== Object Oriented Programming

1. Review
2. Exam format

OOPReview - M. Joldos - T.U. Cluj 1

=2 What is a class?

= A class is primarily a description of objects,
or instances, of that class
= A class contains one or more constructors to
create objects

= Aclass is a type

= A type defines a set of possible values, and
operations on those values

= The type of an object is the class that created it

OOPReview - M. Joldos - T.U. Cluj

E

=2 What is a class?

= But a class can also contain information about

itself

= Anything declared static belongs to the class itself

= Static variables contain information about the class, not
about instances of the class

= Static methods are executed by the class, not by
instances of the class

= Anything not declared static is not part of the class, and
cannot be used directly by the class

« However, a static method can create (or be given) objects, and
can send messages to them

OOPReview - M. Joldos - T.U. Cluj 3

E

=2 (Classes

m class MyClass extends ThatClass implements
Somelnterface, SomeOtherinterface {...}
= A top-level class can be public or package (default)
= A class can be final, meaning it cannot be subclassed

= A class subclasses exactly one other class (default:
Object)
= A class can implement any number of interfaces

OOPReview - M. Joldos - T.U. Cluj

Classes

m abstract class MyClass extends ThatClass
implements Somelnterface, SomeOtherinterface
{...}

= Same rules as before, except: An abstract class cannot
be final

= A class must be declared abstract if:
= It contains abstract methods

» It implements an interface but does not define all the methods
of that interface

Any class may be declared to be abstract
= An abstract class can (and does) have constructors
= You cannot instantiate an abstract class

OOPReview - M. Joldos - T.U. Cluj 5

E

== Why inheritance?

= Java provides a huge library of pre-written classes
= Sometimes these classes are exactly what you need
= Sometimes these classes are a/most what you need
= It's easy to subclass a class and override the methods
that you want to behave differently
= Inheritance is a way of providing similar behavior
to different kinds of objects, without duplicating
code

OOPReview - M. Joldos - T.U. Cluj

= Why inheritance?

= You should extend a class (and inherit from it)
only if:
= Your new class really is a more specific kind of the
superclass, and

= You want your new class to have most or all of the
functionality of the class you are extending, and

= You need to add to or modify the capabilities of the
superclass
= You should not extend a class merely to use some
of its features
= Composition is a better solution in this case

OOPReview - M. Joldos - T.U. Cluj 7

=2 What are abstract classes for?

= Abstract classes are suitable when you can
reasonably implement some, but not all, of the
behavior of the subclasses

= Example: You have a board game in which various
kinds of animals move around
= All animals can move(), eat(), drink(), hide(), etc.

= Since these are identical or similar, it makes sense to
have a default move() method, a default drink()
method, etc.

OOPReview - M. Joldos - T.U. Cluj 8

E

=2 What are abstract classes for?

= Example (cont'd)

= If you have a default draw() method, what
would it draw?

= Since you probably never want an Animal
object, but just specific animals (Dog, Cat,
Mouse, etc.), you don't need to be able to
instantiate the Animal class

= Make Animal abstract, with an abstract void
draw() method

OOPReview - M. Joldos - T.U. Cluj 9

E

=) Interfaces

= interface Mylnterface extends SomeOtherinterface {...}
= An interface can be public or package
= An interface cannot be final
= A class can implement any number of interfaces
= An interface can dec/are (not define) methods
» All declared methods are implicitly public and abstract
= An interface can define fields, classes, and interfaces
» Fields are implicitly static, final, and public
» Classes are implicitly static and public
» An interface cannot declare constructors
= It's OK (but unnecessary) to explicitly specify implicit
attributes

OOPReview - M. Joldos - T.U. Cluj 10

Declarations and assignments

= Suppose class Cat extends Animal implements Pet {...}and
class Persian extends Cat {...} and Cat puff = new Cat();
= Then the following are true:
= puff instanceof Cat, puff instanceof Animal, puff instanceof Pet
= The following is not true: puff instanceof Persian
= To form the negative test, say !(puff instanceof Persian)
= The following declarations and assignments are legal:
= Animal thatAnimal = puff;
= Animal thatAnimal = (Animal)puff;

= Pet myPet = puff;

= Persian myFancyCat = (Persian)puff;
= The following is also legal:

= void feed(Pet p, Food f) {...}

OOPReview - M. Joldos - T.U. Cluj 11

E

=2 What are interfaces for?

= Inheritance lets you guarantee that subclass
objects have the same methods as their superclass
objects

= Interfaces let you guarantee that unrelated objects
have the same methods

= Problem: Your GUI has an area in which it needs to draw
some object, but you don't know yet what kind of object
it will be

OOPReview - M. Joldos - T.U. Cluj 12

UM What are interfaces for?

= Solution:
» Define a Drawable interface, with a method draw()

= Make your tables, graphs, line drawings, etc., implement
Drawable

= In your GUI, call the object’s draw() method (legal for any
Drawable object)
= If you didn't have interfaces, here’s what you would
have to do:

= if (obj instanceof Table) ((Table)obj).draw();
else if (obj instanceof Graph) ((Graph)obj).draw();
else if (obj instanceof LineDrawing) ((LineDrawing)obj).draw();

= Worse, to add a new type of object, you have to change a lot of
code

OOPReview - M. Joldos - T.U. Cluj 13

H_ Inner Classes

—

= Inner classes are classes declared within another
class

= A member class is defined immediately within
another class
= A member class may be static
= A member class may be abstract or final (but not both)

= A member class may be public, protected, package, or
private

OOPReview - M. Joldos - T.U. Cluj 14

2 Inner Classes

= A local class is declared in a constructor,
method, or initializer block

= A local class may be abstract or final (but not
both)

= A local class may access only final variables in
its enclosing code

= An anonymous class is a special kind of local
class

OOPReview - M. Joldos - T.U. Cluj 15

=2 Inner Classes

= An anonymous inner class is a kind of local class
= An anonymous inner class has one of the following
forms:

« new NameOfSuperclass(parameters) { class body}
« new NameOflnterface() { class body}

= Anonymous inner classes cannot have explicit

constructors
= A static member class is written inside another class,

but is not actually an inner class

= A static member class has no special access to names in its
containing class

= To refer to the static inner class from a class outside the
containing class, use the syntax
OuterClassName. InnerClassName

= A static member class may contain static fields and methods

OOPReview - M. Joldos - T.U. Cluj 16

UM What are inner classes for?

= Sometimes a class is needed by only one other
class

= Example: A class to handle an event, such as a button
click, is probably needed only in the GUI class

= Having such a class available at the top level, where it
isn't needed, just adds clutter

= It's best to “hide” such classes from other classes that
don't care about it

OOPReview - M. Joldos - T.U. Cluj 17

UM What are inner classes for?

= Sometimes a class needs access to many
variables and methods of another class
= Again, an event handler is a good example
= Making it an inner class gives it full access

= Sometimes a class is only needed once, for
one object, in one specific place
= Most event handlers are like this
= An anonymous inner class is very handy for this

purpose

OOPReview - M. Joldos - T.U. Cluj 18

El

—= Enumerations

= An enumeration, or “enum,” is simply a set of
constants to represent various values

= Here's the old way of doing it

= public final int SPRING = 0;
public final int SUMMER = 1;
public final int FALL = 2;
public final int WINTER = 3;

= This is a nuisance, and is error prone as well
= Here's the new way of doing it:
= enum Season { WINTER, SPRING, SUMMER, FALL }

OOPReview - M. Joldos - T.U. Cluj 19

E

==J enums are classes

= An enum is actually a new type of class

= You can declare them as inner classes or outer
classes

= You can declare variables of an enum type and
get type safety and compile time checking
= Each declared value is an instance of the enum class
=« Enums are implicitly public, static, and final
= You can compare enums with either equals or ==

OOPReview - M. Joldos - T.U. Cluj 20

==J enums are classes

= enums extend java.lang.Enum and implement
java.lang.Comparable

= Hence, enums can be sorted
= Enums override toString() and provide valueOf()
= Example:

= Season season = Season.WINTER;

= System.out.println(season);

= season = Season.valueOf("SPRING");

OOPReview - M. Joldos - T.U. Cluj 21

—— Enums really are classes

public enum Coin {
private final int value;
Coin(int value) { this.value = value; }
PENNY(1), NICKEL(5), DIME(10), QUARTER(25);

public int value() { return value; }

OOPReview - M. Joldos - T.U. Cluj 22

M Other features of enums

= values() returns an array of enum values
= Season[] seasonValues = Season.values();

= switch statements can now work with enums
= switch (thisSeason) { case SUMMER: ...; default: ...}
= You mustsay case SUMMER:, not case Season.SUMMER:
= It's still a very good idea to include a default case

m It is possible to define value-specific class bodies,
so that each value has its own methods
= The syntax for this is weird so we will not discuss it

OOPReview - M. Joldos - T.U. Cluj 23

=2 @Generic classes

= public class Box<T> {
private List<T> contents;
public Box() {
contents = new ArrayList<T>();
3

public void add(T thing) { contents.add(thing); }
public T grab() {
if (contents.size() > 0) return contents.remove(0);
else return null;

}

= Sun’s recommendation is to use single capital letters (such
as T) for types

= Many people, don't think much of this recommendation

OOPReview - M. Joldos - T.U. Cluj 24

H_ Access

-

= There are four types of access:

= public means accessible from everywhere

= Making a field public means that it can be changed
arbitrarily from anywhere, with no protection

= Methods should be public only if it's desirable to be
able to call them from outside this class
= protected means accessible from all classes in
this same directory and accessible from all
subclasses anywhere

OOPReview - M. Joldos - T.U. Cluj 25

H_ Access

——

= Package (default; no keyword) means accessible
from all classes in this same directory
= private means accessible only within this class
= Note: Making a field private does not hide it from
other objects in this same class!

In general, it's best to make all variables as private
as possible, and to make methods public enough
to be used where they are needed

OOPReview - M. Joldos - T.U. Cluj 26

H_| Proper use of fields

—

= An object can have fields and methods

= When an object is created,
» It is created with all the non-static fields defined in its
class
« It can execute all the instance methods defined in its class
= Inside an instance method, this refers to the object
executing the method
= The fields of the object should describe the
state of the object
= All fields should say something significant about the object

= Variables that don't describe the object should be local
variables, and can be passed from one method to another
as parameters
OOPReview - M. Joldos - T.U. Cluj 27

—

H_| Proper use of fields

= The fields of an object should be impervious to
corruption from outside
= This localizes errors in an object to bugs in its class
= Hence, fields should be as private as possible
= All public fields should be documented with Javadoc

= Getters and setters can be used to check the validity
of any changes

=« If a class is designed to be subclassed, fields that the
subclass needs to access are typically marked
protected

OOPReview - M. Joldos - T.U. Cluj 28

H_| Composition and inheritance

= Composition is when an object of one class uses an object of
another class
= class MyClass {
Strings; ...}
= MyClass has complete control over its methods
= Inheritance is when a class extends another class
= class MyClass extends Superclass { ... }
= MyClass gets all the static variables, instance variables, static
methods, and instance methods of Superclass, whether it wants
them or not
= Constructors are notinherited
= Inheritance should only be used when you can honestly say that a
MyClass object is a Superclass object
» Good: class Secretary extends Employee
» Bad: class Secretary extends AccountingSystem

OOPReview - M. Joldos - T.U. Cluj 29

,;H_| Constructors

-

= A constructor is the on/y way to make instances of
a class
= Here's what a constructor does:
= First, it calls the constructor for its superclass:
= public MyClass() { super(); ... }

Note that it calls the superclass constructor with 7o
arguments
But you can explicitly call a different superclass constructor:
public MyClass(int size) { super(size); ... }

Or you can explicitly call a different constructor in this class:
public MyClass() { this(0); ... }

OOPReview - M. Joldos - T.U. Cluj 30

== Constructors

= Next, it adds the instance fields declared in this
class (and possibly initializes them)
= class MyClass { int x; double 'y = 3.5; ... }

= Next, it executes the code in the constructor:
= public MyClass() { super(); next = 0; doThis();
doThat(); ... }
= Finally, it returns the resultant object

= You can say return; but you can't explicitly say what
to return

OOPReview - M. Joldos - T.U. Cluj 31

UM Constructor chaining

= Everyclass always has a constructor

= If you don't write a constructor, Java supplies a default
constructor with no arguments

= If you do write a constructor, Java does not supply a default
constructor
= The first thing any constructor does (except the
constructor for Object) is call the constructor for its
superclass
= This creates a c¢hain of constructor calls all the way up to Object
= The default constructor calls the default constructor for its
superclass
= Note: generally, the term Factory Method is often used to refer to
any method whose main purpose is to create objects

OOPReview - M. Joldos - T.U. Cluj 32

——=Constructor chaining

= Therefore, if you write a class with an explicit
constructor with arguments, and you write
subclasses of that class,
= Every subclass constructor will, by default, call the
superclass constructor with no arguments (which may
not still exist)
= Solutions: Either

= Provide a no-argument constructor in your superclass,
or

= Explicitly call a particular superclass constructor with
super(args)

OOPReview - M. Joldos - T.U. Cluj 33

= Proper use of constructors

= A constructor should a/ways create its objects in
a valid state

= A constructor should not do anything but create
objects

= If a constructor cannot guarantee that the constructed
object is valid, it should be private and accessed via a
factory method

OOPReview - M. Joldos - T.U. Cluj 34

E

—= Proper use of constructors

= A factory method is a static method that calls a
constructor
The constructor is usually private
The factory method can determine whether or not to call the
constructor
The factory method can throw an Exception, or do something
else suitable, if it is given illegal arguments or otherwise cannot
create a valid object
public Person create(int age) {
if (age < 0) throw new IllegalArgumentException("Too
young!");
else return new Person(n);

3

OOPReview - M. Joldos - T.U. Cluj 35

E

= References

= When you declare a primitive, you also
allocate space to hold a primitive of that
type
= int x; double y; boolean b;
If declared as a field, it is initially zero (false)
If declared as a local variable, it may have a
garbage value
When you assign this value to another variable,
you copy the value

OOPReview - M. Joldos - T.U. Cluj 36

-2 References

= When you declare an object, you also allocate
space to hold a reference to an object
= String s; int[] counts; Person p;
= If declared as a field, it is initially null

= If declared as a local variable, it may have a garbage
value
= When you assign this value to another variable, you
copy the value
=« ...but in this case, the value is just a reference to an object
= You define the variable by assigning an actual object
(created by new) to it

OOPReview - M. Joldos - T.U. Cluj 37

UM Methods

= A method may:
= be public, protected, package, or private

= be static or instance

» static methods may not refer to the object executing them
(this), because they are executed by the class itself, not by an
object

= be final or nonfinal
= return a value or be void
= throw exceptions

= The signature of a method consists of its name
and the number and types (in order) of its formal
parameters

OOPReview - M. Joldos - T.U. Cluj 38

UM Methods

= You overload a method by writing another
method with the same name but a different
signature

= You override an /inherited method by writing
another method with the same signature

= When you override a method:

= You cannot make it less public (public > protected >
package > private)

= You cannot throw additional exceptions (you can
throw fewer)

= The return types must be compatible

OOPReview - M. Joldos - T.U. Cluj 39

UM Methods

= A method declares formal parameters and is
“called” with actual parameters
= void feed(int amount) { hunger -= amount; }

= myPet.feed(5);

= But you don't “cal
to an object
= You may not know what kind of object myPet is
= A dog may eat differently than a parakeet

_=

a method, you send a message

OOPReview - M. Joldos - T.U. Cluj 40

Methods

= When you send a message, the values of the
actual parameters replace the formal parameters

= If the parameters are object types, their “values” are
references

= The method can access the actual object, and possibly
modify it
= When the method returns, formal parameters are
not copied back

= However, changes made to referenced objects will
persist

OOPReview - M. Joldos - T.U. Cluj 41

,;H_M Methods

= Parameters are passed by assignment, hence:
= If a formal parameter is double, you can call it with an
int
= ...unless it is overloaded by a method with an int parameter
= If a formal parameter is a class type, you can call it with
an object of a subclass type
= Within an /nstance method, the keyword this acts
as an extra parameter (set to the object executing
the method)

OOPReview - M. Joldos - T.U. Cluj 42

UM Methods

= Local variables are not necessarily initialized
to zero (or false or null)
= The compiler ¢ries to keep you from using an
uninitialized variable
= Local variables, including parameters, are
discarded when the method returns

= Any method, regardless of its return type,
may be used as a statement

OOPReview - M. Joldos - T.U. Cluj 43

H_ Generic methods

—

= Method that takes a List of Strings:
= private void printListOfStrings(List<String> list) {
for (Iterator<String> i = list.iterator(); i.hasNext();) {
System.out.println(i.next());
3

3
= Same thing, but with wildcard:
= private void printListOfStrings(List<?> list) {
for (Iterator<?> i = list.iterator(); i.hasNext();) {
System.out.println(i.next());
h

}

OOPReview - M. Joldos - T.U. Cluj 44

= Proper use of methods

Methods that are designed for use by other kinds of objects

should be public

= All public methods should be documented with Javadoc

= public methods that can fail, or harm the object if called
incorrectly, should throw an appropriate Exception

= Methods that are for internal use only should be private
= private methods can use assert statements rather than throw

Exceptions

= Methods that are only for internal use by this class, or by
its subclasses, should be protected

= Methods that don't use any instance variables or instance

methods should be static

= Why require an object if you don't need it?

OOPReview - M. Joldos - T.U. Cluj 45

UM Proper use of methods

= Ideally, a method should do only one thing
= You should describe what it does in one simple sentence
= The method name should clearly convey the basic intent
» It should usually be a verb

= The sentence should mention every source of input (parameters,
fields, etc.) and every result

= There is no such thing as a method that’s “too small”
= Methods should usually do no input/output
= Unless, of course, that’s the main purpose of the method
= Exception: Temporary print statements used for debugging
= Methods should do “sanity checks” on their inputs
= Publicly available methods should throw Exceptions for bad inputs

OOPReview - M. Joldos - T.U. Cluj 46

E

= Proper use of polymorphism

= Methods with the same name should do the same
thing
= Method overfoading should be used only when the

overloaded methods are doing the same thing (with
different parameters)

= Classes that implement an interface should implement
corresponding methods to do the same thing

» Method overriding should be done to change the details
of what the method does, without changing the basic
idea

OOPReview - M. Joldos - T.U. Cluj 47

,;H_M Proper use of polymorphism

= Methods shouldn’t duplicate code in other
methods
= An overloaded method can call its namesake
with other parameters
= A method in a subclass can call an overridden
method m(args) in the superclass with the
syntax super. m(args)

= Typically, this call would be made by the overriding
method to do the usual work of the method, then the
overriding method would do the rest

OOPReview - M. Joldos - T.U. Cluj 48

Fs
M Program design

= Good program design pays for itself many times
over when it comes to actually writing the code

= Good program design is an art, not a science

= Generally, you want:
= The simplest design that could possibly work

= Classes that stand by themselves, and make sense in
isolation

= Aptly named methods that do one thing only, and do it
well

= Classes and methods that can be tested (with JUnit)

OOPReview - M. Joldos - T.U. Cluj 49

What happens when an exception
is thrown

An exception object is created (on the heap)
The current “context” is halted/aborted
Execution starts in some error handling code

= Can be in current method

= Can be external to current method

The error handling code has access to the
exception object which can be used to

= Access a String message contained in the exception
= Determine what type of exception was thrown

= Print a stack trace

= Other cool stuff (like rethrow the exception, increment a
counter, etc.)

OOPReview - M. Joldos - T.U. Cluj 50

Vectors

= Vector is a class that provides a dynamic collection,
similar to a Linked List, Queue, etc.

Must be instantiated via “new” to get an instance of
Vector.

Vector elements are accessed via various utility methods
(size()returns current number of elements.

elementAt(int index) returns reference to

c | element at specified index.
ommonly .A

used methods insertElementAt(Object obj, int index)

ala insertion into linked list (but slower);
cannot do at end.

=z
Jav

i
o

Graphical User Interface

= Components, Containers, Layouts

= Components

= an object having a graphical representation that can be displayed
on the screen and that can interact with the user.

= e.g. Canvas, JButton, JLabel, JRadioButton, JTextField, JSlider,
= Container
= public class Container extends Component

= A generic Abstract Window Toolkit(AWT) container object is a
component that can contain other AWT components.

= Components added to a container are tracked in a list.
= e.g. JFrame, JPanel

\ addElement (Object obj) adds to end.
OOPReview - M. Joldos - T.U. Cluj 51 OOPReview - M. Joldos - T.U. Cluj 52
LayoutManager Big Picture

= public interface LayoutManager

= Defines the interface for classes that know how
to lay out Containers.

= €.g. BorderLayout, FlowLayout, GridLayout

OOPReview - M. Joldos - T.U. Cluj 53

ayoutManager

|_Components

OOPReview - M. Joldos - T.U. Cluj 54

UM GUI Events

What is event driven programming?
Events and event listeners

How do I write an event handler?
How do I register an event handler?

OOPReview - M. Joldos - T.U. Cluj 55

UM Applets and threads

Applets vs. standalone applications
Methods in an applet

Applet limitations

Threads

= Create, start, stop/pause a thread
= Applet animation using threads

OOPReview - M. Joldos - T.U. Cluj 56

H_ File IO

—

= Based on Streams

= Character (aka text)

= Readers (Input) [i.e. FileReader]

= Writers (Output)[i.e. FileWriter]
= Byte (aka binary)

= InputStream (Input) [i.e. FileInputStream]

= OutputStream (Output) [i.e. FileOutputStream]
= Processing Stream

= Wraps Character or Byte streams to provide more
functionality or filter stream

= Most common: Buffered streams to allow line at a
time processing [i.e. BufferedInputStream,
m—_ﬁﬂm_\mﬁ_ xmmﬁ_@mu,msez. M. Joldos - T.U. Cluj 57

H_ Basic Exam Format

—

= No computers or cell phones
= Bring pen and paper with you

= Two parts:
= Closed book part (cca. 1 hour)
= Questions on OO0 and Java concepts
= Be able to contrast and exemplify concepts
= Open book, open notes (cca. 1 h 50 min)
= One or two small problems to solve on paper

= For this part do not forget to bring some documentation
(notes, lab notes, book) as an aid

OOPReview - M. Joldos - T.U. Cluj 58

=l Success!

OOPReview - M. Joldos - T.U. Cluj 59

