
M. Joldoş Laboratory Guide 6. Inheritance

T.U. Cluj-Napoca Object Oriented Programming 1

Inheritance

1. Overview

The learning objectives of this laboratory session are:
 Understand and properly use the superclass constructors

 Understand overloading and overriding of methods

 Understand and learn how to avoid common problems with inheritance

2. super(...) - The superclass (parent) constructor

An object has the fields of its own class plus all fields of its parent class, grandparent class, all the way up
to the root class Object.

It is necessary to initialize all fields, therefore all constructors must be called!
The Java compiler automatically inserts the necessary constructor calls in the process of constructor

chaining, or you can do it explicitly.

The Java compiler inserts a call to the parent constructor (super) if you don't have a constructor call as

the first statement of you constructor. Given the following code
public class Point {

 int m_x;

 int m_y;

 //============ Constructor

 public Point(int x, int y) {

 m_x = x;

 m_y = y;

 }

 //============ Parameterless default constructor

 public Point() {

 this(0, 0); // Calls other constructor.

 }

 . . .

}

The following is the equivalent of the constructor above.

 //============ Constructor (same as in above example)

 public Point(int x, int y) {

 super(); // Automatically done if you don't call constructor here.

 m_x = x;

 m_y = y;

 }

2.1 Why you might want to call super explicitly

Normally, you won't need to call the constructor for your parent class because it's automatically
generated, but there are two cases where this is necessary.

1. You want to call a parent constructor which has parameters (the automatically generated super
constructor call has no parameters).

2. There is no parameterless parent constructor because only constructors with parameters are

defined in the parent class.

M. Joldoş Laboratory Guide 6. Inheritance

T.U. Cluj-Napoca Object Oriented Programming 2

Every object contains the instance variables of its class. What isn't so obvious is that every object also

has all the instance variables of all super classes (parent class, grandparent class, etc). These super class
variables must be initialized before the class's instances variables.

2.1.1 Automatic insertion of super class constructor call

When an object is created, it's necessary to call the constructors of all super classes to initialize their

fields. Java does this automatically at the beginning if you don't.
For example, the first Point constructor could be written

public Point(int xx, int yy) {

 super(); // Automatically inserted

 x = xx;

 y = yy;

}

2.1.2 Explicit call to superclass constructor

Normally, you don't explicitly write the call of the constructor for your parent class, but there are two

cases where this is necessary:
Passing parameters. You want to call a parent constructor which has parameters (the default construct

has no parameters). For example, if you are defining a subclass of JFrame you might do the following.

class MyWindow extends JFrame {

 . . .

 //======== constructor

 public MyWindow(String title) {

 super(title);

 . . .

In the above example you wanted to make use of the JFrame constructor that takes a title as a

parameter. It would have been simple to let the default constructor be called and use a setter method as

an alternative.

class MyWindow extends JFrame {

 . . .

 //======== constructor

 public MyWindow(String title) {

 // Default superclass constructor call automatically inserted.

 setTitle(title); // Calls method in superclass.

 . . .

No parameterless constructor. There is no parent constructor with no parameters. Sometimes is
doesn't make sense to create an object without supplying parameters. For example, should there really

be a Point constructor with no parameters? Although the previous example did define a parameterless

constructor to illustrate use of this, it probably isn't a good idea for points.

2.1.3 Example of class without parameterless constructor

/////////////////// class without a parameterless constructor.

// If any constructor is defined, the compiler doesn't

// automatically create a default parameterless constructor.

class Parent

{

 int _x;

 Parent(int x) { // constructor

 _x = x;

 }

M. Joldoş Laboratory Guide 6. Inheritance

T.U. Cluj-Napoca Object Oriented Programming 3

}

////////////////// class that must call super in constructor

class Child extends Parent

{

 int _y;

 Child(int y) { // WRONG, needs explicit call to super.

 _y = y;

 }

}

In the example above, there is no explicit call to a constructor in the first line of constructor, so the
compiler will insert a call to the parameterless constructor of the parent, but there is no parameterless

parent constructor! Therefore this produces a compilation error. The problem can be fixed by changing
the Child class.

////////////////// class that must call super in constructor

class Child extends Parent

{

 int _y;

 Child(int y) {

 super(0);

 _y = y;

 }

}

Or the Parent class can define a parameterless constructor.

/////////////////// class without a parameterless constructor.

// If any constructor is defined, the compiler doesn't

// automatically create a default parameterless constructor.

class Parent

{

 int _x;

 Parent(int x)

 { // constructor with parameter

 _x = x;

 }

 Parent()

 { // constructor without parameters

 _x = 0;

 }

}

A better way to define the parameterless constructor is to call the parameterized constructor so that any
changes that are made only have to be made in one constructor.

 Parent()

 { // constructor without parameters

 this(0);

 }

}

Note that each of these constructors implicitly calls the parameterless constructor for its parent class, etc,
until the Object class is finally reached.

M. Joldoş Laboratory Guide 6. Inheritance

T.U. Cluj-Napoca Object Oriented Programming 4

2.1.4 How do you override a method?

To override a method in your new class, simply reproduce the name, argument list, and return type of

the original method in a new method definition in your new class. Then provide a body for the new
method. Write code in that body to cause the behavior of the overridden method to be appropriate for

an object of your new class.

Here is a more precise description of method overriding taken from the excellent book entitled The
Complete Java 2 Certification Study Guide, by Roberts, Heller, and Ernest:

"A valid override has identical argument types and order, identical return type, and is not less
accessible than the original method. The overriding method must not throw any checked
exceptions that were not declared for the original method."

Any method that is not declared final can be overridden in a subclass.

2.1.5 Overriding versus overloading

Don't confuse method overriding with method overloading. Here is what Roberts, Heller, and Ernest
have to say about overloading methods:

"A valid overload differs in the number or type of its arguments. Differences in argument names
are not significant. A different return type is permitted, but is not sufficient by itself to distinguish
an overloading method."

3 Common problems with inheritance

3.1 Variable shadowing
When both a parent class and its subclass have a field with the same name, this technique is called
variable shadowing. If the field in the parent class has private access or is in another package and has

default access, there is no room for confusion. The child class cannot access the field in question of the
parent class. So it's clear with which variable any reads and writes in the child class will take place.

However, if the like-named variable in the parent class is accessible to instances of the child class, some
rather nonintuitive rules determine which field is accessed by different code invocations. The general rule

is that the variable accessed depends on the class to which the variable has been cast.

For example, Listing A includes two classes, Base and Sub, which represent a parent class/subclass

relationship. Both of these classes have an integer field named field. Listing B shows the instantiation

of class Sub followed by many legal ways to refer to one or another of the field variables.

Listing A

public class Base
{

 public int field = 0;

 public int getField() { return field; }

}

public class Sub extends Base

{

 public int field = 1;

 public int getField() { return field; }

}

Listing B

Sub s = new Sub();

Base b = s;

System.out.println(s.field); // access one

System.out.println(b.field); // access two

System.out.println(((Sub)b).field); // access three

M. Joldoş Laboratory Guide 6. Inheritance

T.U. Cluj-Napoca Object Oriented Programming 5

System.out.println(((Base)s).field); // access four

The first of these techniques, marked access one, directly accesses the field variable in the instance

of Sub named s. This access, as one would expect, yields a value of 1. Access two, however, shows

the logical disconnect involved in variable shadowing. Even though the expression b==s is true, the

second access, b.field, evaluates to 0.

This difference between b.field and s.field, despite the referential equivalency of b and s, clearly

displays the minefield inherent in variable shadowing. The only difference between b and s in this

example is the type of the variable in which they’re stored. Variable shadowing isn't the only case
wherein the value of something is determined by the type you call it, but developers nonetheless trip

over these issues with surprising regularity.

The expressions marked access three and access four follow the rule of type dictating value.

Specifically, access three resolves to a value of 1 because object b is cast to type Sub before its

field variable is checked. Similarly, access four yields a value of 0 due to object s being cast to

type Base before the field is accessed.

3.2 Method overriding

While like-named fields in subclasses overshadow their namesakes in parent classes, different
terminology is used to discuss similar problems with methods. When a parent class and a child class each

have a method with the same signature, the method of the child class overrides the method of the parent

class. In Listing A, one can see that the getField method in class Sub has the same name and

parameters, which is to say none, as the getField method in class Base.

Listing C

Sub s = new Sub();

Base b = s;

System.out.println(s.getField); // access one

System.out.println(b.getField); // access two

System.out.println(((Sub)b).getField); // access three

System.out.println(((Base)s).getField); // access four

Listing C shows the same object instantiation as found in Listing B and many possible invocations of the
two getField methods. However, unlike Listing B, the results in Listing C are more to the liking of an

object-oriented programmer. The line marked access one in Listing C invokes the getField method

on a reference to the single object in the example while it is stored in a variable of type Sub. As was the

case in the similar looking access one in Listing B, this invocation yields a value of 1.
The difference between method overriding and variable overshadowing is visible when comparing

access two in Listing C to its like-named mate in Listing B. Whereas in Listing B the parent class’s

field was accessed, in Listing C the field variable in the subclass is invoked, despite the type of the

variable in which the reference is stored, for a resulting value of 1.

This strict adherence to reference/instance identity vs. variable type is the heart of polymorphism.

Polymorphism is the feature that delegates behavior to the actual class of the referenced instance — not
to the type in which the reference is stored. Polymorphism is a method-only affair.

Continuing with the examples, one comes upon access three and access four in Listing C. Both of these
produce a value of 1. Again this is due to the polymorphic nature of method access. To access the

shadowed variable in the Base class via method invocation, one must use the syntax super.field

within the Sub class.

4 Lab Tasks

2.1. Study the text and source code provided in this paper.

M. Joldoş Laboratory Guide 6. Inheritance

T.U. Cluj-Napoca Object Oriented Programming 6

2.2. Study and execute the following code:
class Insect

{

 private int i = 9;

 protected int j;

 Insect()

 {

 System.out.println("i = " + i + ", j = " + j);

 j = 39;

 }

 private static int x1 =

 printInit("static Insect.x1 initialized");

 static int printInit(String s)

 {

 System.out.println(s);

 return 47;

 }

}

public class Beetle extends Insect

{

 private int k = printInit("Beetle.k initialized");

 public Beetle()

 {

 System.out.println("k = " + k);

 System.out.println("j = " + j);

 }

 private static int x2 =

 printInit("static Beetle.x2 initialized");

 public static void main(String[] args)

 {

 System.out.println("Beetle constructor");

 Beetle b = new Beetle();

 }

} /* Output:

static Insect.x1 initialized

static Beetle.x2 initialized

Beetle constructor

i = 9, j = 0

Beetle.k initialized

k = 47

j = 39

*/

Note the order of initialization.

2.3. Add another insect type and then subclasses of Beetle and your type. Add code to show the
order of initialization operations for your types.

2.4. Create an inheritance hierarchy of Rodent: Mouse, Squirrel, Hamster, etc. In the base

class, provide methods that are common to all Rodents, and override these in the derived
classes to perform different behaviors depending on the specific type of Rodent. Create an

array of Rodent, fill it with different specific types of Rodents, and call your base-class
methods to see what happens.

2.5. Create an abstract class with no methods. Derive a class and add a method. Create a static

method that takes a reference to the base class, downcasts it to the derived class, and calls
the method. In main(), demonstrate that it works. Now put the abstract declaration for

the method in the base class, thus eliminating the need for the downcast.

	1. Overview
	2. super(...) - The superclass (parent) constructor
	2.1 Why you might want to call super explicitly
	2.1.1 Automatic insertion of super class constructor call
	2.1.2 Explicit call to superclass constructor
	2.1.3 Example of class without parameterless constructor
	2.1.4 How do you override a method?
	2.1.5 Overriding versus overloading

	3 Common problems with inheritance
	3.1 Variable shadowing
	3.2 Method overriding

	4 Lab Tasks

