
M. Joldoş Laboratory Guide 07-Object Diagrams

T.U.Cluj Object Oriented Programming 1

Object Diagrams

The following is an excerpt from: Instant UML, by Pierre-Alain Muller, 1997

Object diagrams, or instance diagrams, illustrate objects and links. As in the case of class diagrams,

object diagrams represent the static structure. The notation used for object diagrams is derived from
that of class diagrams; elements that are instances are underlined.

Object diagrams are primarily used to show a context – before or after an interaction, for

example. However, they are also used to aid the understanding of complex data structures, such as
recursive structures.

Representation of Objects

Each object is represented by a rectangle, which contains either the name of the object, the name

and the class of the object (separated by a colon), or only the object's class (in which case the object
is said to be anonymous). The name by itself corresponds to an incomplete model, in which the

object's class has not yet been specified. The class on its own avoids the introduction of unnecessary
names into diagrams, while allowing the expression of general mechanisms that are valid for many

objects. The diagram below illustrates the three representation possibilities.

The name of the class may contain the complete path built

from the names of the various containing packages
separated by double colons, as in this example:

The stereotype of the class may reappear in the object compartment, either

using its textual form (between guillemets (« ») above the name of the object),

its graphical form (in the top right corner), or using a particular graphical
representation that replaces the object symbol. There is no object stereotype; the stereotype that

appears within an object is always the stereotype of the class.

Rectangles that symbolize objects may also include a second compartment that

contains the attribute values. The attribute type is already specified in the
class, so it is not necessary to display it in representations of objects. The

diagram on the left represents an anonymous object of class Car, with a
Color attribute that has the value red.

Representation of Links

Objects are connected via links, which are instances of associations between the classes of the

objects being considered. The concrete representation of a structure by objects is often more
revealing than the abstract representation of a structure using classes, especially in the case of

recursive structures. The object diagram below illustrates a portion of the general structure of cars.

Each car has an engine and four wheels (excluding the spare wheel!).

The diagram on the left is an
instance of the class diagram on

the right side.

Links that are instances of reflexive associations

may connect an object to itself. In this case, the link is represented by a loop
attached to a single object. The following example illustrates two links that

M. Joldoş Laboratory Guide 07-Object Diagrams

T.U.Cluj Object Oriented Programming 2

are instances of the same reflexive association. The first link shows that Etienne is Jean-Luc's boss,
the second link shows that Denis is his own boss.

Most links are binary. However, there exist some links that

may connect together more than two objects – those that
correspond to ternary relationships, for instance. The

representation of ternary relationships may be combined

with the other notation elements: the diagram below represents a family of
ternary links that are instances of a ternary association with multiplicity N on the Student class side.

This notation has the advantage of removing any ambiguities inherent to the representation of
multiplicity for non-binary associations.

On the left side there is an example of a combination of notation

elements in order to represent multiple ternary relationships in a
condensed way.

Composite Objects

Objects made of sub-objects may be represented using a

composite object in order to reduce diagram complexity.
Composite objects are represented like normal objects except for

the fact that the attributes are replaced by objects, either using

underlined text or a graphical representation. The diagram on the
right illustrates the graphical representation of composite objects:

Composite objects are instances of composite classes – classes built
from other classes using the strongest form of aggregation. The

following diagram represents a composite Window class.
The following object

diagram is an instance of
the above composite

class. It represents the

most general form of composite Window objects, from

the objects' point of view.

Similarities with Class Diagrams

The labels that figure in class diagrams can mostly be
copied into object diagrams to facilitate understanding

of the interaction. This applies to all the association
characteristics (name, role name, aggregation,

composition, and navigation), with the exception of

multiplicity, which is represented explicitly by links. The
object diagram on the right side can be distinguished

graphically from a class diagram because the object
names are underlined:

The values of association qualifiers may also
be added to object diagrams. The diagram on

the left represents parental links between
Lara, Jonathan, Roxane, Anne and Pierre-

Alain.

M. Joldoş Laboratory Guide 07-Object Diagrams

T.U.Cluj Object Oriented Programming 3

Exercises

Draw the object diagrams for the following classes, declarations, and assignments:

Example 1:

public class ClassA

{
 char letterA;

 ClassB letters;
}

public class ClassB

{

 char one;

 char two;

}

ClassA object = new ClassA();

object.letterA = ‘x’;

object.letters = new ClassB();

object.letters.one = ‘y’;

object.letters.two = ‘z’;

Example 2:

public class ThreeInts

{

 int firstInt;

 OneInt secondInt;

 int thirdInt;

}

public class OneInt

{

 int theInt;

}

ThreeInts object = new ThreeInts();

object.firstInt = 20;

object.secondInt = new OneInt();

object.thirdInt = 40;

object.secondInt.theInt = 30;

