
M.Joldoş Laboratory Guide 09-Mouse

T.U. Cluj Object Oriented Programming 1

The Mouse

1. Overview

The learning objectives of this laboratory session are:
 Understand the use of mouse for user interaction

 Acquire knowledge on the use of important classes and interfaces used with handling of

mouse gestures

 Acquire hands-on experience with handling of mouse events

The mouse is handled automatically by most components, so you never have to know about it. For

example, if someone clicks on a button (JButton), you will receive an ActionEvent, but you don't

need to know (and shouldn't care) whether this was from a mouse click on the button, or from a

keyboard shortcut.

Graphics. If you are are drawing your own graphics (e.g., in a JPanel) and need to know where

the user clicks, then you need to know about mouse events. You can easily add a mouse listener to a

JPanel.

2. Important Classes and Interfaces

These classes are defined in java.awt.event. The first three are the most commonly used.

 MouseEvent – A MouseEvent object is passed to all mouse listeners. The most useful

information in a MouseEvent is the x and y coordinates of the mouse cursor.

 MouseListener – Interface for mouse presses, releases, clicks, enters, and exits.

 MouseMotionListener – Interface for mouse moves and drags.

 MouseInputListener – Interface combination of MouseListener and

MouseMotionListener.

 MouseAdapter – Class useful for writing anonymous listener for mouse button presses,

entering, ...

 MouseMotionAdapter – Class useful for writing anonymous listener for mouse movement.

2.1. MouseListener - Handles presses, releases, clicks, enters,
and exits.

This type of mouse listener is for events which typically don't happen very often -- a mouse button is

pressed, released, or the mouse enters or leaves the area of the component with a listener. Here are
the actions that a MouseListener catches.

press one of the mouse buttons is pressed.

release one of the mouse buttons is released.

click a mouse button was pressed and released without moving the mouse. This is perhaps the
most commonly used.

enter mouse cursor enters the component. Often used to change cursor.

exit mouse cursor exits the component. Often used to restore cursor.

To listen for these events you will use addMouseListener.

M.Joldoş Laboratory Guide 09-Mouse

T.U. Cluj Object Oriented Programming 2

2.1.1. MouseListener Interface

To implement a MouseListener interface, you must define the following methods. You can copy
these definitions into your program and only make a meaningful body for those methods that are of

interest.
public void mousePressed(MouseEvent e) {}

public void mouseReleased(MouseEvent e) {}

public void mouseClicked(MouseEvent e) {}

public void mouseEntered(MouseEvent e) {}

public void mouseExited(MouseEvent e) {}

This method is called When the user does this action
mouseClicked A click is the result of a press and a release. This is probably the most

common method to write.
mousePressed A mouse button is pressed (any of three possible mouse buttons)
mouseReleased A mouse button is released.
mouseEntered The mouse cursor enters a component. You might write this to change

the cursor.
mouseExited The mouse cursor leaves a component. You might write this to restore

the cursor.

To Get the Mouse Coordinates. All coordinates are relative to the upper left corner of the

component with the mouse listener. Use the following MouseEvent methods to get x and y
coordinates of where the mouse event occurred.

int getX() // returns the x coordinate of the event.
int getY() // returns the y coordinate of the event.

To Check for Double Clicks. Use the following MouseEvent method to get a count of the number

of clicks.

int getClickCount() // number of mouse clicks

2.1.2. MouseMotionListener - Handles moves and drags.

Moves and drags. When you move the mouse, the interface generates events very rapidly. If a

mouse button is depressed, then this is called a drag. Events from a move or drag are generated very

quickly, and can be listed to by adding a mouse motion listener.

MouseMotionListener methods

To implement a MouseMotionListener, you must define the following methods.
public void mouseMoved(MouseEvent e) {}

public void mouseDragged(MouseEvent e) {}

This method is called When the user does this action
mouseMoved(...) The mouse is moved while over the component.
mouseDragged(...) The mouse is dragged (moved with a button pressed).

2.2. Mouse Listeners - How and where to write mouse

listeners.

There are several styles for using the mouse listeners. They are usually added to a graphics panel

with a paintComponent method.

2.2.1. Listening within the panel itself

It is common to have a panel listen to its own events. For example,

class DrawingPanel extends JPanel implements MouseListener

M.Joldoş Laboratory Guide 09-Mouse

T.U. Cluj Object Oriented Programming 3

{

 public DrawingPanel()

 { // Constructor

 this.addMouseListener(this);

 . . .

 }

 public void paintComponent(Graphics g)

 {

 . . .

 }

 . . .

 public void mousePressed(MouseEvent e) {. . .}

 public void mouseReleased(MouseEvent e) {. . .}

 public void mouseClicked(MouseEvent e) {. . .}

 . . .

}

It can communicate changes with the outside by (1) making it a subclass, (2) supplying getter
methods, or (3) supplying a "model" object to the constructor.

2.2.2. Listening from outside the panel

You may create a panel and want the listeners outside it because it is more convenient to interact
with them that way. If you only have one such panel, then you can implement the mouse listener

interfaces in your non-panel class and write all of the listener methods. For example,
public class MyClass implements MouseListener {

 . . .

 DrawingPanel drawing = new DrawingPanel();

 drawing.addMouseListener(this);

 . . .

 public void mousePressed(MouseEvent e) {. . .}

 public void mouseReleased(MouseEvent e) {. . .}

 public void mouseClicked(MouseEvent e) {. . .}

 . . .

}

class DrawingPanel extends JPanel {

 public void paintComponent(Graphics g) {

 . . .

 }

 . . .

}

This requires setter methods in the DrawingPanel class so that what is drawn can be changed. Or a

constructor for DrawingPanel could be passed an object for the "model" that would allow it to get

values needed by paintComponent.

2.2.3. As above with anonymous listeners

If you only want to listen for one kind of event, it's easy to use the MouseAdapter or
MouseMotionAdapter classes to create an anonymous listener. For example, to listen for mouse clicks,

p.addMouseListener(new MouseAdapter()

{

 public void mouseClicked(MouseEvent e)

 {

 x = e.getX();

 y = e.getY();

M.Joldoş Laboratory Guide 09-Mouse

T.U. Cluj Object Oriented Programming 4

 }

});

2.3. Mouse Buttons, Modifier Keys - How to check which

mouse buttons are pressed.

Mouse Buttons. Java supports up to three mouse buttons. Even if your mouse doesn't have three
separate buttons, you can simulate some of the buttons by pressing modifier keys when pressing the

mouse button.

The MouseEvent object that is passed to the listener contains information that allows you to ask
which combinations of buttons were pressed when the event occurred. Mouse scroll controls were

first supported in Java 2 SDK 1.4.

There are two ways to test the mouse buttons and modifier keys:

 Use methods to find the status of the mouse buttons and modifier keys.

 Use bit masks which are defined in the InputEvent class to look at the MouseEvent modifier

bits. This is a very fast way to check, especially for complex combinations of modifiers and

buttons, but you need to understand the bit operators (| & ^ ~ >> >>> <<).

2.3.1. To Use Methods to Check Mouse Buttons

To check which mouse button is pressed, call one of the static methods in SwingUtilities. These

methods return true if the corresponding button is being used. Note that more than one of them will

be true if more than one button is in use at the same time.

 boolean SwingUtilities.isLeftMouseButton(MouseEvent anEvent)

 boolean SwingUtilities.isMiddleMouseButton(MouseEvent anEvent)

 boolean SwingUtilities.isRightMouseButton(MouseEvent anEvent)

2.3.2. To Use Methods to Check Modifier Keys

To check which modifier keys are pressed, use these methods in the MouseEvent class:
 boolean isAltDown() // true if Alt key middle mouse button

 boolean isControlDown() // true if Control key is pressed

 boolean isShiftDown() // true if Shift key is pressed

 boolean isAltGraphDown()// true if Alt Graphics key (found on some keyboards)

is pressed

 boolean isMetaDown() // true if Meta key or right mouse button

For example, inside the mouse listener we could make a test like the following to see if the right

mouse button is pressed while the shift key is down. Assume that e is a MouseEvent object.

 if (SwingUtilities.isRightMouseButton(e) && e.isShiftDown())

 ...

2.3.3. To Use Bit Masks to Check Mouse Buttons and Modifier Keys

Use the MouseEvent getModifiers() method to get the a bitmask which tells which buttons were
pressed when the event occurred. The masks for each of the mouse buttons as well as modifier keys

are:

Mask Meaning

M.Joldoş Laboratory Guide 09-Mouse

T.U. Cluj Object Oriented Programming 5

InputEvent.BUTTON1_MASK mouse button1
InputEvent.BUTTON2_MASK mouse button2
InputEvent.BUTTON3_MASK mouse button3
InputEvent.ALT_MASK alt key
InputEvent.CTRL_MASK control key
InputEvent.SHIFT_MASK shift key
InputEvent.META_MASK meta key
InputEvent.ALT_GRAPH_MASK alt-graph key

To rewrite the previous example using bit masks to test whether the right mouse button is pressed
while the shift key is down, we could do the following:

 int RIGHT_SHIFT_MASK = InputEvent.BUTTON3_MASK + InputEvent.SHIFT_MASK;

 . . .

 if ((e.getModifiers() & RIGHT_SHIFT_MASK) == RIGHT_SHIFT_MASK) {

 ...

2.4. Example - MouseTest.java - Example shows mouse
coordinates.

This is a simple demonstration of listening to mouse events on a panel. This displays two panels to
show how the mouse listener depends on the component

The main program
// File: mousedeme/MouseTest.java

// Description: Main program/applet to demo mouse listeners.

// Author: Fred Swartz

// Date: 2005-02-03, 2000-11-29...2002-11-21

// Possible enhancements: Show other mouse events.

package mousedemo;

import javax.swing.*;

// class MouseTest

public class MouseTest extends JApplet{

 //=== constructor

 public MouseTest() {

 add(new DualMousePanel());

 }

 //== method main

 public static void main(String[] args) {

 JFrame window = new JFrame("Mouse Demo");

 window.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 window.setContentPane(new DualMousePanel());

 window.pack();

 window.setVisible(true);

 }

}

The content pane of the GUI

// File: mousedeme/MousePanel.java

// Description: Panel holding two MousePanels.

// Author: Fred Swartz

// Date: 2005-02-03, 2000-11-29...2002-11-21

package mousedemo;

import java.awt.*;

import javax.swing.*;

import javax.swing.border.*;

// class DualMousePanel

M.Joldoş Laboratory Guide 09-Mouse

T.U. Cluj Object Oriented Programming 6

class DualMousePanel extends JPanel {

 //== constructor

 public DualMousePanel() {

 //--- Create two MousePanels

 MousePanel mp1 = new MousePanel();

 MousePanel mp2 = new MousePanel();

 //--- Add borders (note: borders are inside panel)

 Border etched = BorderFactory.createEtchedBorder();

 mp1.setBorder(BorderFactory.createTitledBorder(etched, "Panel 1"));

 mp2.setBorder(BorderFactory.createTitledBorder(etched, "Panel 2"));

 //--- Layout the panels

 this.setLayout(new GridLayout(1, 2));

 this.add(mp1);

 this.add(mp2);

 }//end constructor

}

The panel which listens to and shows mouse events

// File: mousedeme/MousePanel.java

// Description: Panel that listens to mouse events and displays info

// about some of them.

// Author: Fred Swartz

// Date: 2005-02-03, 2000-11-29...2002-11-21

package mousedemo;

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

/// class MousePanel

class MousePanel extends JPanel implements MouseListener, MouseMotionListener {

 //== instance variables

 private int m_lastClickedX = 0; // x coord of mouse click

 private int m_lastClickedY = 0; // y coord of mouse click

 private int m_lastMovedX = 0; // x coord of mouse move

 private int m_lastMovedY = 0; // y coord of mouse move

 //== constructor

 public MousePanel() {

 this.setBackground(Color.white);

 this.setPreferredSize(new Dimension(200, 200));

 //--- Add the mouse listeners.

 this.addMouseListener(this); // listen to mouse events

 this.addMouseMotionListener(this); // listen to moves and drags

 }

 //== method paintComponent

 public void paintComponent(Graphics g) {

 super.paintComponent(g); // paint background and borders

 g.drawString("Last click: x=" + m_lastClickedX

 + ", y=" + m_lastClickedY , 10, 30);

 g.drawString("x=" + m_lastMovedX + ", y=" + m_lastMovedY

 , m_lastMovedX, m_lastMovedY);

 }

 //== listener mouseClicked

 public void mouseClicked(MouseEvent e) {

M.Joldoş Laboratory Guide 09-Mouse

T.U. Cluj Object Oriented Programming 7

 m_lastClickedX = e.getX(); // Save the x coordinate of the click

 m_lastClickedY = e.getY(); // Save the y coordinate of the click

 this.repaint(); // Paint the panel with the new values.

 }

 //== listener mouseMoved

 public void mouseMoved(MouseEvent e) {

 m_lastMovedX = e.getX();

 m_lastMovedY = e.getY();

 this.repaint();

 }

 //== ignored

 //==== the other motion events must be here, but do nothing.

 public void mouseDragged (MouseEvent e) {} // ignore

 //==== these "slow" mouse events are ignored.

 public void mouseEntered (MouseEvent e) {} // ignore

 public void mouseExited (MouseEvent e) {} // ignore

 public void mousePressed (MouseEvent e) {} // ignore

 public void mouseReleased(MouseEvent e) {} // ignore

}

2.5. Example - DragDemo.java - Example shows mouse
dragging.

Drag the ball around on the applet to the left. The source for this program is given

below. It's written as both an applet (subclass JApplet) and application (it has a main

method). The two source files are given below.

The image is drawn with the Graphics method (fillOval), but an image could be easily displayed.

The main/applet framework
/** DragDemo.java - Mouse drag example dual application/applet

 @author Fred Swartz

 @version 2004-04-15

*/

// "appletviewer DragDemo.java" works because of the following line.

// <applet code="DragDemo.class" height="200" width="200"></applet>

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import javax.swing.event.*;

// class DragDemo

/** This is an application because it has a main method.

 It's also an applet because it extends JApplet.

*/

public class DragDemo extends JApplet {

 //=== method main

 public static void main(String[] args) {

 JFrame window = new JFrame();

 window.setTitle("Drag Demo");

 window.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 window.setContentPane(new DragBallPanel());

 window.pack();

 window.show();

 }//end main

 //== applet constructor

 public DragDemo() {

 this.setContentPane(new DragBallPanel());

 }

}//endclass DragDemo

M.Joldoş Laboratory Guide 09-Mouse

T.U. Cluj Object Oriented Programming 8

The panel that is used for the graphics

/** DragBallPanel.java - Panel that allows dragging a ball around.

 @author Fred Swartz

 @version 2004-04-15

*/

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

/// class DragBallPanel

/** When the mousePressed listener is called to position is tested

 to see if it's in the area of the ball. If it is,

 (1) _canDrag is set true meaning pay attention to the MouseDragged events.

 (2) Record where in the ball (relative to the upper left coordinates)

 the mouse was clicked, because it looks best if we drag from there.

*/

public class DragBallPanel extends JPanel implements MouseListener,

MouseMotionListener {

 private static final int BALL_DIAMETER = 40; // Diameter of ball

 //--- instance variables

 /** Ball coords. Changed by mouse listeners. Used by paintComponent. */

 private int _ballX = 50; // x coord - set from drag

 private int _ballY = 50; // y coord - set from drag

 /** Position in ball of mouse press to make dragging look better. */

 private int _dragFromX = 0; // pressed this far inside ball's

 private int _dragFromY = 0; // bounding box.

 /** true means mouse was pressed in ball and still in panel.*/

 private boolean _canDrag = false;

 //=== constructor

 /** Constructor sets size, colors, and adds mouse listeners.*/

 public DragBallPanel() {

 setPreferredSize(new Dimension(300, 300));

 setBackground(Color.blue);

 setForeground(Color.yellow);

 //--- Add the mouse listeners.

 this.addMouseListener(this);

 this.addMouseMotionListener(this);

 }//endconstructor

 //=== method paintComponent

 /** Ball is drawn at the last recorded mouse listener coordinates. */

 public void paintComponent(Graphics g) {

 super.paintComponent(g); // Required for background.

 g.fillOval(_ballX, _ballY, BALL_DIAMETER, BALL_DIAMETER);

 }//end paintComponent

 //=== method mousePressed

 /** Set _canDrag if the click is in the ball (or in the bounding

 box, which is lazy, but close enuf for this program).

 Remember displacement (dragFromX and Y) in the ball

 to use as relative point to display while dragging.

 */

 public void mousePressed(MouseEvent e) {

 int x = e.getX(); // Save the x coord of the click

 int y = e.getY(); // Save the y coord of the click

 if (x >= _ballX && x <= (_ballX + BALL_DIAMETER)

 && y >= _ballY && y <= (_ballY + BALL_DIAMETER)) {

 _canDrag = true;

M.Joldoş Laboratory Guide 09-Mouse

T.U. Cluj Object Oriented Programming 9

 _dragFromX = x - _ballX; // how far from left

 _dragFromY = y - _ballY; // how far from top

 } else {

 _canDrag = false;

 }

 }//end mousePressed

 //== mouseDragged

 /** Set x,y to mouse position and repaint. */

 public void mouseDragged(MouseEvent e) {

 if (_canDrag) { // True only if button was pressed inside ball.

 //--- Ball pos from mouse and original click displacement

 _ballX = e.getX() - _dragFromX;

 _ballY = e.getY() - _dragFromY;

 //--- Don't move the ball off the screen sides

 _ballX = Math.max(_ballX, 0);

 _ballX = Math.min(_ballX, getWidth() - BALL_DIAMETER);

 //--- Don't move the ball off top or bottom

 _ballY = Math.max(_ballY, 0);

 _ballY = Math.min(_ballY, getHeight() - BALL_DIAMETER);

 this.repaint(); // Repaint because position changed.

 }

 }//end mouseDragged

 //== method mouseExited

 /** Turn off dragging if mouse exits panel. */

 public void mouseExited(MouseEvent e) {

 _canDrag = false;

 }//end mouseExited

 //=== Ignore other mouse events.

 public void mouseMoved (MouseEvent e) {} // ignore these events

 public void mouseEntered (MouseEvent e) {} // ignore these events

 public void mouseClicked (MouseEvent e) {} // ignore these events

 public void mouseReleased(MouseEvent e) {} // ignore these events

}//endclass DragBallPanel

3. Lab Tasks

3.1. Study and execute the code provided

	1. Overview
	2. Important Classes and Interfaces
	2.1. MouseListener - Handles presses, releases, clicks, enters, and exits.
	2.1.1. MouseListener Interface
	2.1.2. MouseMotionListener - Handles moves and drags.

	2.2. Mouse Listeners - How and where to write mouse listeners.
	2.2.1. Listening within the panel itself
	2.2.2. Listening from outside the panel
	2.2.3. As above with anonymous listeners

	2.3. Mouse Buttons, Modifier Keys - How to check which mouse buttons are pressed.
	2.3.1. To Use Methods to Check Mouse Buttons
	2.3.2. To Use Methods to Check Modifier Keys
	2.3.3. To Use Bit Masks to Check Mouse Buttons and Modifier Keys

	2.4. Example - MouseTest.java - Example shows mouse coordinates.
	2.5. Example - DragDemo.java - Example shows mouse dragging.

	3. Lab Tasks

