4, 8 sections 8.1,

8.2, 9, CLRS chapter 2, sect. 1, chapters 6,

7, 8

 Notes

