
M. Joldoş Laboratory Guide 3. Variables and expressions in Java

T.U. Cluj-Napoca Object Oriented Programming 1

Variables and Expressions

1. Overview

The learning objectives for this lab are:

 To understand Java variables and use them in expressions

 To understand the specifics of operators in Java

 To acquire hands-on experience with variables and expressions by developing and running small

programs

2. Variables

Variables are places in memory to store values. There are different kinds of variables, and every

language offers slightly different characteristics.

 Name.

 Data Type specifies the kinds of data a variable an store. Java has two general kinds of data

types.

o 8 basic or primitive types (byte, short, int, long, float, double, char, boolean).

o An unlimited number of object types (String, Color, JButton, ...). Java object

variables hold a reference (pointer) to the object, not the object, which is always stored

on the heap.
 Scope of a variable is who can see it. The scope of a variable is related program structure: eg,

block, method, class, package, child class.

 Lifetime is the interval between the creation and destruction of a variable. The following is

basically how things work in Java. Local variables and parameters are created when a method is

entered and destroyed when the method returns. Instance variables are created by new and

destroyed when there are no more references to them. Class (static) variables are created when
the class is loaded and destroyed when the program terminates.

 Initial Value. What value does a variable have when it is created? There are several

possibilities.
o No initial value. Java local variables have no initial value. However Java compilers

perform a simple flow analysis to ensure that every local variable is assigned a value

before it is used. These error messages are usually correct, but the analysis is simple-
minded, so sometimes you will have to assign an initial value even though you know that

it isn't necessary.
o User specified initial value. Java allows an assignment of initial values in the declaration

of a variable.

o Instance and static variables are given default initial values: zero for numbers, null for

objects, and false for booleans.

 Declarations are required. Java, like many languages, requires you to declare variables -- tell

the compiler the data type, etc. Declarations are good because they help the programmer build

more reliable and efficient programs.

o Declarations allow the compiler to find places where variables are misused, e.g.,
parameters of the wrong type. What is especially good is that these errors are detected

at compile time. Bugs that make it past the compiler are harder to find, and may not be
discovered until the program has been released to customers. This fits the fail early, fail
often philosophy.

o A declaration is also the perfect place to write comments describing the variable and how

it is used.

o Because declarations give the compiler more information, it can generate better code.

M. Joldoş Laboratory Guide 3. Variables and expressions in Java

T.U. Cluj-Napoca Object Oriented Programming 2

1.1. Local/Instance/Class Variables

There are three kinds of Java variables:

 Local variables are declared in a method, constructor, or block. When a method is entered, an

area is pushed onto the call stack. This area contains slots for each local variable and parameter.
When the method is called, the parameter slots are initialized to the parameter values. When the

method exits, this area is popped off the stack and the memory becomes available for the next

called method. Parameters are essentially local variables which are initialized from the actual
parameters. Local variables are not visible outside the method.

 Instance variables are declared in a class, but outside a method. They are also called member
or field variables. When an object is allocated in the heap, there is a slot in it for each instance
variable value. Therefore an instance variable is created when an object is created and destroyed

when the object is destroyed. Visible in all methods and constructors of the defining class, should
generally be declared private, but may be given greater visibility.

 Class/static variables are declared with the static keyword in a class, but outside a method.

There is only one copy per class, regardless of how many objects are created from it. They are

stored in static memory. It is rare to use static variables other than declared final and used as

either public or private constants.

Characteristic Local variable Instance variable Class variable

Where declared In a method, constructor,

or block.

In a class, but outside a

method. Typically

private.

In a class, but outside a

method. Must be declared

static. Typically also

final.

Use Local variables hold values
used in computations in a

method.

Instance variables hold
values that must be

referenced by more than
one method (for example,

components that hold
values like text fields,

variables that control

drawing, etc), or that are
essential parts of an

object's state that must
exist from one method

invocation to another.

Class variables are mostly
used for constants,

variables that never
change from their initial

value.

Lifetime Created when method or
constructor is entered.

Destroyed on exit.

Created when instance of

class is created with new.

Destroyed when there are
no more references to

enclosing object (made
available for garbage

collection).

Created when the program
starts.

Destroyed when the
program stops.

Scope/Visibility Local variables (including
formal parameters) are

visible only in the method,

constructor, or block in
which they are declared.

Access modifiers

(private, public, ...)

can not be used with local
variables. All local variables

are effectively private to

Instance (field) variables
can been seen by all

methods in the class.

Which other classes can
see them is determined by

their declared access:

private should be your

default choice in declaring
them. No other class can

see private instance

Same as instance variable,
but are often declared

public to make constants

available to users of the

class.

M. Joldoş Laboratory Guide 3. Variables and expressions in Java

T.U. Cluj-Napoca Object Oriented Programming 3

the block in which they are

declared. No part of the
program outside of the

method / block can see

them. A special case is that
local variables declared in

the initializer part of a for

statement have a scope of

the for statement.

variables. This is regarded

as the best choice. Define
getter and setter methods

if the value has to be

gotten or set from outside
so that data consistency

can be enforced, and to
preserve internal

representation flexibility.
Default (also called

package visibility) allows a

variable to be seen by any
class in the same package.

private is preferable.

public. Can be seen from

any class. Generally a bad
idea.

protected variables are

only visible from any

descendant classes.
Uncommon, and probably

a bad choice.

Declaration Declare before use
anywhere in a method or

block.

Declare anywhere at class
level (before or after use).

Declare anywhere at class

level with static.

Initial value None. Must be assigned a
value before the first use.

Zero for numbers, false for
booleans, or null for object

references. May be
assigned value at

declaration or in

constructor.

Same as instance variable,
and it addition can be

assigned value in special
static initializer block.

Access from

outside

Impossible. Local variable

names are known only
within the method.

Instance variables should

be declared private to

promote information

hiding, so should not be
accessed from outside a

class. However, in the few

cases where there are
accessed from outside the

class, they must be
qualified by an object (eg,

myPoint.x).

Class variables are

qualified with the class
name (eg, Color.BLUE).

They can also be qualified

with an object, but this is a
deceptive style.

Name syntax Standard rules. Standard rules, but are
often prefixed to clarify

difference from local

variables, eg with my, m, or

m_ (for member) as in

myLength, or this as in

this.length.

static public final

variables (constants) are all

uppercase, otherwise
normal naming

conventions. Alternatively
prefix the variable with

"c_" (for class) or

something similar.

M. Joldoş Laboratory Guide 3. Variables and expressions in Java

T.U. Cluj-Napoca Object Oriented Programming 4

3. Expressions

Expressions are the basic way to create values. Expressions are created by combining literals (constants),

variables, and method calls by using operators. Parentheses can be used to control the order of

evaluation.

Types.
Every variable and value has a type. There are two kinds of types:

 Primitive types: byte, short, char, int, long, float, double, boolean.

 Object types: String and array types are builtin, but every class that is defined creates a new

object type.

Literals - constants

There is a way to write values of many types (3, 3.0, true, 'a', "abc").

Variables
Every variable must be declared with a type. There are basically three different kinds of variables:

 Local variables in methods.

 Instance variables (often called fields) in objects.

 Class (static) variables in classes.

4. Operators

Operators are used to combine literals, variables, methods calls, and other expressions. Operators can be

put into several conceptual groups.
 Arithmetic operators (+, -, *, /, %, ++, --)

 Comparison Operators (<, <=, ==, >=, >, !=)

 Boolean operators (&&, ||, !, &, !, ^, |, &)

 Bitwise operators (&, |, ^, ~, <<, >>, >>>)

 String concatenation operator (+)

 Other (instanceof, ?:)

 Assignment operators (=, +=, -=, *=, ...)

4.1. Order of evaluation

The order in which expressions are evaluated is basically left to right, with the exception of the
assignment operators. It may be changed by the use of parentheses. See the expression summary for

the precedence.

4.2. Comparison Operators

All the standard comparison operators work for primitive values (int, double, char, ...). The == and !=

operators can be used to compare object references, but see Comparing Objects for how to compare
object values.

Operators

The result of every comparison is boolean (true or false).

operator meaning
< less than
<= less than or equal to
== equal to

M. Joldoş Laboratory Guide 3. Variables and expressions in Java

T.U. Cluj-Napoca Object Oriented Programming 5

>= greater than or equal to
> greater than

!= not equal

Common Errors
0 < x < 100

Comparison operators can be used with two numbers. Although you can write 0 < x < 100 in
mathematics, it is illegal in Java. You must write this as the and of two comparisons:

 0<x && x<100
= instead of ==

Using the assignment operator instead of equality will produce a compiler error, which is easy to

fix.

== with floating-point

Because floating-point numbers are not exact, you should always use >= or <= instead of ==. For

example, because the decimal number 0.1 can not be represented exactly in binary, (0.1 + 0.1 +

0.1) is not equal to 0.3!

For C/C++ Programmers

The Java comparison operators look exactly the same as the C/C++ comparison operators. The
difference is that the result type is boolean. Because of this, the common C error of using = instead of

== is almost completely eliminated. Java doesn't allow operator overloading however, something that

C++ programmers might miss

==, .equals(), and compareTo()

Equality comparison: One way for primitives, Four ways for objects

Comparison Primitives Objects

a == b, a != b
Equal
values

Refer to the same object.

a.equals(b) N/A
Compares values, if it's defined for this class, as it is for most Java
core classes. If it's not defined for a (user) class, it behaves the same

as ==.

a.compareTo(b) N/A

Compares values. Class must implement the Comparable<T>
interface. All Java classes that have a natural ordering implement this

(String, Double, BigInteger, ...), but BigDecimal may not do what you

expect. Comparable objects can be used by the Collections sort()
method and data structures that implicitly sort (eg, TreeSet,

TreeMap).

compareTo(a, b) N/A

Compares values. Available only if the Comparator<T> interface has
been implemented, which is not the case for the Java classes.

Typically used to define a comparator object that can be passed to

Collections sort() method or ordered data structures.

Comparing Object references with the == and != Operators

The two operators that can be used with object references are comparing for equality (==) and inequality

(!=). These operators compare two values to see if they refer to the same object. Although this

comparison is very fast, it is often not what you want.

M. Joldoş Laboratory Guide 3. Variables and expressions in Java

T.U. Cluj-Napoca Object Oriented Programming 6

Usually you want to know if the objects have the same value, and not whether two objects are a

reference to the same object. For example,
if (name == "Mickey Mouse") // ALMOST SURELY WRONG

This be true if name is a reference to the same object that "Mickey Mouse" refers to. This will

probably be false if the String in name was read from input or computed (by putting strings together or

taking the substring), even though name really does have exactly those characters in it.

Many classes (e.g., String) define the equals() method to compare the values of objects.

Comparing Object values with the equals() Method

Use the equals() method to compare object values. The equals() method returns a boolean value.

The previous example can be fixed by writing:
if (name.equals("Mickey Mouse")) // Compares values, not referernces.

Other comparisons - Comparable<T> interface

The equals method and == and != operators test for equality/inequality, but do not provide a way to

test for the relative values. Some classes (eg, String and other classes with a natural ordering) implement

the Comparable<T> interface, which defines a compareTo method. You will want to implement

Comparable<T> in your class if you want to use it with Collections.sort() or Arrays.sort() methods. The

String class also provides case insensitive comparisons.

Common Errors: using == instead of equals() with Objects

When you want to compare objects, you need to know whether you should use == to see if they are the

same object, or equals() to see if they may be a different object, but have the same value. This kind of

error can be very hard to find.

4.3. Bitwise Operators

Java's bitwise operators operate on individual bits of integer (int and long) values. If an operand is

shorter than an int, it is promoted to int before doing the operations.
It helps to know how integers are represented in binary. For example the decimal number 3 is

represented as 11 in binary and the decimal number 5 is represented as 101 in binary. Negative integers
are store in two's complement form. For example, -4 is 1111 1111 1111 1111 1111 1111 1111 1100.

The bitwise operators

Operator Name Example Result Description

a & b and 3 & 5 1 1 if both bits are 1.

a | b or 3 | 5 7 1 if either bit is 1.

a ^ b xor 3 ^ 5 6 1 if both bits are different.

~a not ~3 -4 Inverts the bits.

n << p
left

shift
3 << 2 12

Shifts the bits of n left p positions. Zero bits are shifted into the

low-order positions.

n >> p
right

shift
5 >> 2 1

Shifts the bits of n right p positions. If n is a 2's complement

signed number, the sign bit is shifted into the high-order
positions.

n >>> right -4 >>> 28 15 Shifts the bits of n right p positions. Zeros are shifted into the

M. Joldoş Laboratory Guide 3. Variables and expressions in Java

T.U. Cluj-Napoca Object Oriented Programming 7

p shift high-order positions.

Use: Packing and Unpacking
A common use of the bitwise operators (shifts with ands to extract values and ors to add values) is to

work with multiple values that have been encoded in one int. Bit-fields are another way to do this. For
example, let's say you have the following integer variables: age (range 0-127), gender (range 0-1),

height (range 0-128). These can be packed and unpacked into/from one short (two-byte integer) like this

(or many similar variations).
int age, gender, height;

short packed_info;

. . .

// packing

packed_info = (short)((((age << 1) | gender) << 7) | height);

. . .

// unpacking

height = packed_info & 0x7f;

gender = (packed_info >>> 7) & 1;

age = (packed_info >>> 8);

Use: Setting flag bits

Some library functions take an int that contains bits, each of which represents a true/false (boolean)
value. This saves a lot of space and can be fast to process.

Use: Shift left multiplies by 2; shift right divides by 2
On some older computers it was faster to use shift instead of multiply or divide.

y = x << 3; // Assigns 8*x to y.

y = (x << 2) + x; // Assigns 5*x to y.

Use: Flipping between on and off with xor

Sometimes xor is used to flip between 1 and 0.
x = x ^ 1; // Or the more cryptic x ^= 1;

In a loop that will change x alternately between 0 and 1.

Obscure use: Exchanging values with xor
Here's some weird code. It uses xor to exchange two values (x and y). This is translated to Java from an

assembly code program, where there was no available storage for a temporary. Never use it; this is just a
curiosity from the museum of bizarre code.
x = x ^ y;

y = x ^ y;

x = x ^ y;

Don't confuse && and &

Don't confuse &&, which is the short-circuit logical and, with &, which is the uncommon bitwise and.

Although the bitwise and can also be used with boolean operands, this is extremely rare and is almost

always a programming error.

5. Summary for expressions

Parentheses () have three uses:

1. Grouping to control order of evaluation, or for clarity.

2. E.g., (a + b) * (c - d)

3. After a method name to enclose parameters. E.g., x = sum(a, b);

4. Around a type name to form a cast. E.g., i = (int)x;

M. Joldoş Laboratory Guide 3. Variables and expressions in Java

T.U. Cluj-Napoca Object Oriented Programming 8

Order of evaluation
 Higher precedence are done before lower precedence.

 Left to right among equal precedence except: unary, assignment, conditional operators.

Abbreviations
i, j - integer (int, long, short, byte, char) values.

m, n - numeric values (integers, double, or float).

b, c - boolean; x, y - any primitive or object type.
s, t - String; a - array; o - object; co - class or object

Operator Precedence

. [] (args) post ++ --

! ~ unary + - pre ++ --

(type) new

* / %

+ -

<< >> >>>

< <= > >= instanceof

== !=

&

^

|

&&

||

?:

= += -= etc

Remember only

unary operators
* / %

+ -

comparisons
&& ||

= assignments
Use () for all others

Arithmetic Operators

The result of arithmetic operators is double if either operand is double, else float if either operand is float,
else long if either operand is long, else int.
++i Add 1 to i before using the value in the current expression
--i As above for subtraction
i++ Add 1 to i after using the value in the current expression
i-- As above for subtraction
n + m Addition. E.g. 7+5 is 12, 3 + 0.14 is 3.14
n - m Subtraction
n * m Multiplication. E.g. 3 * 6 is 18
n / m Division. E.g. 3.0 / 2 is 1.5 , 3 / 2 is 1
n % m Remainder (Mod) after division of n by m. E.g. 7 % 3 is 1

Comparing Primitive Values

The result of all comparisons is boolean (true or false).
== != < <= > >=

Logical Operators

The operands must be boolean. The result is boolean.
b &&

c
Conditional "and". true if both operands are true, otherwise false. Short circuit evaluation. E.g.
(false && anything) is false.

b || c Conditional "or". true if either operand is true, otherwise false. Short circuit evaluation. E.g. (true

|| anything) is true.
!b true if b is false, false if b is true.
b & c "And" which always evaluate both operands (not short circuit).

M. Joldoş Laboratory Guide 3. Variables and expressions in Java

T.U. Cluj-Napoca Object Oriented Programming 9

b | c "Or" which always evaluate both operands (not short circuit).
b ^ c "Xor" Same as b != c

Conditional Operator
b?x:y if b is true, the value is x, else y. x and y must be the same type.

Assignment Operators
= Left-hand-side must be an lvalue.
+= -= *= ... All binary operators (except && and ||) can be combined with assignment. E.g.

a += 1 is the same as a = a + 1

Bitwise Operators

Bitwise operators operate on bits of ints. Result is int.
i & j Bits are "anded" - 1 if both bits are 1. 5 & 3 is 1.
i | j Bits are "ored" - 1 if either bit is 1. 5 | 3 is 7.
i ^ j Bits are "xored" - 1 if bits are different. 5 ^ 3 is 6.
~i Bits are complemented (0 -> 1, 1 -> 0)
i << j Bits in i are shifted j bits to the left, zeros inserted on right. 5 << 2 is 20.
i >> j Bits in i are shifted j bits to the right. Sign bits inserted on left. 5 >> 2 is 1.
i >>> j Bits in i are shifted j bits to the right. Zeros inserted on left.

Casts

Use casts when "narrowing" the range of a value. From narrowest to widest the primitive types are: byte,
short, char, int, long, float, double. Objects can be assigned without casting up the inheritance hierarchy.
Casting is required to move down the inheritance hierarchy (downcasting).
(t)x Casts x to type t

Object Operators
co.f Member. The f field or method of object or class co.
x instanceof co true if the object x is an instance of class co, or is an instance of the class of co.
a[i] Array element access.
s + t String concatentation if one or both operands are Strings.
x == y true if x and y refer to the same object, otherwise false (even if values of the

objects are the same).
x != y As above for inequality.
comparison Compare object values with .equals() or .compareTo()
x = y Assignment copies the reference, not the object.

6. Lab Tasks

Write short Java Programs to:

6.1. Compute the odds of a lottery win (6 out of 49, 5 out of 40).

6.2. Simulate the lottery draw (to get the random numbers needed use Math.random)

6.3. Print the numbers drawn in ascending/descending order, without using sorting or arrays. (Hint::
use packing/unpacking/extraction of bits stored in a long)

6.4. Encode a phrase given as a String, where the alphabet used is only Latin letters, spaces (blanks),

commas and dots (i.e. less than 64 different symbols) as an arbitrary precision integer. Coding

should preserve Unicode order (e.g. space will be coded as a zero, a comma as a 1, a dot as a 2,

M. Joldoş Laboratory Guide 3. Variables and expressions in Java

T.U. Cluj-Napoca Object Oriented Programming 10

uppercase A as a 3, etc. – see the table in the previous Laboratory Guide Session.). Print the

resulting integer.

6.5. Solve the dual problem: a number is given, print the phrase, using the same encoding.

6.6. Any even natural number, greater than 2 ca be written as a sum of two prime numbers – this is

Goldbach’s conjecture. Write a program to check this conjecture for numbers in the range from m
to n. The parameters will be given as arguments to a stand-aloe application (arguments for the

method main).

	1. Overview
	2. Variables
	1.1. Local/Instance/Class Variables

	3. Expressions
	4. Operators
	4.1. Order of evaluation
	4.2. Comparison Operators
	Operators
	Common Errors
	==, .equals(), and compareTo()

	4.3. Bitwise Operators

	5. Summary for expressions
	6. Lab Tasks

