Object Oriented Programming

1. More Java new I/O
2. Introduction to Threads

0OO0P13 - M. Joldos - T.U. Cluj 1

Simplified Channel Hierarchy

<<<lInterface>>>
Channel

N
<<<interface>>> SelectableChannel
We ByteChannel
discussed
: 2
only this g & ~
Y AN
~
VAR <
i FileChannel i i DatagramChannel i W SocketChannel W i :»::n;
I 1 | I 1
[|1 I | J
0OOP13 - M. Joldos - T.U. Cluj 2

Buffers

= Buffers were created primarily to act as containers
for data being sent to or received from channels.

Buffer Views

= Assume we have a file containing Unicode characters stored as 16-bit
values (UTF-16 not UTF-8 encoding. UTF = Unicode Transformation
Format)

Buffer = To read a chunk of this file into the byte buffer, we could then create a
Char Buf f er view of those bytes:
Char Buf fer charBuffer = byteBuffer.asCharBuffer();
\\\\\\'\\\\\\Hﬁﬁﬁl// = This creates a view of the original Byt eBuf f er , which behaves like a
Charfufter Intiuffer DoubleBufier ShartRufter Longuffor Featbufier Bytofuier Char Buf f er (combines each pair of bytes in the buffer into a 16-bit
char value)
= The Byt eBuf f er class also has methods to do ad hoc accesses of
. W individual primitive values. For example, to access four bytes of a
= Channels are conduits to low-level I/0 T buffer as an i nt, you could do the following:
services and are always byte-oriented; they int fileSize = byteBuffer.getint():
only know how to use Byt eBuf f er objects.
O0P13 - M. Joldos - T.U. Cluj OOP13 - M. Joldos - T.U. Cluj 4
Buffer Views Example
import java.nio.*; FloatBuffer fb = bb.asFloatBuffer();
public class Buffers { fb.put(floats);
4 3] public static void main(String[] args) { CharBuffer cb = bb.asCharBuffer();
try { System.out.printin(cb.toString());

_ “packing storage (byles)

, ,T TH

L

postiion
char butter

posifion
byte buffer

0O0P13 - M. Joldos - T.U. Cluj

float[] floats = {

} catch (Exception e) {
6.612297E-39F, 9.918385E-39F,

y out.printin(e.get ();
1.1093785E-38F, 1.092858E-38F, e.printStackTrace();
1.0469398E-38F, 9.183596E-39F by

>
ByteBuffer bb = vv

ByteBuffer.allocate(floats.length * 4);

FloatBuffer §,612297E-39 9.918385E-39 1.0193785E-38 1.092858E-38 1.0469398E-38 9.183506E-39

CharBuffer H e 1 s o w o r 1 d 1
ByteBuffer 00480065006C006C006FO0020007 7006FO0T72006C00640021
) RN Y | RN | NN { DO O [N (U R 1
00P13 - M. Joldog - T.U. Cluj 6

—— Byte Swabbing

= Endian-ness : the order in which bytes are
combined to form larger numeric values.

= When the numerically-most-significant byte is stored
first in memory (at the lower address), this is big-endian
byte order

= The opposite, where the least significant byte occurs
first, is little-endian

%’ 788
7 B T 0B i TF B4 @

little endian big endian

0O0P13 - M. Joldos - T.U. Cluj 7

=2 Buffer Views and Endian-ness

= Every buffer object has a byte order setting.
= For all but Byt eBuf f er, this is a read-only property and cannot be
changed.
= The byte order setting of Byt eBuf f er objects can be changed at any
time.

= This affects the resulting byte order of any views created of that
Byt eBuf f er object.

= If the Unicode data in our file was encoded as UTF-16LE (little-endian),
we'd set the Byt eBuf f er 's byte order prior to creating the view
CharBuffer:

byt eBuf fer. order (ByteOrder.LI TTLE_ENDI AN);
Char Buf f er charBuffer = byteBuffer.asCharBuffer();
= The new view buffer inherits the byte order setting of the
Byt eBuf f er
= The buffer's byte order setting at the time of the call affects how bytes
are combined to form the return value or broken out for storage in the
buffer.

0O0P13 - M. Joldos - T.U. Cluj 8

=2 Direct Buffers

= The data elements encapsulated by a buffer can be stored
in one of several different ways:
= in a private array created by the buffer object (allocation),
= in an array you provide (wrapping), or,
= in the case of direct buffers, in native memory space outside of the
JVM's memory heap.
= When we create a direct buffer (by invoking
Byt eBuf fer. al | ocat eDi rect N\v), native system
.ﬂ.mBoJ\ is allocated and a buffer object is wrapped around
it.
= The primary purpose of direct buffers is for doing I/O on
channels.
= Channel implementations can set up OS-level 1/0
operations to act directly upon a direct buffer's native
memory space.

0O0P13 - M. Joldos - T.U. Cluj 9

z

——~ Memory Mapped Files

= MappedByt eBuf f er is a specialized form of
Byt eBuf f er.
= On most operating systems, it's possible to memory
map a file using the mmap() system call (or something
similar — note this does not belong to Java) on an open
file descriptor.

» Calling mmap() returns a pointer to a memory segment, which
actually represents the content of the file.

= Fetches from memory locations within that memory area
will return data from the file at the corresponding offset.

= Modifications made to the memory space are written to
the file on disk.

0O0P13 - M. Joldos - T.U. Cluj 10

—~ Memory Mapped Files

Additional processes running in user space would map to that same
physical memory space, through the same filesystem cache and thence
to the same file data on disk.

= Each of those processes would see changes made by any other.
= This can be exploited as a form of persistent, shared memory.

Process filesystem page
cache = .
A mappin i
..._ —._Sm-_mHmS_ummR _ ‘_._::..m_m_m:..__u_{_:m:..' E

e 1_—..Eumu FPhysical memary

0O0P13 - M. Joldos - T.U. Cluj 11

H_ MappedByt eBuf f er Example:
== Reversing Bytes in a File

import java.nio.*; // map file to buffer
import java.nio.channels.*; MappedByteBuffer mbb =
import java.io.*; fc.map(FileChannel.MapMode.READ_W
public class MappedBufferDemo { RITE, 0, fc.size());
public static void main(String // reverse bytes of file
args[]) throws IOException { int len = (int)fc.size();
// check command-line argument for(inti=0,j=len-1;
if (args.length 1= 1) { i<y
System.err.printin(i++,j--)
"missing file argument"); {

byte b = mbb.get(i);

System.exit(1); mbb.put(i, mbb.get(j));

b : b):
// get channel 3 st
RandomAccessFile raf = // finish up
new RandomAccessFile(fc.close();
args[0], "rw"); raf.close();
FileChannel fc = qmwumnn:m::m_cvv b

00P13 - M. Joldos - T.U. Cluj 12

[

Java

— = Scattering Reads and Gathering Writes

= E.g. With a single read request to the channel we can place
the first 32 bytes into the header buffer, the next 768
bytes into the col or Map buffer, and the remainder into
i mageBody

= The channel fills each buffer in turn until all are full or
there're no more data to read

Byt eBuf fer header = ByteBuffer.allocate (32);
Byt eBuf fer col orVap = ByteBuffer (256 * 3);
Byt eBuf f er i nageBody = ByteBuffer (640 * 480);

ByteBuffer [] scatterBuffers { header, col orMap,
i mgeBody };
fileChannel.read (scatterBuffers);
OOP13 - M. Joldos - T.U. Cluj 13

[

=) Direct Channel Transfers

= A channel transfer lets you cross-connect two channels
so that data is transferred directly from one to the
other without any further intervention on your part.

Because the t ransf er To() and t r ansf er From()
methods belong to the Fi | eChannel class, a

Fi | eChannel object must be the source or
destination of a channel transfer (you can't transfer
from one socket to another, for example).

= The other end may be any Readabl eByt eChannel
or Wit abl eByt eChannel , as appropriate.

Note: demos in nio subdirectory

0O0P13 - M. Joldos - T.U. Cluj 14

[

Java

——=Direct Channel Transfers Example

import java.nio.*;
import java.nio.channels.*;
import java.io.*;
public class ChannelDemo {
public static void main(String args[]) throws IOException {
// check command-line arguments
if (args.length != 2) {

transferTo method
transfers bytes from

Syst intin("missing fil " the source channel
ystem.err.printin("missing filenames™); = g
System.exit(1); ! (fcin) to the specified

pY target channel (fcout).

:_ get n._m.:_m_m . | o i The transfer is typically
FileInputStream fis = new FileInputStream(args| H it i
OutputStream fos = new FileOutputStream(args[1]); done without &y licit
FileChannel fcin = fis.getChannel(); user-level reads and
FileChannel fcout = fos.getChannel(); writes of the channel.
// do the file copy

fcin.transferTo(0, fcin.size(), fcout);
// finish up

fcin.close();

fcout.close();

fis.close();

fos.close();

¥

0O0P13 - M. Joldos - T.U. Cluj 15

[

Java

——=File Locking

fieader A Reader B Writer Reader
processes
e Sl ok roqiest Bl - veveeseoe i holding shared
shared lack held | ; locks.

Reader A Reader B Writer

Writer process
holding
exclusive lock.

= File locks are generally needed when integrating with non-Java applications, to
mediate access to shared data files

0O0P13 - M. Joldos - T.U. Cluj 16

Regular Expressions

= Regular expressions (j ava. uti | . regex) are part of NIO
= String class is regex-aware by adding the following methods:

package java. | ang;

public final class String inplenents java.io. Serializable,
Conpar abl e, Char Sequence

{
/1 This is a partial APl listing
publ i c bool ean nmatches (String regex)
public String [] split (String regex)
public String [] split (String regex, int limt)
public String replaceFirst (String regex, String
repl acenent)
public String replaceAll (String regex, String
repl acenent)

0O0P13 - M. Joldos - T.U. Cluj 17

Regex Examples

public static final String VALID_EMAIL_PATTERN = M

A-Z0-
SR T (R
m.n.ﬁmz..m:>an_.mmm.5mnn=mm (VALID_EMAIL_PATTERN))
¢ addEmailAddress (emailAddress);
W_mm
{

throw new IllegalArgumentException (emailAddress);
>

// splits the string lineBuffer (which contains a series of comma-separated
values) into substrings and returns those strings in a type-safe array
String [] tokens = lineBuffer.split ("\\s*,\\s*");

0O0P13 - M. Joldos - T.U. Cluj 18

== Introduction to Java Threads

0OO0P13 - M. Joldos - T.U. Cluj 19

—— Multitasking

= At SO level, a number of processes appear
to execute simultaneously

Lecal mamory

I
1

i

I

I

1

i
Local memory | i
I

1

1

]
Local mamory |y
I

1

i

0O0P13 - M. Joldos - T.U. Cluj 20

——= Multitasking vs Multithreading

0O0P13 - M. Joldos - T.U. Cluj 21

M Thread Tasks

= Threads are useful in many ways:

= Where several things must happen at once multi-
threading has great appeal.

» For example, a multimedia application can require audio, video,
and control processes to run in parallel. There are often periods
of waiting on slow IO systems to respond when the processor
could be doing other tasks.

= Programs such as server/client systems are much easier
to design and write with threads.

= Mathematical algorithms such as sorting, prime
searching, etc. are suitable for parallel processing.

= On multiprocessor systems, the JVMs can put threads on
different processors and thus obtain true parallel
processing and get significant speedups in performance
over single processor platforms.

0O0P13 - M. Joldos - T.U. Cluj 22

—— Multithreading in Java

= Properties of multiple threads within Java
programs:

= Each thread begin execution at a well-known,
predefined location

= Each thread executes its code from its starting location
in an ordered, predefined (for a given set of inputs)
sequence

= Each thread executes its code independent of the other
threads in the program

= Threads appear to have a certain amount of
simultaneous execution

= Threads have access to various types of data

0O0P13 - M. Joldos - T.U. Cluj 23

—— Multithreading in Java

= All Java programs other than simple console-based
applications are multithreaded, whether you like it or not.

= Heavyweight processes run in the local machine system.

= Thread: a single sequential flow of control within a
program (also called /ightweight process).
= parallel processes running /nside of a program
= in Java you can create one or more threads within your program

just as you can run one or more programs in an operating system

= Java: create threads in two ways:

= A class extends the Thr ead class and overrides it's r un() method.

= A class implements the Runnabl e interface, which has one
method: run() .

« The class passes a reference to itself when it creates a thread.
= The thread then calls back to the run() method in the class.

00P13 - M. Joldos - T.U. Cluj 24

UM Thr ead Subclass

= The run() method in the thread corresponds to
the mai n() method for an application.

= When the thread starts, it invokes the method
run() and when the process returns from the
run() method, the thread dles.

= You cannot resurrect a dead thread. You must instead
create a new thread instance.

= The subclass must override the r un() method
= In run() you put the code you wish to process in
parallel to the main program

0O0P13 - M. Joldos - T.U. Cluj 25

UM Thr ead Subclass Example

= Demo: subclass

MyApplet

Create Thread subclass object
myThread=new Thread() MyThread

Then invoke

myThread . start () start () returns and a new process
to launch thread process hegins with the invocation of
run(} in this MyThread() object.

runl)

process dies when
run() finishes

0O0P13 - M. Joldos - T.U. Cluj 26

UM Runnabl e Implementation

= Implement the Runnabl e interface and override
its run() method

» Pass a reference to an instance of that Runnabl e
implementation to a thread instance and the
thread calls backto the r un() method in the
Runnabl e object.

= The thread dies as in the previous method when
the process returns from run() .

= Convenient for cases where you want to create a
single type of thread, such as an animation in an
applet.

0O0P13 - M. Joldos - T.U. Cluj 27

(2]

—

Runnabl e Implementation Example

= Demo: runnable

HyRunnableApplet

Create Thread object and pass
reference Lo this Runnable object
myThread=new Thread(Thread

Constructor saves reference 1o
Then imvoke Runnable o

Thread.start() tart()
to launch thread process process begins with the inve
of run() in the Runnable ohject.
run() Runnable.run()

ﬁ The process dies when
run () returns

el

wns when a new

0O0P13 - M. Joldos - T.U. Cluj 28

The Runnabl e Interface: Suggested
Implementation Outline

public class O assToRun extends SoneC ass inpl enents
Runnabl e
{

public void run()

{
/1 Fill this as if dassToRun
/1 were derived from Thread

}

public void startThread()

{
Thread theThread = new Thread(this);
theThread. run();

}

0O0P13 - M. Joldos - T.U. Cluj 29

UM Subclass vs. Runnabl e

= Runnabl e technique is particularly convenient when you
want to create just a single thread to carry out a specific
task.
= Therun() method will have access to the instance variables in the
Runnabl e object.
= E.g., for applet animation make the applet Runnabl e.
=« The run() method then has access to the applet's variables, which
could be parameters passed in the applet tags or set by the user via
the graphical interface
= If you want to create multiple threads, then it usually
makes more sense to use a Thr ead subclass.
= Helps to better conceptualize the threads as independent objects

= You can set the values of whatever parameters they need via their
constructors or "setter" methods

00P13 - M. Joldos - T.U. Cluj 30

UM Stopping/Pausing a Thread

= A thread stops in three ways:
= It returns smoothly from r un() . [Best way]
= The thread's st op() method is called. (Now deprecated. Don't use

this.)

= Interrupted by an uncaught exception.

= If the run() method contains a long or endlessly running
loop — stop the looping when a variable that can be
changed by the main process changes. E.g. bool ean value
set to f al se or a reference variable set to nul | to stop

= Always explicitly stop your threads in applets when the
applet st op() is called.

= Otherwise, the threads may continue running even when the
browser loads a new web page

0O0P13 - M. Joldos - T.U. Cluj 31

UM Stopping/Pausing a Thread

= For the Runnabl e case, you can start a
new thread with the variable settings still at
the values they had at the point the
previous thread stopped.

= In this case, stopping a thread and starting a
new one acts just like pause/start actions.

= The Thr ead class suspend() and resume()
methods were deprecated to avoid deadlock
problems

0O0P13 - M. Joldos - T.U. Cluj 32

UM Thr ead. sl eep

= Thread. sl eep is a static method in the class
Thr ead that pauses the thread that includes the
invocation

= It pauses for the number of milliseconds given as an
argument

= Note that it may be invoked in an ordinary program to
insert a pause in the single thread of that program
= It may throw a checked exception,
I nt errupt edExcept i on, which must be caught
or declared

= Both the Thread and I nt er r upt edExcepti on
classes are in the package j ava. | ang

0O0P13 - M. Joldos - T.U. Cluj 33

UM Thread States

m get State(): (Java 5) method returns an Enum

of Thr ead. St at es. Thread states:

= NEW — a fresh thread that has not yet started to
execute.

= RUNNABLE - a thread that is executing in the Java
virtual machine.

= BLOCKED — a thread that is blocked waiting for a
monitor lock.

= WAITING - a thread that is waiting to be notified by
another thread.

= TIMED_WAITING — a thread that is waiting to be
notified by another thread for a specific amount of time.

= TERMINATED - a thread whose run method has ended.

0O0P13 - M. Joldos - T.U. Cluj 34

UM Thread Life Cycle

notify
notifyAll

xmm%
m v 1/0 completion
E

1/0 Request
wait
Sleep suspel

— Waiting -7 Sleeping Suspended - 7 Blocked -I

sto
| u 1

sleep interval Dead resume
expires

0O0P13 - M. Joldos - T.U. Cluj 35

UM Thread Scheduler

= The thread scheduler runs each thread for a
short amount of time (a &ime slice)

= Then the scheduler activates another thread

= There will always be slight variations in
running times especially when calling
operating system services (e.g. input and
output)

= There is no guarantee about the order in
which threads are executed

00P13 - M. Joldos - T.U. Cluj 36

UM Terminating Threads

A thread terminates when its r un method
terminates

Do notterminate a thread using the
deprecated st op method

Instead, notify a thread that it should terminate

t.interrupt();

= i nterrupt does not cause the thread to
terminate — it sets a boolean field in the thread
data structure

0O0P13 - M. Joldos - T.U. Cluj 37

UM Terminating Threads

= The run() method should check occasionally
whether it has been interrupted
= Use the i nt er r upt ed method

= An interrupted thread should release
resources, clean up, and exit

public void run()

{

for (int i =1;
i <= REPETITIONS && ! Thread.interrupted(); i++)
{

}

Cl ean up

Do wor k

0O0P13 - M. Joldos - T.U. Cluj

38

UM Terminating Threads

= The sl eep method throws an
I nt er rupt edExcept i on when a sleeping
thread is interrupted
= Catch the exception
= Terminate the thread

public void run() {

try {
for (int i =1; i <= REPETITIONS; i++)

{
Do wor k
}

}

catch (InterruptedException exception) {

}

Cl ean up

0O0P13 - M. Joldos - T.U. Cluj 39

UM Terminating Threads

= Java does not force a thread to terminate
when it is interrupted

= It is entirely up to the thread what it does
when it is interrupted

= Interrupting is a general mechanism for
getting the thread's attention

0O0P13 - M. Joldos - T.U. Cluj

40

H_

== Animations

= Popular task for a thread in Java: control an
animation

= A thread process can direct the drawing of each
frame while other aspects of the interface, such
as

= responding to user input, can continue in
parallel

= Demos: clock, drop2d, sunsort

0O0P13 - M. Joldos - T.U. Cluj 41

== Summary

= More Java New I/O = Intro to Java Threads

= Buffer = Multitasking vs.
. Views multithreading
= Endian-ness = Thread creation:
= Direct ~ = Subclassing Thr ead
»« Memory mapped ~ =« Runnabl e

implementation

Stopping/pausing ~

= File channels
= Memory mapped files

= Direct transfers = Terminating ~
= Locking = Simple animation with
= String class — regular threads
expressions

00P13 - M. Joldos - T.U. Cluj

42

