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Internal sorting 

Sorting 
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 We assume that objects to be sorted are records 

consisting of one or more fields. One of the fields, 

called the key is of a type for which a linear 

ordering relationship ‘<‘ is defined. 

 The sorting problem: to arrange a sequence of 

records so that the values of their key fields form a 

nondecreasing sequence, i.e. for records r1, r2,..., 

rn with key values k1, k2,..., kn respectively, we must 

produce the same records in an order                                    

   such that 

 

Sorting 
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 Criteria used to evaluate the running time of an 

internal sorting algorithm are: 

• The number of steps required to sort n records; 

• The number of comparisons between keys needed to sort n 

records (if the comparison is expensive); 

• The number of times the records must be moved 

 Simple sorting schemes worth our attention 

because they: 

• Are easy to code 

• Are fastest for small input 

• Form a context for developing ground rules 

• Are fastest in some special situations 

Sorting 
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Bubblesort 

void bubble(ITEM[] a, int l, int r)  

{  

    for (int i = l; i < r; i++)  

        for (int j = r; j > i; j--)  

           compExch(a, j-1, j);  

}  

For each i from l to r-1, the inner (j) loop puts the minimum element 

among the elements in a[i], ..., a[r] into a[i] by passing from right to left 

through the elements, compare–exchanging successive elements. The 

smallest one moves on all such comparisons, so it "bubbles" to the 

beginning.  
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Complexity of Bubblesort 

 For an array of size N, in the worst case: 

• 1st passage through the inner loop: N1 

comparisons and N1 swaps 

• ... 

• (N1)st passage through the inner loop: 1 

comparison and 1 swap 

• All together: c ((N-1) + (N-2) + ... + 1) +k  

 where c is the time required to do one 

comparison and one swap 
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Complexity of Bubblesort 

 c ((N 1) + (N2) + ... + 1) +k 

 (N  1) + (N  2) + ... + 1 

 + 

 1 + 2 +… + (N  1) =  

 = N + N + … + N = N  (N  1) 

 so our function equals 

 c N  (N  1)/2 + k = 1/2c (N2  N) + k 

 complexity O(N2). 

 1/2c (N2  N) + k  KN2  

 for which values of K and N is this inequality true? 

 For example, K = c + k and N > 0 (provided N can only take 
integer values). 
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Selection Sort 

void selection(ITEM[] a, int l, int r) 

{  

  for (int i = l; i < r; i++)  

  {  

     int min = i;  

     for (int j = i+1; j <= r; j++)  

      if  (less(a[j], a[min]))  

          min = j;  

     exch(a, i, min);  

  }  

}  

For each i from l to r-1, exchange a[i] with the minimum element in a[i], 

..., a[r]. As the index i travels from left to right, the elements to its left are 

in their final position in the array (and will not be touched again), so the 

array is fully sorted when i reaches the right end.  
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Complexity of Selection Sort 

 Complexity of selection sort: 

• Same number of iterations as for bubblesort in the 

worst case 

• for some different constant c’ 

  c’ (N2  N) + k  

• also O(N2) 
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Insertion Sort 

void insertion(ITEM[] a, int l, int r)  

{  

  int i;  

  for (i = r; i > l; i--)  

      compExch(a, i-1, i);  

  for (i = l+2; i <= r; i++)  

    {  

      int j = i; ITEM v = a[i];  

      while (less(v, a[j-1]))  

        {  

           a[j] = a[j-1]; 

           j--;  

        }  

      a[j] = v;  

    }  

}  

For each i, it sorts the elements a[l], ..., a[i] by moving one 

position to the right elements in the sorted list a[l], ..., a[i-1] 

that are larger than a[i], then putting a[i] into its proper 

position.  
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Complexity of Insertion Sort 

 Worst case: has to make N  (N  1)/2 

comparisons and shifts to the right 

• O(N2) worst case complexity  

 Best case: array already sorted, no shifts. 
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Shellsort 

 Insertion sort  

• slow because the only exchanges it does involve 

adjacent items 

• items can move through the array only one place 

at a time  

 Shellsort  

• simple extension of insertion sort that gains speed 

by allowing exchanges of elements that are far 

apart.  
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Shellsort Example 

insertion sorting the subfile at 

positions 0, 4, 8, 12  

insertion sorting the subfile at 

positions 1, 5, 9, 13  

insertion sorting the subfile at 

positions 2, 6, 10, 14  

insertion sorting the subfile at 

positions 3, 7, 11  

we can achieve the same result 

by inserting each element into 

position into its subfile, going 

back four at a time  
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Shellsort 

void shell(ITEM[] a, int l, int r)  

{  

  int h;  

  for (h = 1; h <= (r-l)/9; h = 3*h+1);  

  for ( ; h > 0; h /= 3)  

    for (int i = l+h; i <= r; i++)  

    {  

      int j = i;  

      ITEM v = a[i];  

      while (j >= l+h && less(v, a[j-h]))  

      {  

        a[j] = a[j-h];  

        j -= h;  

      }  

      a[j] = v;  

    }  

}  

The increment sequence 1 4 13 

40 121 364 1093 3280 9841 ... 

with a ratio between increments 

of about one-third, was 

recommended by Knuth in 1969  



Mergesort 

Divide-and-conquer. 

To sort A[p .. r]: 

1. Divide Step 

• If a given array A has zero or one element, simply 

return; it is already sorted. Otherwise, 

split A[p .. r] into two sub-arrays A[p .. q] 

and A[q + 1 .. r], each containing about half of the 

elements of A[p .. r]. That is, q is the halfway 

point of A[p .. r]. 

 



Mergesort 

2. Conquer Step 

• Conquer by recursively sorting the two sub-

arrays A[p .. q] and A[q + 1 .. r]. 

3. Combine Step 

• Combine the elements back in A[p .. r] by merging 

the two sorted subarrays A[p .. q] and A[q + 1 .. r] 

into a sorted sequence. To accomplish this step, 

we will define a procedure MERGE (A, p, q, r). 

Note that the recursion bottoms out when the 

sub-array has just one element, so that it is 

trivially sorted. 
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Merge Sort Algorithm 

Note. Algorithm here shows 

merge in main memory. See 

next slide for secondary 

memory. 
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 A sorting algorithm sorts in place (in situ) if 

additional space for only a constant number of 

elements is needed. 

• Typically the data to be sorted is a record containing a key, 

which determines the sort order, and further satellite data. 

• A sorting algorithm is called stable if the order of elements 

with equal keys is preserved. Stability is only relevant if 

satellite data exists. In practice, this is typically the case. 

For our purposes, we assume that the elements consist 

only of the keys. 

• Heapsort sorts in place, is not stable, and has a running 

time of O(n lg n) in the average and worst case. 

 

Heapsort 
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 n insert operations for a heap result in O(n log n) 

time 

 Can we build a heap for n given elements faster? 

(O(n)) 

 Insert elements from a given sequence S in a 

priority queue/heap 

 After this process the sequence is empty 

 Remove the minimum and insert element in S 

 Repeat this step until every element is inserted 

back in S 

Heapsort 
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Heapsort – heap in array 

boolean less(int i, int j) {  

  return pq[i].less(pq[j]);  

}  

void exch(int i, int j) {  

  ITEM t = pq[i]; pq[i] = pq[j]; pq[j] = t;  

}  

private void swim(int k) {  

// bottom up heapify  

  while (k > 1 && less(k/2, k))  

    { exch(k, k/2); k = k/2; }  

}  

private void sink(int k, int N) {  

// top down heapify 

  while (2*k <= N) {  

    int j = 2*k;  

    if (j < N && less(j, j+1)) j++;  

    if (!less(k, j)) break;  

      exch(k, j); k = j;  

  }  

}  

ITEM[] pq;  

int N;  

void makePQ(int maxN) {  

  pq = new ITEM[maxN+1];  

  N = 0;  

}  

boolean isEmpty() {  

  return N == 0;  

}  

void insert(ITEM v) {  

  pq[++N] = v; swim(N);  

}  

ITEM getmax() {  

   exch(1, N);  

   sink(1, N-1);  

   return pq[N--];  

}  
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Heapsort 

void sort(ITEM[] a, int l, int r) {  

   PQsort(a, l, r);  

}  

void PQsort(ITEM[] a, int l, int r) {  

  int k;  

  PQ pq = makePQ(r-l+1);  

  for (k = l; k <= r; k++)  

      pq.insert(a[k]);  

  for (k = r; k >= l; k--)  

      a[k] = pq.getmax();  

} 

 



DSA - lecture 11 - T.U. Cluj-Napoca - M. Joldos 21 

Heapsort Example 

Data set: 150 70 30 10 20 60 40 50 140 100 80 90 130 110 
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Heapsort Example 
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Heapsort Example 
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Heapsort Example 
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Heapsort Example 
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Heapsort Example 
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Heapsort Example 
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… Heapsort Example 
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 Quicksort sorts in place and is not stable 

 It has a running time of (n lg n) in the average 

case and beats Heapsort by a factor of 2 to 3. 

 It has a worst case running time of (n2). 

 It follows the divide-and-conquer approach: 

• Divide: rearranges elements of A[p…r] into A[p…q] and 

A[q+1…r] such that all elements of A[p…q] are less than or 

equal to the elements of A[q+1…r], for some q. 

• Conquer: sort A[p…q] and A[q+1…r] recursively. 

• Combine: since sorting is done in place, no work needed. 

Quicksort 
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Quicksort Algorithm 



Quicksort partitioning 

Choose pivot – here is E 

 

scan from the left and stop at the S,  

scan from the right and stop at the A 

exchange the S and the A 

 

scan from the left; stop at the O,  

scan from the right;stop at the E,  

exchange the O and the E.  

scanning indices cross: continue the scan 

from the left until we stop at the R, then 

continue the scan from the right (past the 

R) until we stop at the E.  

To finish the process, we exchange the 

partitioning element (the E at the right) 

with the R.   
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Quicksort Operation 

Pivot selection 

Partition, recursive 

call, pivot selection 
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Quicksort operation 

Partition, recursive 

call, base case 

 

Recursive call, …, 

base case, join 
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Quicksort operation 

Recursive call, pivot 

selection 

Partition, …, recursive 

call, base case 
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Quicksort operation 

Join, join 
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 The worst case for quick-sort occurs when the pivot is the 

unique minimum or maximum element  

 One of L and G has size n − 1 and the other has size 0 

 The running time is proportional to the sum n + (n − 1) + … + 

2 + 1 

 Thus, the worst-case running time of quick-sort is O(n2) 

Running Time of Quicksort 
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 Consider a recursive call of quick-sort on a 

sequence of size s 

• Good call: the sizes of L and G are each less than 3s/4 

• Bad call: one of L and G has size greater than 3s/4 

 

 

 

 

 A call is good with probability 1/2 

• 1/2 of the possible pivots cause good calls: 

Expected Running Time 
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 Probabilistic Fact: The expected number of coin tosses 

required in order to get k heads is 2k 

 For a node of depth i, we expect 

• i/2 ancestors are good calls 

• The size of the input sequence for the current call is at most 

(3/4)i/2n 

 Therefore, we have 

• For a node of depth 2log4/3n, the expected input size is one 

• The expected height of the quick-sort tree is O(log n) 

 The amount or work done at the nodes of the same depth 

is O(n)  

 Thus, the expected running time of quick-sort is O(n log n) 

 

Expected Running Time 
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Expected Running Time 
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 MergeSort and HeapSort have a worst case 

running time of O(n log n), Quicksort has that at 

least as average case running time. 

• Can we sort asymptotically even faster? 

• It turns out that all sorting algorithms which are based on 

comparison must have O(n log n) worst case running. 

• All the sorting algorithms introduced so far are comparison 

sorts and thus must have O(n log n) worst case running. 

• If we allow other operations than comparison we can sort in 

O(n). 

• CountingSort, RadixSort and BucketSort are examples of 

such algorithms. 

Lower Bound for Sorting, Sorting in Linear Time 
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 Assume the input sequence is a1, a2, …, an and assume 

that we are – without loss of generality – only allowed to 

compare two elements ai and aj by ai  aj. 

 The decision tree represents all the possible 

comparisons which have to be performed for 

establishing the order of the elements. 

 

The Decision-Tree Model (1) 
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 The leaves indicate the permutation of elements for 
a sorted sequence. 

 n! different permutations for ordering n elements  
there must be n! leaves in the tree. 

 A path from the root to a leaf determines the 
comparisons which have to be performed to 
establish the order indicated in the leaf. Hence, the 
height of this path = number of comparisons 
needed. 

 The minimum height of leaves represents the best 
case number of comparisons needed to establish 
the order of elements. For n elements, this is n – 1 
= (n). 

The Decision-Tree Model (2) 
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 The maximal height of leaves represents the worst 
case number of comparisons needed to establish 
the order of elements. 

 We get a lower bound for the worst case by 
observing that a binary tree of height h as no more 
than 2h elements, hence we can conclude: 

     n!  2h 

 or equivalently h ≥ lg (n!). From Stirling’s 
approximation we know that n! > (n / e)n, hence 

  h ≥ lg (n / e)n 

   = n lg n – n lg e 

   =  (n lg n) 

 

A Lower Bound for the Worst Case 
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 As a consequence, HeapSort and MergeSort are 

asymptotically optimal. 

 However, algorithms may still differ in their constant 

factors. No practical algorithm can achieve the 

minimal number of comparisons since this would 

imply that the results of all previous decisions are 

memorized. 

 Furthermore, this is a lower bound for the number 

of element comparisons, and thus for the number of 

steps. However, algorithms may still differ in the 

number of element moves they require. 

Interpretation of the Lower Bound 
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 CountingSort is an algorithm which requires that the 
keys are in the range of 1 to k and exploits the fact 
that keys can be used for indexing an array, hence it 
is not based on comparison. 

 First we count the occurrences of each key of the 
sequence A and store the count in array C: 

 

 

 

 Then we determine the number of elements which are 
less than or equal to each of the keys by calculating 
the prefix sums: 

     

Counting Sort 

1 2 3 4 5 6 

A = 3 4 1 4 1 1 

C = 3 0 1 2 

C = 3 0 4 6 
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 We produce the output in sequence B by going through A 

and determining for each element to which position in B 

goes by looking that up in C. Then we decrease the entry for 

that element in C. 

 

Counting Sort  

1 2 3 4 5 6 

A = 3 4 1 4 1 1 

B = 1 

C = 2 3 4 6 

B = 1 1 1 3 

C = 1 3 4 6 

B = 1 1 1 3 4 

C = 1 3 4 5 
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1. for i 0 to k     (k) 

2.      do C[i] 0     (1) 

3. for j 1 to length[A]   (n) 

4.      do C[A[j]] C[A[j]]+1   (1) ((1) (n)= (n)) 

5. // C[i] contains number of elements equal to i 

6. for i 1 to k     (k) 

7.       do C[i] = C[i] + C[i1]   (1) ((1) (n)= (n)) 

8. // C[i] contains number of elements  i.  

9. for j length[A] downto 1   (n) 

10.       do B[C[A[j]]] A[j]   (1) ((1) (n)= (n)) 

11.            C[A[j]] C[A[j]]-1   (1) ((1) (n)= (n)) 

 

• Total cost is (k+n), suppose k=O(n), then total cost is (n). 
Beat (nlg n). 

 

Analisys of Counting Sort  
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Example of Counting Sort 
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 Suppose you have a sequence of integers to sort. 

Consider their decimal representation and 

suppose it requires two digits. Then we sort them 

by first sorting them by to their last digit and then 

by their first digit. 

 

 

 

Radix Sort 

21 21 14 

17  14  17 

75 75 21 

14 17 75 
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 Suppose each digit is in the range of 1 to k 

and k is not too large. Then we can use 

counting sort to sort on the i-th digit. Thus 

each pass over n digits takes (n + k) 

 Since there are d passes, the total running 

time is (d (n + k)). 

 This can also be applied to other sequences 

of keys, like year-month-date. 

 

Radix Sort 
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 Assume that our keys are real numbers in the 

interval [0,1). We create say 10 buckets for each of 

the intervals [i / 10, (i +1) / 10) and store each 

element in its appropriate bucket. 

 Finally we sort the buckets with e.g. insertion sort. 

 This takes (n) on average, assuming that the 

number are equally distributed and we have chosen 

the intervals sufficiently small. 

 Again, this is not based on comparisons, rather we 

assume that we can multiply the keys by 10 and 

take the integer part to select the bucket. 

Bucket Sort 
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Bucket Sort (Bin Sort) Algorithm 
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n length[A]     (1) 

for i 1 to n     O(n) 

   do insert A[i] into bucket B[nA[i]] (1) (i.e. total O(n)) 

for i 0 to n1    O(n) 

   do sort bucket B[i] with insertion sort  O(ni
2) (i=0

n-1 O(ni
2)) 

Concatenate bucket B[0],B[1],…, B[n-1] O(n) 

 

Where ni is the size of bucket B[i]. 

Thus T(n) = (n) + i=0
n-1 O(ni

2) 

       = (n)  + nO(2-1/n) = (n). Beat (nlg n) 

Analysis of Bucket Sort 



DSA - lecture 11 - T.U. Cluj-Napoca - M. Joldos 54 

Operation of Bucket Sort 
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 Even for a simple problem as sorting, there are 
many algorithms. Which one should we use? It 
depends on the situation: 

 Is the size of the input large (e.g. all courses) or 
small (e.g. courses a student is taking)? 

 For a small input size O(n2) algorithms like 
InsertionSort perform better, for a large size     
O(n lg n) algorithms. 

 Do the elements to be sorted require lots of 
memory?  
• If so, we can avoid moving them around during sorting by 

using an auxiliary sequence with pointers to the elements 
instead and moving only the pointers.  

• If they are small, we better sort them directly.  

Selecting a Sorting Algorithm (1) 
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 Can elements have the same keys? If so, do we require a 
stable sort?  

• O(n2) algorithms tend to be stable, O(n log n) in place algorithms 
not. 

• However, we can make any unstable algorithm stable by 
adding a key with the position of the elements in the original 
array. This costs extra space and extra time for the 
comparisons. 

• If we decided anyway to sort the sequence of pointers 
rather than the elements, we can use the position of the 
elements in the unsorted sequence in comparisons. In this 
case, no additional space is required. 

 Do we require guarantees on the sorting time, e.g. in a hard 
realtime environment (e.g. in control systems, networks)?  

• This rules out Quicksort because of its (n2) worst case behavior 

Selecting a Sorting Algorithm (2) 
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 Do we have a limited amount of space available, like in 
embedded processor? 

• This rules out MergeSort since it requires in the order of n extra 

space and it makes Quicksort questionable since it requires also 
in the order of n extra space in the worst case. However, we can 
improve Quicksort to require only in the order of lg n extra space. 

 Can the sequence be so large that it does not completely fit 
into main memory and virtual memory is going to be used? 

• If so, sorting algorithms with good local behavior are to be 
preferred.  

• If we are at element A[i] in the Heapify procedure of HeapSort, then 

the next element accessed with be A[2 i] or A[2 i+1], and so forth, so 
elements are accessed all over the array in quick succession.  

• The Partition procedure of Quicksort accesses A[i], then A[i+1], etc., 

as well as A[j], then A[j–1], etc., so has a good local behavior. Most 

O(n2) algorithms have good local behavior. 

 

Selecting a Sorting Algorithm (3) 
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 Is the input so big that is cannot fit into main 

memory and too big for virtual memory? 

• Then we have to use external sorting algorithms anyway. 

 Do we know more about the input which we can 

exploit for sorting in (n)? 

• If the keys are in a small range of integers (e.g. the age of a 

person, year of printing), we can use CountingSort. 

• If each key is a sequence of keys which can be compared 

on their own we can use RadixSort. 

• If the keys are real number over an interval and are 

distributed evenly, we can use BucketSort. 

 

Selecting a Sorting Algorithm (4) 
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Reading 

 

 AHU, chapter 8 

 Preiss, chapter: Sorting Algorithms and 

Sorters  

 CLR, chapters 7 section 7.4, 8 sections 8.1, 

8.2, 9, CLRS chapter 2, sect. 1, chapters 6, 

7, 8 

 Notes 


