
M. Joldoş Laboratory Guide 4. Flow Control and Simple Classes

T.U. Cluj-Napoca Object Oriented Programming 1

Flow Control

1. Overview

The learning objectives of this laboratory session are:
 How to use control statements in Java
 How to declare classes and methods

 Hands on experience with classes and methods

2 Control statements in Java

The following is a reminder of flow control syntax. Each control statement is one logical
statement, which often encloses a block of statements in curly braces {}. The examples assume
the block contains more than one statement.

Indenting is essential. Four spaces are most common.

2.1 Selection (if, switch)

2.1.1 if Statement

//----- if statement with a true clause

 if (expression) {

 statements // do these if expression is true

 }

//----- if statement with true and false clause

 if (expression) {

 statements // do these if expression is true

 } else {

 statements // do these if expression is false

 }

//----- if statements with many parallel tests

 if (expression1) {

 statements // do these if expression1 is true

 } else if (expression2) {

 statements // do these if expression2 is true

 } else if (expression3) {

 statements // do these if expression3 is true

 . . .

 } else {

 statements // do these no expression was true

 }

2.1.2 switch Statement

The effect of the switch statement is to choose some statements to execute depending on the integer
value of an expression. Starting with Java 7, Strings can be used as expressions. The same effect can

be achieved with a series of cascading if statements, but in some cases the switch statement is easier to

read, and in some compilers it can produce more efficient code. The break statement exits from the
switch statement. If there is no break at the end of a case, execution continues in the next case, and
this is almost always an error.
 switch (expr) {

 case c1:

 statements // do these if expr == c1

 break;

M. Joldoş Laboratory Guide 4. Flow Control and Simple Classes

T.U. Cluj-Napoca Object Oriented Programming 2

 case c2:

 statements // do these if expr == c2

 break;

 case c2:

 case c3:

 case c4: // Cases can simply fall through.

 statements // do these if expr == any of c's

 break;

 . . .

 default:

 statements // do these if expr != any above

 }

2.2 Loop Statements

2.2.1 while

The while statement tests the expression. If the expression evaluates to true, it executes the body of
the while. If it is false, execution continues with the statement after the while body. Each time after the

body is executed, execution starts with the test again. This continues until the expression is false or some
other statement (break or return) stops the loop.
 while (testExpression) {

 statements

 }

2.2.2 for
Many loops have an initialization before the loop, and some "increment" before the next loop. The for
loop is the standard way of combining these parts.
 for (initialStmt; testExpr; incrementStmt) {

 statements

 }

This is the same as (except continue will increment):
 initialStmt;

 while (testExpr) {

 statements

 incrementStmt

 }

2.2.3 do

This is the least used of the loop statements, but sometimes a loop that executes one time before testing
is used.

 do

 {

 statements

 }

 while (testExpression);

2.2.4 Other loop controls

All loop statements can be labeled, so that break and continue can be used from any nesting depth.

Labels must precede their use.
 break; //exit innermost loop or switch

 break label; //exit from loop label

M. Joldoş Laboratory Guide 4. Flow Control and Simple Classes

T.U. Cluj-Napoca Object Oriented Programming 3

 continue; //start next loop iteration

 continue label; //start next loop label

Put label followed by colon at front of loop.
outer: for (. . .) {

 . . .

 continue outer;

2.3 try...catch and throw

Sketches provided here only for reference. Will be dealt with in detail in a later session.

2.3.1 Simple try...catch for exceptions
 try {

 . . . // statements that might cause exceptions

 } catch (exception-type x) {

 . . . // statements to handle exception

 }

2.3.2 throw

 throw exception-object;

3 Simple classes

3.1 Class declarations
Classes are the basic building
blocks of Java programs.
Classes can be compared to the

blueprints of buildings. Instead
of specifying the structure of
buildings, though, classes

describe the structure of
"things" in a program. These
things are then created as

physical software objects in the
program. Things worth

representing as classes are
usually important nouns in the
problem domain. A Web-based

shopping cart application, for
example, would likely have
classes that represent

customers, products, orders,
order lines, credit cards,
shipping addresses and

shipping providers.
Use the following syntax to
declare a class in Java:

M. Joldoş Laboratory Guide 4. Flow Control and Simple Classes

T.U. Cluj-Napoca Object Oriented Programming 4

[public] [(abstract | final)] class SomeClassName [extends SomeParentClass] [

implements SomeInterfaces]

 {

 // variables and methods are declared within the curly braces

 }

 A class can have public or default (no modifier) visibility.
 It can be either abstract, final or concrete (no modifier).

 It must have the class keyword, and class must be followed by a legal identifier.
 It may optionally extend one parent class. By default, it will extend java.lang.Object.

 It may optionally implement any number of comma-separated interfaces.

 The class's variables and methods are declared within a set of curly braces '{}'.
 Each .java source file may contain only one public class. A source file may contain any number of

default visible classes.
 Finally, the source file name must match the public class name and it must have a .java suffix.

3.2 Method declarations

A general syntax for a method declaration is:

[modifiers] return_type method_name (parameter_list) [throws_clause] {

 [statement_list]

}

Everything within square brackets [] is optional. Of course, you don't include the square brackets in your
code; they are included here only to indicate optional items. You can see that the minimal method

declaration includes:

 Return Type: The return type is either a valid Java type (primitive or class) or void if no value is

returned. If the method declares a return type, every exit path out of the method must have a
return statement.

 Method Name: The method name must be a valid Java identifier. See Java Variables for the
rules for Java identifiers.

 Parameter List: The parentheses following the method name contain zero or more
type/identifier pairs that make up the parameter list. Each parameter is separated by a comma.

Also, there can be zero parameters.
 Curly Braces: The method body is contained in a set of curly braces. Normally, the method

body contains a sequence of semicolon delimited Java statements that are executed sequentially.
Technically, though, the method body can be empty.

The combined name and parameter list for each method in a class must be unique. The uniqueness of a

parameter list takes the order of the parameters into account. So int myMethod (int x, String

y) is unique from int myMethod (String y, int x).

A method's visibility (also know as its access scope) defines what objects can invoke it and whether

subclasses can override it. The four possible visibility modifiers are: public, protected, private, and

no modifier. Keeping an object's methods as hidden as possible helps simplify the object's published API
(Application Programming Interface: the specification that defines how the programmer can access the
methods and variables of a set of classes). Make a method only as visible as it needs to be. For instance,

if a method is intended to be overridden by a subclass but never invoked by client code, make the

visibility protected instead of public. If a method should never be invoked by another class and is

not meant to be overridden, make it private.

Below is a list of visibility modifiers

Modifier Can be Accessed By
public any class

M. Joldoş Laboratory Guide 4. Flow Control and Simple Classes

T.U. Cluj-Napoca Object Oriented Programming 5

protected owning class, any subclass, any class in the same package
No Modifier owning class, any class in the same package
private owning class

3.2.1 Parameters are Passed by Value
In Java, when a value is passed into a method invocation as an argument, it is passed by value. This

is unlike some other programming languages that allow pointers to memory addresses to be passed into
methods. When a primitive value is passed into a method, a copy of the primitive is made. The copy is
what is actually manipulated in the method. So, the value of the copy can be changed within the

method, but the original value remains unchanged.

When an object reference or array reference is passed into a method, a copy of the reference is
actually manipulated by the method. So, the method can change the attributes of the object.
But, if it reassigns a new object or array to the reference, the reassignment only affects the copy, not the

original reference.

The table below provides a summary of method modifiers:

Modifier Description

Visibility Can be one of the values: public, protected, or private. Determines what

classes can invoke the method.
static The method can be invoked on the class instead of an instance of the class. For

example, String.valueOf(35) is calling valueOf on the String class instead of

on any specific String object. Of course, static methods can still be called on object

instances: myString.valueOf(35).
abstract The method is not implemented. The class must be extended and the method must be

implemented in the subclass.
final The method cannot be overridden in a subclass.
native The method is implemented in another language.
synchronized The method requires that a monitor (lock) be obtained by calling code before the

method is executed.
throws A list of exceptions thrown from this method.

3.3 A Simple Class Example

The following is an example of simple class called Car.

import java.awt.Color;

 /**

 * Represents a car.

 * The attributes are speed, engine power and color.

 * The methods are accelerate,

 * decelerate, getSpeed, getColor, getPower,

 * getAcceleration, and getMaxSpeed.

 *

 * @author Laboratory Team

 */

 public class Car

 {

 private String brandName;

 private int speed = 0; // current car speed

 private Color color;

 private int power;

 private int accelerationStep=0; // speed increase when gas pedal pushed

 private int maxSpeed; // maximum speed for this car

M. Joldoş Laboratory Guide 4. Flow Control and Simple Classes

T.U. Cluj-Napoca Object Oriented Programming 6

 private static final int MIN_SPEED = 0; // minimum speed for all cars; km/h

 private static final int MAX_SPEED = 300; // speed limit on all cars; km/h

 private static final int MIN_POWER = 4; // minimum power for all cars; no less

than 4 bhp

 private static final int MAX_POWER = 500; // maximum power for all cars.no more

than 500 bhp

 private static final int ACCELERATION_MIN_STEP = 1; // minimum speed increase

per second when gas pedal pushed

private static final int ACCELERATION_MAX_STEP = 30; // maximum speed increase per

second

// when gas pedal pushed

 /**

 * Constructor to create a new Car object

 * @param brand name or manufacturer.

 * @param color color of the Car object - one of Java color constants

 * @param power engine power

 * @param accelerationStep increase in speed when gas pedal pushed

 */

 public Car(String brand, Color color, int power, int maxSpeed, int

accelerationStep)

 {

 //creates a new Car object with specified brand name, color, engine power,

and maximum speed

 this.brandName = brand;

 this.color = color;

 this.power = (power > 4)? power: 4;

 if (maxSpeed < 0) this.maxSpeed = MIN_SPEED; // this car wil never move

 else

 if (maxSpeed < MAX_SPEED) this.maxSpeed = maxSpeed;

 else maxSpeed = MAX_SPEED;

 if (power < MIN_POWER) this.power = MIN_POWER;

 else

 if (power > MAX_POWER) this.power=MAX_POWER;

 if (accelerationStep < ACCELERATION_MIN_STEP)

 this.accelerationStep = ACCELERATION_MIN_STEP;

 else

 if (accelerationStep > ACCELERATION_MAX_STEP)

 this.accelerationStep = ACCELERATION_MIN_STEP;

 else

 this.accelerationStep = accelerationStep;

 }

 /**

 * Simulates pressing the accelerator.

 * @return the new speed

 */

 public int accelerate()

 {

 int newSpeed = speed + getAcceleration();

 if(newSpeed <= getMaxSpeed())

 {

 speed = newSpeed;

 }

 else

 {

 speed = getMaxSpeed();

 }

 return speed;

 }

 /**

 * Simulates releasing the accelerator.

M. Joldoş Laboratory Guide 4. Flow Control and Simple Classes

T.U. Cluj-Napoca Object Oriented Programming 7

 * @return the new speed

 */

 public int decelerate()

 {

 if(speed > MIN_SPEED)

 {

 speed--;

 }

 return speed;

 }

 /**

 * @return the current speed

 */

 public int getSpeed()

 {

 return speed;

 }

 /**

 * @return the max speed

 */

 public int getMaxSpeed()

 {

 return MAX_SPEED;

 }

 /**

 * @return the color of the car

 */

 public Color getColor()

 {

 return color;

 }

 /**

 * @return the brand name of the car

 */

 public String getBrandName()

 {

 return brandName;

 }

 /**

 * @return the car's acceleration step

 */

 public int getAcceleration()

 {

 return accelerationStep;

 }

 /**

 * @return the power of the car

 */

 public int getPower()

 {

 return power;

 }

 }

The following class implements a simple test drive:

import java.awt.Color;

 /**

 * TestDrive demonstrates creating and calling

M. Joldoş Laboratory Guide 4. Flow Control and Simple Classes

T.U. Cluj-Napoca Object Oriented Programming 8

 * methods on Car object.

 *

 * @author Laboratory Team

 */

 public class TestDrive

 {

 //The Java virtual machine (JVM) always starts

 //execution with the 'main' method of the class passed

 //as a argument to the java command

 public static void main(String []args)

 {

 TestDrive td = new TestDrive();

 td.start();

 //exit TestDrive

 }

 private void start()

 {

 //Create a Volkswagen beetle Car

 Car beetle = new Car("Volskwagen Beetle", Color.orange, 80, 160, 10);

 //Take it for a drive

 System.out.println("Starting beetle test drive!");

 driveCar(beetle);

 //Create a Ferrari

 Car ferrari = new Car("Ferrari Testarosa", Color.red, 300, 280, 30);

 //Take it for a drive

 System.out.println("Starting ferrari test drive!");

 driveCar(ferrari);

 }

 public static void driveCar(Car c)

 {

 System.out.print("Car is a " + c.getBrandName());

 System.out.println(" colored " + c.getColor());

 System.out.print("\t engine power is " + c.getPower());

 System.out.println(" speeding step is " +c.getAcceleration());

 //press the accelerator 15 "times"

 for(int i = 0; i < 15; i++) {

 System.out.println("accelerating: " + c.accelerate());

 }

 //release the accelerator 5 "times"

 for(int i = 0; i < 5; i++) {

 ;

 System.out.println("decelerating: " + c.decelerate());

 }

 System.out.println("final cruising speed: " + c.getSpeed());

 }

 }

4 Lab Tasks

4.1. Study and understand the given classes. Then test drive two cars. To do this, create a BlueJ
project with the two classes, compile and run it. Note what is printed for a car’s color. Why?

4.2. Add new cars to the test drive, and play with them too.

4.3. Change the Car class by adding extra features like breaking and changing gears (gears must be

changed at certain speed limits to keep engine working properly).

M. Joldoş Laboratory Guide 4. Flow Control and Simple Classes

T.U. Cluj-Napoca Object Oriented Programming 9

4.4. Add a fuel tank and capacity to the Car class and simulate fuel consumption. Consider fuel
consumption varies according to preset rules depending on the speed.

	1. Overview
	2 Control statements in Java
	2.1 Selection (if, switch)
	2.1.1 if Statement
	2.1.2 switch Statement

	2.2 Loop Statements
	2.2.1 while
	2.2.2 for
	2.2.3 do
	2.2.4 Other loop controls
	2.3 try...catch and throw
	2.3.1 Simple try...catch for exceptions
	2.3.2 throw

	3 Simple classes
	3.1 Class declarations
	3.2 Method declarations
	3.2.1 Parameters are Passed by Value

	3.3 A Simple Class Example

	4 Lab Tasks

